
Device-free Indoor Localization and Tracking
through Human-Object Interactions

Wenjie Ruan†, Quan Z. Sheng†, Lina Yao†, Tao Gu§, Michele Ruta∗, and Longfei Shangguan‡
†School of Computer Science, The University of Adelaide, Australia; Email: {wenjie, qsheng, lina}@cs.adelaide.edu.au

§School of Computer Science and IT, RMIT University, Australia; Email: tao.gu@rmit.edu.au
∗Politecnico di Bari, via E. Orabona 4, I-70125, Bari, Italy; Email: michele.ruta@poliba.it

‡Department of Computer Science, Princeton University, USA; Email: longfeis@cs.princeton.edu

Abstract—Device-free indoor localization aims to localize
people without requiring them to carry any devices or being
actively involved in the localizing process. It underpins a wide
range of applications including older people surveillance, in-
truder detection and indoor navigation. However, in a cluttered
environment such as a residential home, the Received Signal
Strength Indicator (RSSI) is heavily obstructed by furniture or
metallic appliances, thus reducing the localization accuracy. This
environment is important to observe as human-object interaction
(HOI) events, detected by pervasive sensors, can potentially reveal
people’s interleaved locations during daily living activities, such as
watching TV, opening the fridge door. This paper aims to enhance
the performance of commercial off-the-shelf (COTS) RFID-based
localization system by leveraging HOI contexts in a furnished
home. Specifically, we propose a general Bayesian probabilistic
framework to integrate both RSSI signals and HOI events to infer
the most likely location and trajectory. Experiments conducted in
a residential house demonstrate the effectiveness of our proposed
method, in which we can localize a resident with average 95%
accuracy and track a moving subject with 0.58m mean error
distance.

I. INTRODUCTION

Ambient intelligence has been drawing a growing attention
as it enables a smart environment that can respond to people’s
locations and behaviors using various wireless signals, sensors,
or Radio-Frequency Identification (RFID). Many attractive
applications can be realized in these smart environments that
will have huge impact on our daily lives, such as aged care,
surveillance and indoor navigation. A crucial prerequisite of all
these applications is to accurately localize and track people in
a cluttered living environment [1], [2], [3]. To tackle this chal-
lenge, many state-of-the-art indoor localization systems have
been developed over last decades such as LANDMARC [4],
WILL [5], Tagoram [6]. Most of these techniques, however,
require the target to either carry sensors/smartphones/tags or be
actively involved in the localizing process, which has several
limitations in practice. The attached sensor/smart phone/tag
may be lost or damaged or elderly people with dementia may
forget to carry the device.

As a result, device-free (or unobstructive) indoor localiza-
tion has gained significant momentum recently and several
approaches have been proposed [7], [8]. One popular device-
free technique category is based on computer vision, such as
using RGB camera [9], depth camera [10], however they are
usually regarded as being privacy-invasive and causes uncom-
fortable feeling to the residents. Another technique category is

Fig. 1: Intuition of HOI-Loc

based on RF (radio frequency) signals, e.g., detecting human
locations by measuring RSS (received signal strength) or CSI
(channel state information) in WLANs (wireless local area
networks) [7], [11], [12], or tracking a target through a wall
based on the RF signal reflected from human body [13]. How-
ever, most of such systems often require regular maintenance
(e.g., replacing the batteries regularly), or need specialized
WIFI signals, e.g., Frequency-Modulated Continuous-Wave
(FMCW), or special-purpose devices, hindering their wide
application and deployment in reality [14], [15], [8].

Thus, passive RFID based localization has emerged re-
cently due to its low-cost (5∼10 cents each, still dropping
quickly) and maintenance-free nature (e.g., no need batter-
ies) [14]. However, existing RFID-based device-free tech-
niques usually work in clear or semi-clear spaces (i.e., empty
spaces or spaces with very few objects), and none of them are
actually tested in clustered residential environments, especially
in a multiple-room scenario. In addition, most RFID-based
localization techniques are based on the assumption that know-
ing the tags’ coordinates in advance, which is impractical in
real-world applications (accurately locating the tag’s position
is a time-consuming and challenging task itself). Besides,
many state-of-the-art RFID-based systems (e.g., [14], [8], [6])
heavily rely on ideal propagation models of RF phase or RSSI,
which may not be feasible in a full-furnitured residential room
where rich multi-path reflections and frequent electromagnet
interference exist (e.g., turning on/off electronic appliances in a
kitchen) [16], [17]. To tackle these challenges, in this paper, we
design HOI-Loc, an RFID-based device-free localization and978-1-5090-2185-7/16/$31.00 2016 IEEE

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:17:48 UTC from IEEE Xplore.  Restrictions apply. 



tracking system to achieve high accuracy in clustered living
environments using Human-Object Interactions.

