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Biometric authentication involves various technologies to identify individuals by exploiting their unique,
measurable physiological and behavioral characteristics. However, traditional biometric authentication sys-
tems (e.g., face recognition, iris, retina, voice, and fingerprint) are at increasing risks of being tricked by bio-
metric tools such as anti-surveillance masks, contact lenses, vocoder, or fingerprint films. In this article, we
design a multimodal biometric authentication system named DeepKey, which uses both Electroencephalog-
raphy (EEG) and gait signals to better protect against such risk. DeepKey consists of two key components: an
Invalid ID Filter Model to block unauthorized subjects, and an identification model based on attention-based
Recurrent Neural Network (RNN) to identify a subject’s EEG IDs and gait IDs in parallel. The subject can only
be granted access while all the components produce consistent affirmations to match the user’s proclaimed
identity. We implement DeepKey with a live deployment in our university and conduct extensive empirical
experiments to study its technical feasibility in practice. DeepKey achieves the False Acceptance Rate (FAR)
and the False Rejection Rate (FRR) of 0 and 1.0%, respectively. The preliminary results demonstrate that Deep-
Key is feasible, shows consistent superior performance compared to a set of methods, and has the potential
to be applied to the authentication deployment in real-world settings.
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1 INTRODUCTION

Over the past decade, biometric authentication systems have gained popularity due to their reliabil-
ity and adaptability. Existing biometric authentication systems generally include physiological and
behavioral ones. The former is based on an individual’s unique intrinsic features (e.g., face [14], iris
[27], retina [38], voice [15], and fingerprint [43]) and the latter is based on an individual’s behavior
patterns such as gait analysis [5]. Recently, biometrics- (e.g., fingerprint, face) based authentication
systems face an increasing threat of being deceived as a result of the rapid development of the man-
ufacturing industry and technologies. For example, individuals can easily trick a fingerprint-based
authentication system by using a fake fingerprint film! or an expensive face recognition-based
authentication system by simply wearing a two-hundred-dollar anti-surveillance mask.? Thus,
fake-resistance characteristics are becoming a more significant requirement for any authentica-
tion system. To address the aforementioned issues, EEG (Electroencephalography) signal-based
cognitive biometrics and gait-based systems have been attracting increasing attention.

EEG signal-based authentication systems are an emerging approach in physiological biometrics.
EEG signals measure the brain’s response and record the electromagnetic, invisible, and untouch-
able electrical neural oscillations. Many research efforts have been made on EEG-based biometric
authentication for the uniqueness and reliability. EEG data are unique for each person and almost
impossible to be cloned and duplicated. Therefore, an EEG-based authentication system has the
potential to uniquely identify humans and to be ingenious enough to protect against faked identi-
ties [8]. For instance, Chuang et al. [8] propose a single-channel EEG-based authentication system,
which achieves an accuracy of 0.99. Keshishzadeh et al. [20] employ a statistical model for ana-
lyzing EEG signals and achieve an accuracy of 0.974. Generally, EEG signals have the following
inherent advantages:

o Fake-resistibility. EEG data are unique for each person and almost impossible to be cloned
and duplicated. EEG signals are individual-dependent. Therefore, an EEG-based authenti-
cation system has the potential to verify human identity and to be ingenious enough to
protect against faked identities [8].

o Reliability. An EEG-based authentication system can reject the subjects under abnormal
situations (e.g., dramatically spiritual fluctuating, hysterical, drunk, or under threat) since
EEG signals are sensitive to human stress and mood.

o Feasibility. We have seen an important trend to build authentication systems based on EEG
because the equipment for collecting EEG data is cheap and easy to acquire, and it is ex-
pected to be more precise, accessible, and economical in the future.

In comparison, gait-based authentication systems have been an active direction for years [37,
48]. Gait data are more generic and can be gathered easily from popular inertial sensors. Gait
data are also unique because they are determined by intrinsic factors (e.g., gender, height, and
limb length), temporal factors [6] (e.g., step length, walking speed, and cycle time), and kinematic
factors (e.g., joint rotation of the hip, knee, and ankle, mean joint angles of the hip/knee/ankle, and
thigh/trunk/foot angles). In addition, a person’s gait behavior is established inherently in the long
term and therefore difficult to be faked. Hoang and Choi [18] propose a gait-based authentication
biometric system to analyze gait data gathered by mobile devices, adopt error correcting codes
to process the variation in gait measurement, and finally achieve a False Acceptance Rate (FAR)
of 3.92% and a False Rejection Rate (FRR) of 11.76%. Cola et al. [9] collect wrist signals and train

thttp://www.instructables.com/id/How-To-Fool-a-Fingerprint-SecuritySystem- As-Easy-/.
Zhttp://www.urmesurveillance.com/urme-prosthetic/.
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gait patterns to detect invalid subjects (unauthenticated people). The proposed method achieves
an Equal Error Rate (EER) of 2.9%.

Despite the tremendous efforts, various other challenges still remain in single EEG/gait-based
authentication systems: (i) the solo EEG-based authentication system has very high fake-resistance
and excellent authentication performance but is easily affected by environmental factors (e.g.,
noise), subjective factors (e.g., mental state), and noisy brain signals (e.g., not concentrating);
(ii) the solo gait-based authentication system is more stable over different scenarios but has rel-
atively low performance; (iii) the solo EEG/gait authentication system generally obtains a FAR
(which is extremely crucial in high-confidential authentication scenarios)® higher than 3% [18]. It
is not precise enough for highly sensitive places such as military bases, the treasuries of banks, and
political offices where tiny misjudgments could provoke great economic or political catastrophes;
(iv) the single authentication system may break down while under attack but no backup plan is
provided.

In this article, we propose DeepKey, a novel biometric authentication system that enables dual-
authentication leveraging on the advantages of both gait-based and EEG-based systems. Com-
pared with either a gait-based or an EEG-based authentication system, a dual-authentication sys-
tem offers more reliable and precise identification. Table 1 summarizes the overall comparison of
DeepKey with some representative works on seven key aspects. DeepKey consists of three main
components: the Invalid ID Filter Model to eliminate invalid subjects, the EEG Identification Model
to identify EEG IDs, and the Gait Identification Model to identify gait IDs. An individual can be
granted access only after she/he passes all the authentication components. Our main contributions
are highlighted as follows:

e We present DeepKey, a dual-authentication system that exploits both EEG and gait bio-
logical traits. To the best of our knowledge, DeepKey is the first two-factor authentication
system for person authentication using EEG and gaits. DeepKey is empowered with high-
level fake-resistance and reliability because both EEG and gait signals are invisible and hard
to be reproduced.

e We design a robust framework that includes an attention-based RNN to detect and clas-
sify multimodal sensor data, and to decode the large diversity in how people perform gaits
and brain activities simultaneously. The delta band of EEG data is decomposed for its rich
discriminative information.

e We validate and evaluate DeepKey on several locally collected datasets. The results show
that DeepKey significantly outperforms a series of baseline models and the state-of-the-art
methods, achieving FAR of 0 and FRR of 1%. Further, we design extensive experiments to
investigate the impact of key elements.

The remainder of this article is organized as follows. Section 2 introduces the EEG-based, gait-
based, and multimodal biometric systems briefly. Section 3 presents the methodology framework
and three key models (Invalid ID Filter Model, Gait Identification Model, and EEG Identification
Model) of the DeepKey authentication system in detail. Section 4 evaluates the proposed approach
on the public Gait and EEG dataset and provides an analysis of the experimental results. Finally,
Section 5 discusses the opening challenges of this work and highlights the future scope of this
research, while Section 6 summarizes the key points of this article.

3In the high-confidential authentication scenario, FAR is more crucial than other metrics such as accuracy.
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2 RELATED WORK

In this section, we introduce the related studies on several topics: biometric authentication
technologies, EEG-based authentication, gait-based authentication, and multimodal biometric
authentication.