With the booming of IoT (Internet of Things), human-
object interaction has been advocated as an essential com-
ponent of Cyber Physical System [18] (e.g., smart homes,
intelligent space, and home automation). In each week, there
are more than 1.9 billion devices launched into the market
that can connect to the residential home [19]. With such
tremendous smart devices, we can easily access, retrieve and
monitor HOI events in our daily lives [20]. For instance, a
smart home equipped with various sensors (see Fig. 1) is
capable of reporting the operating conditions of the floor
lamp, desktop computer and desk light [21]. Moreover, we
observe that the locations causing severe signal decay are
usually full of furniture or electrical appliances, and such
locations are exactly where HOI frequently occurs. Whereas,
from another perspective, we can substantially improve the
localization accuracy by utilizing such interaction events [22].
For example, localizing a person in the kitchen (equipped with
rich electrical appliances) purely based on RSSI is difficult
since the signals are severely interfered by electrical devices
made of metals (i.e., microwave oven, fridge or cooker).
However, we can offset such signal disturbance and improve
accuracy by using HOI, such as opening a fridge, turning on
a kettle or a microwave oven. Inspired by this intuition, we
propose to incorporate HOI into existing RSSI based methods
to improve localization accuracy in clustered indoor spaces.

Transforming the use of HOI into a practical system,
however, requires addressing a number of challenges. First,
localization from weak RSSI signals of passive RFID tags in
a clustered environment is difficult. Unlike active RFID tags
or wireless sensors that have their own power supplies, passive
tags can only obtain energy from the interrogating field, which
can easily be obstructed by furniture and metal appliances (e.g.,
RSSI reading loss, RSSI jumps due to on-and-off of electronic
appliances). In particular, this task is typically accomplished
using COTS RFID readers, which currently do not support
any low-level signal access or modification. In addition, HOI
contexts are discrete events which occur from time to time,
but RSSI readings are continuous signal (can be sampled as
high as 10 times per second). How to feasibly incorporate
the discrete HOI events with continuous RSSI signal under
rigid mathematical reasoning is a challenging task. Moreover,
the inherent signal diversity of passive tags caused by human
mobility would introduce many unknown effects on the RSSI
attenuation and reading disturbance, leading to unpredictable
tracking errors.

To address these issues, in HOI-Loc system, we first set up
several RSS fields formed by passive RFID tags attached on
the bedroom’s walls1 to continuously generate RSSI signals,
and then deploy various kinds of sensors (e.g., infrared sensor,
touch sensor and light sensor etc.) to detect the resident’s in-
teraction events with electrical appliances. We introduce three
main techniques to tackle the aforementioned challenges. First,
we propose a Probabilistic Polyhedron Isolation (PPI) method
to model the likelihood of the target’s locations by measuring
the Euclidean distance of testing RSSI readings with each

1Unlike other device-free RFID systems (e.g., LANDMARC [4], TagAr-
ray [2], TASA [17] and Tadar [8]), we do not need to know the locations of
passive tags, meaning tags can be attached on the wall in an arbitrary shape

isolated high-dimension polyhedron, which is robust to the
signal attenuation and jumping (see §IV). Second, we develop
a rigid Bayesian probabilistic framework to fuse the discrete
HOI events (i.e., indicating where and when people interact
with objects) with continuous RSSI signals. In particular, we
first estimate the RSSI probability, then update the likelihood
by computing the HOI probability, and finally optimize a
location with largest confidence (see §IV). To track a moving
subject, we introduce a Hidden Markov Model (HMM) to
quantify the continuous location transition process to eliminate
the negative impact caused by human mobility. In particular,
we first approximate the Emission Matrix by a probabilistic
scheme that considers both evidence of the RSSI sequence and
HOI event stream based on Bayesian Inference, then propose
a practical but efficient strategy to estimate the Transition
Matrix, finally use the Viterbi Search to recover the target’s
trajectory (see §V). In a nutshell, our main contributions are
summarized as follows.

• We introduce an approach that utilizes HOI events
to facilitate device-free localization based on passive
RFID tags. Our experiments demonstrate the feasibil-
ity and accuracy of HOI-Loc in a furnished, clustered
living environment. To the best of our knowledge, the
proposed system is a very first effort to do so.

• We propose a general Bayesian-based probabilistic
framework that provides a way to feasibly fuse HOI
events with RSSI signals to enhance the tracking
performance. Specifically, for a multiple-room sce-
nario (including two bedrooms and a kitchen), HOI-
Loc can achieve average 95% localization accuracy
and 58cm tracking error, offering about 1.3×, 1.86×
and 2.86× improvement compared with Twins [14],
TagTrack [15] and SCPL [23].

• HOI-Loc can accurately track up to three residents
with average 85cm error distance in a non-concurrent
case, and it is capable of decoding four basic living
postures with overall 94.7% accuracy.