2.1 Biometric Authentication Technologies

Since biometric features cannot be stolen or duplicated easily, biometric authentication is becom-
ing increasingly commonplace. Currently, the most mature biometric authentication technology
is fingerprint-based authentication, which has been demonstrated to have high matching accu-
racy and been used for decades [30]. Iris recognition is another popular approach for biometric
authentication owing to its unique and stable pattern [36]. Daugman [10] proposes to use Gabor
phase information and Hamming distance for iris code matching, which still is the most classic
iris recognition method. Based on [10], a flurry of research [36] has emerged offering solutions to
ameliorate iris authentication problems. For example, Pillai et al. [36] introduce kernel functions to
represent transformations of iris biometrics. This method restrains both the intra-class and inter-
class variability to solve the sensor mismatch problem. Face recognition techniques [13, 17, 52] is
the most commonly used and accepted by the public for its unique features and non-invasiveness.
Since face recognition systems require tackling different challenges including expression, image
quality, illumination, and disguise to achieve high accuracy, Infrared Radiation (IR) [17] and 3D
[13] systems have attracted much attention. According to [52], multimodal recognition combining
traditional visual textual features and IR or 3D systems can achieve higher accuracy than single
modal systems.

2.2 EEG-Based Authentication

Since EEG can be gathered in a safe and non-invasive way, researchers have paid great atten-
tion to exploring this kind of brain signals. For person authentication, EEG is, on the one hand,
promising for being confidential and fake-resistant but, on the other hand, complex and hard to be
analyzed. Marcel and Millan [33] use Gaussian Mixture Models and train client models with Max-
imum A Posteriori (MAP). Ashby et al. [3] extract five sets of features from EEG electrodes and
inter-hemispheric data, combine them together, and process the final features with a Support Vec-
tor Machine (SVM). The study shows that EEG authentication is also feasible with less-expensive
devices. Altahat et al. [2] select Power Spectral Density (PSD) as the feature instead of the widely
used AutoRegressive (AR) models to achieve higher accuracy. They also conduct channel selection
to determine the contributing channels among all 64 channels. Thomas and Vinod [41] take ad-
vantage of individual alpha frequency (IAF) and delta band signals to compose a specific feature
vector. They also prefer PSD features but only perform the extraction merely on the gamma band.

2.3 Gait-Based Authentication

As the most basic activity in our daily lives, walking is an advanced research hotspot for activ-
ity recognition [46]. Differing from previous studies, our work focuses on human gait, a spatio-
temporal biometric that measures a person’s manner on walking. Existing gait recognition ap-
proaches sit in two categories: One is model-based approach [35], which models gait information
with mathematical structures, and the other is appearance-based approach, which extracts features
in a straightforward way irrespective of the mathematical structure. Due to its high efficiency
and remarkable performance, Gait Energy Image (GEI) [31] has become one of the most popular
appearance-based methods in recent years. Based on GEls, a considerable amount of works have
been proposed to explore the exterior factors and distinguish different body parts. In addition, the
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Fig. 1. Workflow of DeepKey authentication system. The data collection of EEG and gait are cascade.

cross-view variance is also a concern of gait identification [25, 26]. For example, Wu et al. [45]
consider not only the cross-view variance but also deep Convolutional Neural Networks (CNNs)
for robust gait identification.

2.4 Multimodal Biometric Authentication

Since traditional unimodal authentication suffers from the negative influence of loud noise, low
universality, and intra-class variation, it cannot achieve higher accuracy in a wide range of ap-
plications. To address this issue, multimodal biometric authentication, which combines and uses
biometric traits in different ways, is becoming popular. Taking the commonness into considera-
tion, most works choose two biometrics from face, iris, and fingerprints and make the fusion [21,
24, 40]. In [11], an innovative combination between gait and electrocardiogram (ECG) is shown
to be effective. Manjunathswamy et al. [32] combine ECG and fingerprint at the score level. To
the best of our knowledge, the approach proposed in this article is the first to combine EEG and
gaits for person authentication. Taking advantage of both EEG and gait signals, the combination
is expected to improve the reliability of authentication systems.

This dual-authentication system is partially based on our previous work MindID [50], which is
an EEG-based identification system. We emphasize several differences compared to [50]: (1) this
work is an authentication system with an invalid ID filter while [50] only focuses on identification;
(2) this work adopts two biometrics including EEG and gait while [50] only exploits EEG signals;
and (3) this work conducts extensive real-world experiments to collect gait signals.

3 DEEPKEY AUTHENTICATION SYSTEM

In this section, we first report the workflow of DeepKey to give an overview of the authentication
algorithm, and then present the technical details for each component.

3.1 DeepKey System Overview

The DeepKey system is supposed to be deployed in access to confidential locations (e.g., bank
vouchers, military bases, and government confidential residences). As shown in Figure 1, the over-
all workflow of the DeepKey authentication system consists of the following four steps:

(1) Step 1: EEG data collection. The subject, who requests for authentication, is required to
wear the EEG headset and stays in relaxation. The collection of EEG data (&) will typically
take 2 seconds.

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 4, Article 49. Publication date: May 2020.
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(2) Step 2: Gait data collection. The subject takes off the EEG headset and puts on three IMUs
(Inertial Measurement Units) and walks through an aisle to collect gait data G by IMUs.

(3) Step 3: Authentication. The gathered EEG and gait data are flattened and associated with
input data 7 = [& : G] to be fed into the DeepKey authentication algorithm.

(4) Step 4: Decision. An Approve or Deny decision will be made according to the DeepKey
authentication results.

The most crucial component among the above steps is the third step, where the DeepKey authen-
tication system receives the associated input data 7 and accomplishes two goals: authentication
and identification. For the former goal, we employ EEG signals to justify the impostor for its high
fake-resistance. EEG signals are invisible and unique, making them difficult to be duplicated and
hacked. For the latter goal, we adopt a deep learning model to extract the distinctive features and
feed them into a non-parametric neighbor-based classifier for ID identification. In summary, the
DeepKey authentication algorithm contains several key stages, namely, Invalid ID Filter, Gait-based
Identification, EEG-based Identification, and Decision Making. The overall authentication contains
the following several stages (Figure 3):

(1) Based onthe EEG data, the Invalid ID Filter decides the subject is an impostor or a genuine.
If the subject is an impostor, the request will be denied.

(2) If the individual is determined as genuine, the EEG/Gait Identification Model will iden-
tify the individual’s authorized EEG/Gait ID. This model is pre-trained offline with the
attention-based Long Short-Term Member (LSTM) model (Section 3.3). The output is the
ID number associated with the person’s detailed personal information.

(3) The final stage is to check the consistency of the EEG ID and the Gait ID. If they are
identical, the system will grant an approval, otherwise it will deny the subject and take
corresponding security measures.

3.2 Invalid ID Filter Model

Through our preliminary experiments, it has been found that raw EEG signals, compared to raw
Gait data, have better characteristics to prevent invalid ID due to the high fake-resistance of EEG
data and the richness of distinguishable features in EEG signals. Thus, in this section, we only use
EEG for invalid ID filtering.

The subjects in an authentication system are categorized into two classes: authorized and unau-
thorized. Since the unauthorized data are not available in the training stage, an unsupervised learn-
ing algorithm is required to identify the invalid ID. In this work, we apply a one-class SVM to
sort out the unauthorized subjects. Given a set of authorized subjects, S = {S;,i =1,2,...,L°},
Si € R™s, where L° denotes the number of authorized subjects and ng denotes the number of di-
mensions of the input data. The input data consist of EEG data & = {E;,i = 1,2,...,L°}, E; € R"
and gait data G = {G;,i = 1,2,...,L°},G; € R". ny and n, denote the number of dimensions of
the gait data and EEG data, respectively, and ns = n4 + n.. The notation can be found in Table 2.