II. PRELIMINARY

A. Received Signal Strength Indicator (RSSI)

Passive RFID system communicates based on the backscat-
ter radio link since the passive tags (no batteries powered) can
purely harvest energy from the antenna’s signal. As Fig. 2
shown, the Path Loss is the difference of the power that
delivered to the transmitting antenna and obtained from the
receiving antenna. We derive the Friis Equation for the power
received from a transmitting antenna TX by a receiving an-
tenna RX , modeling the backscatter signal prorogation as [24]:

PRX,reader = PTX,tagGtagGreader(λ/4πr)
2

= PTX,readerTbG
2
tagG

2
reader(λ/4πr)

4 (1)

where Gtag is the tag antenna gain and Tb is the backscat-
ter transmission loss. As we can see, the above equation
theoretically proves that the power received by reader and
backscattered from tag goes as the inverse fourth power of the
distance. However, the RSSI signal depicts highly nonlinear
and uncertain relations with the distance in a residential room.
Thus how to model the relation of RSSI signals with locations
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Fig. 2: Path loss illustration

in our case is quite challenging. Rather than building compli-
cated signal propagation models2, we seek the solution from
statistical machine learning - accurately mining the relation
between subject’s potential locations and the human inference
to signal. We will elaborate it in §IV.

B. Human-Object Interactions (HOI)

Human-Object Interactions study the interactions between
human and the surrounding smart objects. In our daily lives,
we observe that a resident’s interactions with surrounding
devices can be very helpful to reveal her locations in a home
environment. Considering the following scenarios, when the
door of a microwave oven is opened, it is very likely the person
is near the oven; if the desk lamp is from on to off, or from off
to on, we can almost be certain that the subject currently is in
her home office. Thus, inspired by the observation, some HOI
contexts can be valuable to infer the target’s possible locations.

III. PROBLEM FORMULATION

In this paper, we focus on device-free localization based on
passive UHF tags. The COTS RFID readers have an operating
range of around 10m, which is enough for a residential room.
We also focus on locating and tracking residents that are not
moving at a high speed (< 1m/s) since moving in a high
speed in a residential room is unlikely.

We consider the target resident moving within a surveil-
lance house. For each monitored house with D passive tags
deployed, we divide it into J zones, denoted by L =
{L1, L2, ..., LJ}. When a subject appears in zone Li, we col-
lect N sample data Si = {si1, si2, ..., siN}, where sij ∈ RD

means data collected in jth sampling period. As a result,
when going through all the zones, we can obtain a dataset
S = {S0,S1, ...,SJ}, quantifying how a subject affects RSSIs
from each zone. Here the environmental RSSIs without a
subject is represented by S0. Similarly, for modeling HOI
events, we assume that we overall have M different objects
C = {I1, I2, ..., IM} available (e.g., electrical kettle, fridge,
microwave oven etc.). Then we represent the interaction events
in a binary way, i.e., Ii = 1 means an interacting event

2This relation also depends on the room layout and furniture settings,
consequently it is difficult to develop an accurate universal propagation model.

happens. For example, if I1 represents fridge door, then I1 = 1
means the fridge door has opened from closed, or closed from
opened (interacted with by a resident), otherwise I1 = 0.
Formally, given both signal available, this paper targets the
following two problems.

Problem 1 (Localization): Given an RSSI vector and in-
teraction events, we need to correctly estimate the subject’s
location.

Problem 2 (Tracking): Given a continuous RSSI sequence
and interaction event stream, we need to accurately estimate
the subject’s trajectory.

Localization: Mathematically, Problem 1 can be formulated
as modeling the posterior distribution Pr(l|o, C) for each
possible location. Specifically, given observed RSSI signals o
and corresponding interaction events C = {I1, I2, ..., IM}, we
find the most likely location by using

l∗ = argmax
l∈L

Pr(l|o, C) (2)

which is essentially a classification task. We need to model
how RSSIs are distributed in different geographical areas based
on a sample of measurements collected at several known
locations and how to feasibly update the posterior probability
of the classifier based on the contexts of HOI. We present our
method in §IV.

Tracking: When a resident walks in random zones, we can
collect T continuous RSSI vectorsO = {o1,o2, ...,oT }. Then,
mathematically, Problem 2 can be formulated as modeling the
posterior distribution:

Pr(l1:T |O, C) = Pr(l1:T |o1:T , C1:T ), l1:T ∈ L (3)

Then, given observed continuous RSSI vector sequence
o1:T and interaction event stream C1:T , we need to find the
location sequence with largest likelihood.

l∗1:T = arg max
l1:T∈L

Pr(l1:T |o1:T , C1:T ) (4)

The tracking problem can be regarded as given a contin-
uous RSSI stream and a HOI event sequence, how we can
recover the underlying location sequence which is as accurate
as possible to the true location trajectory. We elaborate our
solution in §V.

IV. LOCALIZATION

As aforementioned in Eqn.2, for localizing a static resident,
we need to model the posterior distribution Pr(l|o, C) given
RSSI signal and HOI events. First, we revisit the Eqn. 2.
Based on the Bayesian Inference Theorem, we can decode the
equation as

Pr(l|o, C) = Pr(l)Pr(o, C|l)
Pr(o, C)

=
Pr(l)Pr(o|l)Pr(C|l,o)

Pr(o, C)

∝ Pr(l)Pr(o|l)Pr(C|l,o)
(5)

Since RSSI signals and HOI events are from independent
sensor sources, we also have Pr(C|l,o) = Pr(C|l). Thus, we
can model the posterior probabilities of candidate locations as

Pr(l|o, C) ∝ Pr(l)Pr(o|l)Pr(C|l) (6)
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Fig. 3: RSSIs from different locations are bounded by isolated
HD polyhedrons

where Pr(l) is the prior probability distribution, which is set as
Pr(l) ∼ 1/J without losing generality (means the target can
be possible in any locations beforehand). So far, we successful
find a way to model the posterior distribution Pr(l|o, C). We
give the following two definitions.