For each authentication, the collected EEG data E; includes a number of samples. Each sample is
a vector with shape [1, 14] where 14 denotes the number of electric-nodes in the Emotiv headset.
To trade off the authentication efficiency (less collecting and waiting time) and computational
performance, based on the experimental experience, we fed 200 samples ([200, 14]) into the Invalid
ID Filter. 200 EEG samples are collected in 1.56 seconds, which is acceptable. The final filter result
is the mean of the results on all the samples.

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 4, Article 49. Publication date: May 2020.
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Table 2. Notation

Parameters Explanation

L° the number of authorized subjects (genuine)
E the set of EEG signals

G the set of gait signals

ns the number of features in input data sample
G; the i-th gait data

ng the number of features in per gait sample

E; the i-th EEG data

Ne the number of features in EEG data sample
X! the data in the i-th layer of attention RNN
N the number of dimensions in X'

K the number of participants (genuine and impostor)
c]’ the hidden state in the j-th LSTM cell

T() the linear calculation of dense neural layers
L) The LSTM calculation process

©) the elementwise multiplication

Cart attention-based code

Table 3. Characteristics of EEG Frequency Bands

Frequency Awareness

Name (Hz) Amplitude Brain State Degree Produced Location

Delta 0.5-3.5 Higher Deep sleep pattern Lower Frontally and posteriorly

Theta 4-8 High Light sleep pattern Low Entorhinal cortex,

hippocampus

Alpha  8-12 Medium Closing the eyes, relax ~ Medium Posterior regions of head
state

Beta 12-30 Low Active thinking, focus,  High Most evident frontally
high alert, anxious

Gamma 30-100 Lower During cross-modal Higher Somatosensory cortex

sensory processing

Awareness Degree denotes the degree of being aware of an external world.

3.3 EEG ldentification Model

Compared to gait data, EEG data contain more noise, which is more challenging to handle. Given
the complexity of EEG signals, the data pre-processing is necessary. In practical EEG data analysis,
the assembled EEG signals can be divided into several different frequency patterns (delta, theta, al-
pha, beta, and gamma) based on the strong intra-band correlation with a distinct behavioral state.
The EEG frequency patterns and the corresponding characters are listed in Table 3 [50]. Figure 2
reports the topography of EEG signals of different subjects under different frequency bands and
demonstrates that the Delta wave, compared to other bands, enriches distinctive features. In de-
tail, we calculate the inter-subject EEG signal cosine-similarity which measures the average sim-
ilarity among different subjects under all the EEG bands. The results are reported as 0.1313 (full
bands), 0.0722 (Delta band), 0.1672 (Theta band), 0.2819 (Alpha band), 0.0888 (Beta band), and 0.082
(Gamma band). This illustrates that the delta band with the lowest similarity contains the most
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Fig. 2. EEG topography of different subjects under different frequency bands. The inter-subject EEG signal
cosine-similarity is calculated under each band and the results are reported as 0.1313 (full bands), 0.0722
(Delta band), 0.1672 (Theta band), 0.2819 (Alpha band), 0.0888 (Beta band), and 0.082 (Gamma band). This
illustrates that the delta band with the lowest similarity contains the most distinguishable features for person
identification.

distinguishable features for person identification. Our previous work [50] has demonstrated that
Delta pattern, compared to other EEG patterns, contains the most distinctive information and is
the most stable pattern in different environments by qualitative analysis and empirical experiment
results. Thus, in this article, we adopt a bandpass (0.5 Hz-3.5 Hz) Butterworth filter to extract Delta
wave signal for further authentication. For simplicity, we denote the filtered EEG data as &.
Since different EEG channels record different aspects of the brain signals, some of which are
more representative of the individual, an approach that assumes all dimensions to be equal may
not be suitable. Thus, we attempt to develop a novel model which can pay more attention to the
most informative signals. In particular, the proposed approach is supposed to automatically learn
the importance of the different parts of the EEG signal and focus on the valuable part. The ef-
fectiveness of attention-based RNN has been demonstrated in various domains including natural
language processing [44] and speech recognition [7]. Inspired by the wide success of an attention
mechanism [12], we introduce it to the Encoder-Decoder RNN model to assign varying weights to
different dimensions of the EEG data. After EEG filtering, the composed Delta pattern & is fed into
an attention-based Encoder-Decoder RNN structure [44] aiming to learn more representative fea-
tures for user identification. The general Encoder-Decoder RNN framework regards all the feature
dimensions of input sequence as having the same weights, no matter how important the dimension
is for the output sequence. In this article, the different feature dimensions of the EEG data corre-
spond to the different nodes of the EEG equipment. For example, the first dimension (first channel)
collects the EEG data from the AF3* node located at the frontal lobe of the scalp while the seventh
dimension is gathered from the O1 node at the occipital lobe. To assign various weights to different

4Both AF3 and O1 are EEG measurement positions in the International 10-20 Systems.
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Fig. 3. Authentication workflow. If the input data cannot pass the invalid ID filter, it would directly be
regarded as an impostor and deny access. If pass, the Delta pattern and gait signals are parallelly fed into an
attention-based RNN structure to study the distinctive features Cy;+. The learned features are classified by
the EEG and Gait classifier in order to identify the subject’s EEG and Gait ID. The subject is approved only
if the EEG ID is a match with Gait ID.

dimensions of &, we introduce the attention mechanism to the Encoder-Decoder RNN model. The
proposed attention-based Encoder-Decoder RNN consists of three components (Figure 3): the en-
coder, the attention module, and the decoder. The encoder is designed to compress the input Delta
d wave into a single intermediate code C; the attention module helps the encoder calculate a better
intermediate code C,;+ by generating a sequence of the weights Wy, of different dimensions; the
decoder accepts the attention-based code C,;; and decodes it to the output layer Y.

Suppose the data in the i-th layer can be denoted by X’ = (X%;i € [1,2,...,1],j € [1,2,...,N'])
where j denotes the j-th dimension of X'. I represents the number of neural network layers
while N denotes the number of dimensions in X’. Taking the first layer as an example, we have
X' = &, which indicates that the input sequence is the Delta pattern. Let the output sequence
be Y = (Yi;k € [1,2,...,K]) where K denotes the number of users. In this article, the user ID is
represented by the one-hot label with length K. For simplicity, we define the operation 7 (-) as
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7 (X') = X'W + b. Furthermore, we have
i-1 i _ i—1 ’ i 1’7 ’
T(Xj ,Xj_l) —Xj * W +Xj_1 = W" + b,
where W, b, W', W”, b’ denote the corresponding weight and bias parameters.
The encoder component contains several non-recurrent fully connected layers and one recur-
rent LSTM layer. The non-recurrent layers are employed to construct and fit into a non-linear

function to purify the input Delta pattern; the necessity is demonstrated by the preliminary ex-
purity p p y y p y
periments.’ The dataflow in these non-recurrent layers can be calculated by

X" = tanh(T (XY)),

where tanh is the activation function. We engage the tanh as an activation function instead of
sigmoid for the stronger gradient [28]. The LSTM layer is adopted to compress the output of non-
recurrent layers to a length-fixed sequence, which is regarded as the intermediate code C. Suppose
LSTM is the i’-th layer; the code equals to the output of LSTM, which is C = X ]’/ The X ;‘/ can be
measured by

X; =L, XL X)), (1)
where ch:,_1 denotes the hidden state of the (j — 1)-th LSTM cell. The operation £(-) denotes the
calculation process of the LSTM structure, which can be inferred from the following equations.

X} =f0 tanh(c]’: ),c; =fro c]i-_1 + fi © fm.,
fo = sigmoid(T (X}, X[ ). f = sigmoid(T (X} . X]"))),
fi= sigmoid(T(X},_l,X}l,l)),fm = tanh(T(X}'_l,Xfl,l)),
where f,, fr, fi, and f,, represent the output gate, forget gate, input gate, and input modulation
gate, respectively, and © denotes the element-wise multiplication.