Definition 1 (RSSI Probability): Given the resident ap-
pearing a certain location, RSSI Probability measures the
probabilistic distribution Pr(o|l) of RSSI signals.

Definition 2 (HOI Probability): Given the resident inter-
acting with objects in a certain location, HOI Probability
measures the probabilistic distribution Pr(C|l) of HOI events.

In the next, we need to deal with how to accurately measure
Pr(o|l) and Pr(C|l).

RSSI Probability: As elaborated in §II, mapping the RSSI
signal to locations is very challenging under a clustered envi-
ronment due to rich multi-path effect. Seeking solutions from
backscatter propagation analysis is impractical in our case,
laying in the facts: most backscatter communication models
depend on the assumption that the position of reference tag is
accurately measured beforehand [8], which is not applicable in
HOI-Loc (we relax the assumption, no need to know tag’s co-
ordinates). From Fig. 3, we can observe that the RSSI readings
always cluster in a relatively same HD (high-dimension) space
(treating one tag’s signal as one dimension) when the resident
appearing in a same location. Thus, based on this intuition, we
propose a Probabilistic Polyhedron Isolation (PPI) method to
efficiently locate the high-dimension space. The PPI method
works as follows. Assuming for each observation o, we search
its k nearest neighbors from the training set S in the high-
dimension space, denoted as N(o) = {sk|sk ∈ kNN(o)}.
The training samples collected in location Li among N(o)
is represented as N i(o) = {sik|sik ∈ N(o)∩ sik ∈ Si}. In fact,
N i(o) represents each isolated HD-polyhedron. Geometrically,
the ith HD polyhedron (mapping to location Li) is formed by
several high-dimension points (e.g., RSSIs from all tags within
a sampling time) in N i(o), illustrated as Fig. 3. Then, we can
estimate RSSI Probability by measuring the Euclidean distance

of testing RSSI readings with each isolated HD Polyhedron.

Pr(o|li) =



∑
sik∈N(o)

1

dis(o, sik)∑
sk∈N(o)

1

dis(o, sk)
+

∑
α
, if |N i(o)| ≥ 1

α∑
sk∈N(o)

1

dis(o, sk)
+

∑
α
, if |N i(o)| = 0

(7)
where li indicates the target appears in location Li, (i =
1, .., J); |N i(o)| means the number of elements contained
in |N i(o)|, so does |N(o)|; α is a parameter with a very
small value to avoid 0 probability for some locations where no
training sample included in |N(o)|. In our case, it is chosen
by

α = 0.001 max
sk∈N(o)

1

dis(o, sk)
(8)

Eqn.7 gives the posterior distribution by finding its HD
polyhedron and measuring its distance with the test sample.
However, merely based on RSSI Probability, we still cannot
achieve satisfied localization accuracy in a clustered environ-
ment. We run a pilot experiment in a residential master-room
(see Fig. 6, Area: 3.6m × 4.8m). As Fig. 4 (a) shows, the
average accuracy is around 80%, and it mis-classifies the
adjacent locations such as L2 and L3, L4 and L5. Thus the
unsatisfied localization performance motivates us to exploit the
HOI events.

HOI Probability: HOI contexts basically reflects the interact-
ing status of the resident with her environment at a particular
point of time, which can be utilized to facilitate the localiza-
tion. Based on the problem definition in §III, for N continuous
time slots, we can retrieve an interaction events data set
C = {C1, C2, ..., CN}, where Ci = {Ii1, Ii2, ..., IiM} represents
statuses of M interacting events at ith time. We assume that,
for each HOI event happening, there exists at least one can-
didate location, which is the criterion we choose HOI events.
Thus, for each object Ii , its possible locations can be denoted
as LIi = [LIi

1 , L
Ii
2 , ..., L

Ii
J ]T , where LIi

j = 1 means Lj is the
possible location of the subject regarding interaction event Ii;
LIi
j = 0 means Lj is not the possible location. For overall

M objects, we have LI = [LT
I1
, LT

I2
, ..., LT

IM
]T Thus given

the interaction events with all objects C = {I1, I2, ..., IM},
we can infer all the possible locations based on HOI Matrix,
defined as:

Definition 3 (HOI Matrix): HOI Matrix indicates all the
possible locations for HOI events happen at a certain time,
calculated by MHOI = [I1L

T
I1
, I2L

T
I2
, ..., IML

T
IM

]T .

To avoid the cases that no available interaction events
can be utilized to infer some certain candidate locations,
we smooth the zero probability with adding a small value
parameter β. Based on our numerical experiences, β does not
affect the final estimation as long as it is small enough since it
produces much smaller probability comparing to other cases.
In this paper, we choose β = 0.001. Then, we can estimate
Pr(C|l) for each possible locations based on Algorithm 1.
Specifically, for each timestamp, we receive a MHOI to

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:17:48 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b)

Fig. 4: (a) Localization result based on RSSI signal (k=2);
(b)Localization result of fusing HOI events with RSSI signal
(k=2)

indicate current HOI status, then we feed it into Algorithm
1 to get the HOI Probability.

Algorithm 1: HOI Probability Pr(C|l) Estimation

Input: HOI Matrix MHOI ∈ RM×J , β
Output: Pr(C|lj), lj ∈ L

1 PossibleLocaSum = 0;
2 for i = 1 :M do
3 for j = 1 : J do
4 if MHOI(i, j) == 1 then
5 PossibleLocaSum=PossibleLocaSum+1;
6 end
7 end
8 end
9 for j = 1 : J do

10 PossibleLocaSumj=0;
11 for i = 1 :M do
12 if MHOI(i, j) == 1 then
13 PossibleLocaSumj=PossibleLocaSumj+1;
14 end
15 end
16 if PossibleLocaSumj 6= 0 then

17 Pr(C|lj) =
PossibleLocaSumj
PossibleLocaSum

;

18 end
19 else

20 Pr(C|lj) =
β

PossibleLocaSum
;

21 end
22 end

In summary, based on Algorithm 1 and Eqn.7 and Eqn.6,
we can conveniently integrate HOI events with RSSI signals
under a Bayesian Inference probabilistic framework to estimate
a subject’s location with maximum likelihood. Through fusing
these two signals, HOI-Loc greatly increases the localization
accuracy, illustrated by Fig. 4 (b). With fusing HOI events, our
method achieves overall more than 96% accuracy.

V. TRACKING

We introduce a Hidden Markov Model to model the track-
ing process. We need to deal with how to feasibly integrate
both RSSI signal sequence and HOI event stream into a HMM
framework. First, we revisit the definition of Tracking Problem
in §III. Actually, we can decode Eqn. 3 based on Bayesian
Inference in the same way. Similarly, since RSSI signal and
HOI events are from independent sensor sources, and current

state only conditionally depends on previous one, we can
model the tracking process as:

Pr(l1:T ,o1:T , C1:T )

= Pr(l1)Pr(o1|l1)Pr(C1|l1)
T∏

t=2

Pr(ot, Ct|lt)︸ ︷︷ ︸
A

Pr(lt|lt−1)︸ ︷︷ ︸
B

= Pr(l1)Pr(o1|l1)Pr(C1|l1)
T∏

t=2

Pr(ot|lt)︸ ︷︷ ︸
A1

Pr(Ct|lt)︸ ︷︷ ︸
A2

Pr(lt|lt−1)︸ ︷︷ ︸
B

(9)

So far, we decompose our tracking problem into estimating
two Emission Matrix A1 and A2, and Transition Matrix B. We
observe that A1 and A2 are exactly the same forms (except the
times-tamps) as the RSSI Probability and HOI Probability. As
a result, for tracking problem, we can also apply Eqn. 7 and
Algorithm 1 to estimate the two emission matrices A1 and A2

respectively.

Transition Strategy: Transition matrix measures the probabil-
ity of a subject moving to next location at each time t, which
is defined as Aij = Pr(at = lj |at−1 = li). However, based
on the common-sense, a subject can only move a step within
a sampling time (0.5s in our case). Therefore, we adopt an
Adjacent Transition strategy to calculate the probabilities of
next candidate locations given current location.

Definition 4 (Adjacent Transition): The subject can only
move to a feasible location that is adjacent (including current
location which means still) to current location with equal
probabilities, and the probabilities of moving to other locations
are very small.

Based on the proposed strategy, we assume that location li
denotes the appearance of the subject in zone Li. Given current
location li, all the possible locations that the subject can move
to belong to the set Ψi, and the number of locations contained
in the set is |Ψi|. Thus, the transition probability matrix can
be expressed as

Aij = Pr(lj |li) =


1

|Ψi|
if lj ∈ Ψi

0 if lj /∈ Ψi

(10)

where Ψi is defined according to the proposed strategy.

Viterbi Searching: Having Emission Matrix and Transition
Matrix, we can search the most likely sequence of state tran-
sitions in a continuous time stream via the Viterbi algorithm
defined by Vj(t), the highest probability of a single path of
length t which accounts for the first t observations and ends
in location Lj :

Vj(t) = arg max
l1,l2,...,lt

Pr(l1:t−1, lt = Lj ;o1:t;C1:T |A,B)

(11)
where A and B can be found in Eqn.9. Further, by induction:

Vj(1) = A1j = (A1)1j(A1)1j
Vj(t+ 1) = argmax

i
Vi(t)Bij(A1)t+1,j(A2)t+1,j

(12)

where (B1)1j = Pr(o1|lj) and (B2)1j = Pr(C1|lj). Finally,
we can recovery an optimal path with the maximum likelihood.
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Fig. 5: Sensors and RFID hardare deployment

In the next, we need to deal with the latency issue in tracking
system.

Forward Calibration: We find some latency in detecting the
subject, which is mainly caused during the RSSI collection
process and by the delay of signals sent by passive tags [24]. To
cope with the issue, we adopt a forward calibration mechanism
that uses a moving time averaging window to recalculate the
coordinates of location sequence obtained by Viterbi Search-
ing. Specifically, the estimated coordinates ĉi : (x̂i, ŷi) location
lt at time t can be calculated as:

ĉt =

∑t+|w|−1
i=t c̃i
|w|

(13)

where |w| is the window length. c̃i is uncalibrated coordinate
of predicted grids centroid at time t. In our experiments, we
find that HOI-Loc achieves the best performance at |w| = 7.

VI. IMPLEMENTATION AND EVALUATION

We setup COTS RFID hardware in a residential house
with two bedrooms and a kitchen (see Fig. 6), including an
Alien ALR-9900+ Enterprise RFID Reader, 4 two-circular
antennas, and multiple squiggle Higgs-4 passive tags. The
reader operates at 840-960MHz and supports UHF RFID
standards such as ETSI EN 302 208-1. We set the sampling
rate as 2Hz and each tag reading contains time stamp, tag ID,
antenna ID and the RSSI value, which are then processed by
a computer with an i7-3537U 2.5G processor and 8G RAM,
running WINDOWS 7.

We place the antenna about 1.7m above the ground and
facing tags with approximately 45 ◦ in order to catch all
readings of reference tags in a non-subject environment. We
attach passive RFID tags to the wall with an approximate 0.6m
interval (shown as Fig. 5). During the localization and tracking,
we send an RSSI request to all tags within a sampling period.
If we cannot receive RSSI readings of a certain tag, its RSSI
value will be set to 0. Thus, for all timestamps, we have the
RSSI vectors with the same dimension. We defined our virtual
zones as shown in Figure 6. For HOI events, the priority is
given to the objects that the resident frequently interacted or
used, and their operation status can be easily monitored based
on COTS sensors. We treat the zones that is adjacent to the
object as the possible candidate locations when interacting
events happen.

Evaluation Metrics: We adopt standard localization accuracy
and error distance to measure our proposed approaches in

Fig. 6: Experiment settings and paths. Testing Area: master
bedroom: 3.6m×4.8m, bedroom: 3m×3.2m, kitchen: 3.6m×
4.6m

terms of localization and tracking respectively [2]. The local-
ization accuracy is defined as

Accu. =

∑N
i I(l̂i, li)
N

(14)

where I(l̂i, li) is an indicator, which equals to 1 if estimated
zone l̂i is as same as the ground truth zone li, otherwise equals
to 0; N is the total number of the testing RSSI measurements.

The error distance denotes the averaging accumulated error
distance of the testing samples in each continuous trajectory,
and it is calculated using

Diserr. =

∑|T |
i dis(ĉi, ci)

|T |
(15)

where ci is the coordinates of the actual location of the subject
at time i, and dis(ĉi, ci) is the Euclidean distance between
predicted coordinates and actual coordinates, |T | is the total
number of testing samples generated by a trajectory.

Localization: Shown as Fig. 6, we test the performance in
a residential home that is divided into 25 virtual grids. To
be more practical, we define the following three scenarios to
mimic daily-living activities in our experiments.

• Scenario 1 (Stationary): Assuming a subject is stand-
ing/sitting in an unknown place in the monitored area still,
such as watching TV or waiting for someone.

• Scenario 2 (Dynamic): Assuming a subject keeps moving
around or with some activities in a small unknown area, such
as cooking in the kitchen.

• Scenario 3 (Mixed): Assuming a subject presents in an
unknown place and performs a combination of Scenario 1 and
Scenario 2, such as doing some exercises for a while and then
watching TV.

Based on the predefined three scenarios, we collect three
types of data to test our method: i) a subject is standing in each
grid for 120 seconds, ii) a subject keeps moving around within
each grid for 120 seconds, and iii) combining both activities
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(a) (b) (c) (d)
Fig. 7: (a) Localization result for Stationay Scenario; (b) Localization result for Dynamic Scenario;(c) Localization result
for Mixed Scenario; (d) Compare tracking accuracy of HOI-Loc with other state-of-the-art systems. Parameters used for
Figure (a)∼(c): k=2; SVM (linear kernel, terminate criterion=0.01, C=1, others as default); ELM (hardlim activation function,
NumberofHiddenNeurons=600, others as default, average result of running 20 times); NaiveBayes (normal distribution, uniform
prior probabilities, others as default)

(a) (b) (c)
(d)

Fig. 8: (a) Trackng error CDF (cumulative distribution function) for different device-free methods; (b) Mean tracking errors
using different tag numbers; (c) Tracking errors for mutiple residents; (d) Confusion matrix of detecting four basic postures.
Parameters used: TagTrack and HOI-Loc (k = 2); GMM-CRF in SCPL (GMM component number=4)

for 120 seconds in each grid. Three participants with different
genders, heights and weights join our experiments. Then we
randomly divide it as training data (i.e., 5 seconds∼50 seconds
data per grid) and testing data (i.e., 115 seconds ∼70 seconds
data per grid). In each case, we do experiments 20 times to
get the mean accuracy. The testing result is shown as Fig. 7
(a)∼(c). For Scenario 1, all classification methods achieve
more than 75% localization accuracy with 50 seconds’ training
data. In particular, the proposed method is able to achieve
95.6% accuracy with only 5 seconds’ training data, which
exhibits great advantage than other fingerprint-based schemes.
In previous work, the shortest time needed for collecting
training data to get same localization accuracy is about 60
seconds [25]. Our system only needs to collect 5 seconds
training data to reach a better localization accuracy, improving
12 times. For Scenario 2, the best localization accuracy is
93.7%, achieved by our method. It is worth to mention that,
performance in this case is more sensitive to the size of
training data. It may lie in fact that more training data can
better interpret more informative RSSI patterns for the dynamic
scenario compared to the stationary scenario. For Scenario 3,
the accuracy can reach 95.2%. To conclude, HOI-Loc achieves
a better localization performance, and also be more robust to
the RSSI uncertainties in case of limited training data.

Tracking: We evaluate tracking performance on three paths
(see Fig. 6), which respectively simulate three real-life scenar-
ios: i) the subject gets up from the bed in the master bedroom
and opens the fridge, takes out some food to do cooking in
the kitchen; ii) the subject stands up from sofa in the master
bedroom and goes to work on the desk in the study room, and

iii) the subject gets up from the bed in the small bedroom and
walks through the kitchen and boils water using the electric
kettle. Three subjects with different heights and weights join
the tracking experiments, and each participant walks the three
paths 20 times. We also review and compare HOI-Loc with
the state-of-the-art RFID-based systems, shown as Fig. 7 (d)
and Fig. 8 (a).

• TagArray: TagArray [2] is the very first attempt that uti-
lizes RFID tags to achieve device-free localization. It deploys
active tags as an array to localize a subject when RSSI of some
anchoring tags variate beyond a threshold. It requires high tag
density, relatively expensive and needs pre-calibrate the tags’
locations.

• TASA: TASA [17] is another tag array-based localization
scheme using both active and passive tags. Its tracking error is
heavily correlated with the tag density, and need to calibrate
all tags’ coordinates.

• SCPL: SCPL proposes a GMM (gaussian mixer model)
based CRF (conditional random field) to track a moving
subject using wireless sensor nodes [23]. It reports average
1.3m tracking error. We apply its GMM-CRF in our testbed,
achieving average 1.66m error.

• Twins: Twins [14] is a very recent device-free localization
work based on pure passive tag. It reports an average 0.75m
tracking error in a relatively spacial warehouse. It requires to
know the reference tags’ locations in advance.

• BackPros: BackPros [26] is the latest RFID-based posi-
tioning system that can achieve decimeter-level accuracy (i.e.,
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report 13cm mean tracking error). It also requires the target
to be attached with a tag.

• TagTrack: TagTrack [15] is a similar attempt using RFID
signals to passively localize the objects. It deploys the passive
tags as an array and uses the RSSI changes as the tracking
indicator. However, it is only workable in a spacial, clear area.
We also utilize its method to our test environment, achieving
1.07m mean error.

Unlike above methods, HOI-Loc does not require the
location contexts of reference tags, achieving 0.58m mean
error distance in the testbed. As Fig. 7 (d) shows, it offers
about 1.3×, 1.86× and 2.86× improvement compared with
Twins [14], TagTrack [15] and SCPL [23] in a residential
house3. We also explores the relation of tag density with
tacking error (see Fig. 8 (b)). We can see that the tracking
performance will greatly degenerate when using less tags,
e.g., in the case of 6 tags (2 tags per room), the error is
more than 3m. However, adding more tags (e.g., more than
34 tags) cannot enhance the performance significantly since
a large number of tags are difficult to be interrogated by an
antenna within a sampling time, causing more lost readings. As
a result, the overall performance decays in this circumstance.
To summarize, HOI-Loc can achieve high tracking accuracy
using 34 passive tags, which relaxes the requirement of high-
density tags deployment in TagArray and TASA

Beyond the Limits: To push the limits of HOI-Loc, we
also conduct experiments in a multi-residents scenario. Two
residents walked randomly among different rooms and inter-
acted with the environment (where the instrumented objects
are available), and then for three residents4. As shown in
Fig. 8 (c), our method can track two residents with 0.69m
average error and track three residents with 0.85m mean error.
We also attempt to detect different postures of the resident,
such standing, sitting, lying down and walking using our
system. We observe that, similar to localization, the RSSI
signals embody different patterns when a resident performs
different postures, which means the RSSI signal also can be
exploited as a human-activity indicator. Thus, we collect RSSI
readings to feed into our Probabilistic Polyhedron Isolation
method when the resident performing different postures in
the bedroom. As Fig. 8 (d) shows, we can successful detect
resident’s postures with 94.7% accuracy. The results suggest
that HOI-Loc provides an enabling primitive to recognize
postures, besides tracking a moving resident. We can use this
capability to better understand a resident’s daily-living habits.

VII. RELATED WORK

Localization has been an active research area over the
decades. Criket localization system [27] adopts an ultrasonic
Time-Of-Flight method to locate target objects. Ni et al. [4]
design the LANDMARC to localize a target object carrying an
active RFID tag, which estimates target’s location by matching
the measurements with the stored fingerprints. Recently, Tago-
ram [6] exploits the tags mobility to build a virtual antenna ar-
ray that can real-time pinpoint the tag position to an extremely

3In a residential home testbed, we do not compare HOI-Loc with TagArray
and TASA since these two works need to put the tags in an array which is
impractical especially in a full-furnitured house.

4Make sure there is only one resident in each room at a certain time, overall
we collected 10,800 measurements.

high accuracy with a few centimeters. However, all these
systems require the tracked subject to carry a device, either
RFID antenna/tag or smartphone, which may not practical for
some applications. Thus device-free localization recently has
received much attention [1].

WLANs-based Device-free Localization: Patwari et al. [28]
propose a kernel distance-based Radio Tomographic Imaging
(RTI) by using a kernel distance of histograms to locate a mov-
ing or stationary person based on wireless TelosB nodes. Xu
et al. [25] develop a fingerprint-based device-free localization
system, in which several discriminant analysis approaches are
explored. In SCPL [23], the authors further extend the system
to count and localize multiple subjects. Ichnaea [29] realizes
the device-free passive motion tracking by exploring several
the already installed wireless networks, in which it first uses
statistical anomaly detection methods to achieve its detection
capability and then employs an anomaly scores-based particle
filter model and a human motion model to track a single entity
in the monitored area. More recently, Adib et al. [13] designs
WiTrack that is capable to infer subject’s movement from
the RF signal (i.e., specialized FMCW signal) reflected off
the body, even the person is occluded from the device or in
different rooms.

RFID-based Device-free Localization: Although WSN/active
RFID tags-based localization systems have some advantages
(e.g., medium cost, tiny size), they require the maintenance
(e.g., replacing batteries). In contrast, RFID-based device-
free localization systems have more attractive characteristics
including cost-efficient, easy to deploy, and maintenance-free
(cheap passive tags). As a result, a few pioneer research efforts
have been proposed recently based on RFID technology. For
instance, Wagner et al. [30] enhance traditional RTI method
to track the subject in a small, clear surveillant area using
densely-deployed passive tags. Twins [14] leverages obser-
vations caused by interference among passive tags to detect
a single moving subject, achieving an average error 0.75m.
Liu et al. [2] propose to deploy active tags into an array,
which captures localization information when the RSSIs of
tags (known position) variate beyond a threshold, and frequent
trajectory patterns can be mined based on estimated location
sequences. Zhang et al. [17] develop another tag array-based
localization scheme using both active and passive tags, which
is more cost-efficient and much effective on RSSIs noise
reduction. More lately, Yang et al. [8] design a device-free,
see-through-wall tracking system with high accuracy, in which
they attached a group of passive RFID tags on the outer wall
to track a moving subject by analyzing the reflected signals
from the environment and human body. However, most existing
localization systems based passive RFID tags are deployed and
tested in an controlled/semi-controlled or cleared space (i.e.,
a room or office equipped only with a few objects, lack of
metal electronic appliances). In contrast, HOI-Loc, a device-
free localization system based on pure COTS RFID tags, can
beyond the limits of current similar systems and achieve high-
accuracy localization in a real-world living environment.

VIII. DISCUSSION & CONCLUSION

Hardware Deployment: In our system, we attach passive
RFID tags on the walls to capture RSSIs, and install sensors on
the electronic appliances, which is considered not being very
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practical. However, we can mount readers and antennas on the
ceiling, and embed passive tags into wall decorations. Also,
with the development of IoT, it will be a standard configuration
for smart-homes to monitor domestic appliances. HOI-Loc will
be more practical and enable valuable applications with the
prevalence of smart-homes in the near future.

Learning based Methods: One of limitations is that we
need to learn the RSSI patterns based on subject’s locations,
although for a 20m2 room, according to our experiments,
it only needs 50s training data to achieve more than 90%
accuracy. In the future, we will investigate the prorogation
mechanism of backscatter signal to facilitate our method,
thereby further eliminating the learning burden.

Number of Users: In a living room, our approach only tracks
a single resident, aiming to support elderly people who lives
alone. When there are multiple residents in the same room,
the RSSI patterns will be overlapped and need to be learned
multiple times (learning time increases exponentially with the
resident number). In the future, we will attempt to retrieve
other signals from RFID tags (e.g., RF Phase, Reading Rate,
Doppler Frequency etc.), which provide more fine-grained
location indicators to decrease the pattern overlapping caused
by multiple residents.

To summarize, this paper has shown how human object
interaction events can be used to facilitate the COTS RFID-
based device-free localization under a rigid probabilistic frame-
work. The real-world experiments demonstrate the feasibility
and effectiveness of our system, which marks an important
step toward enabling accurate device-free indoor localization
in a residential house.
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