The attention module accepts the final hidden states as the unnormalized attention weights
W/,,, which can be measured by the mapping operation .L'(-)

a
-7 i—1 7
W, = L’(c}_l,X; ,X;_l) (2)
and calculate the normalized attention weights Wy;,
Wate = softmax(Wg,,).

The softmax function is employed to normalize the attention weights into the range of [0, 1].
Therefore, the weights can be explained as the probability of how the code C is relevant to the
output results. Under the attention mechanism, the code C is weighted to Cg;,

Cart = C O Wyyy.

Note, C and W, are trained simultaneously. The decoder receives the attention-based code Cyy;
and decodes it to the output Y’. Since Y’ is predicted at the output layer of the attention-based
RNN model (Y’ = X'), we have
Y = T(Catt)-

At last, we employ the cross-entropy cost function, and ¢;-norm (with parameter 1) is selected to
prevent overfitting. The cost is optimized by the AdamOptimizer algorithm [22]. The iterations
threshold of attention-based RNN is set as nft or- The weighted code Cg;; has a direct linear re-
lationship with the output layer and the predicted results. If the model is well trained with low
cost, we could regard the weighted code as a high-quality representation of the user ID. We set

>Some optimal designs like the neural network layers are validated by the preliminary experiments, but the validation
procedure will not be reported in this article due to space limitations.
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ALGORITHM 1: DeepKey System

Input: EEG data & and Gait data G

Output: Authentication Decision: Approve/Deny
1: #Invalid ID Filter:
2: for §,G do
3:  Genuine/Impostor < &

4:  if Impostor then
5: return Deny
6:  else if Genuine then
7 #EEG Identification Model:
8: while iteration < nﬁer do
9: XM = tanh(T (XY)) (X! = &}
10: C= x;’ = L(CJILPX;_?XJIL%) )
11: Watr = softmax(.L’(cj’._l,X]’._l,X;_l))
12: Carr = C O Wyt
13: Eip « Cart
14: end while
15: #Gait Identification Model:
16: while iteration < nger do
17: Gip « G
18: end while
19: if E;p = Grp then
20: return Approve
21: else
22: return Deny
23: end if
24:  endif
25: end for

the learned deep feature Xp to Cgyr, Xp = Cyqyy, and feed it into a lightweight nearest-neighbor
classifier. The EEG ID, which is denoted by Ejp, can be directly predicted by the classifier.

The Gait Identification Model works similarly to the EEG Identification Model except for the
frequency band filtering. The iterations threshold of attention-based RNN is set as nger. The Gait
Identification Model receives a subject’s gait data G from the input data 7 and maps to the user’s
Gait ID Gyp. All the model structures, hyper-parameters, optimization, and other settings in the
EEG and Gait Identification Models remain the same to keep the lower model complexity of the
DeepKey system.

4 EXPERIMENTS AND RESULTS

In this section, we first outline the experimental setting including dataset, hyper-parameters set-
tings, and evaluation metrics. Then we systematically investigate (1) the comparison with the
state-of-the-art authentication systems at both system level and component level; (2) the impact
of key parameters like single/multiple sessions,’ EEG band, and data size; and (3) the authentica-
tion latency.

®Single session refers to the dataset collected in one session (the period from one subject putting the EEG headset on until
all the experiments are finished, then taking it off). Multi-session represents the EEG data collected from different sessions,
which considered the effect on EEG data quality caused by the headset position errors.
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____________________________________________________________________________________

Step 1: EEG Collection

&

Wearable
Sensor

Emotiv
Headset

Fig. 4. Data collection. Two collection steps are cascaded to eliminate the impact on EEG data of walking.
The first step collects the solo EEG signals while the second step collects the gait signals.

4.1 Experimental Settings

4.1.1 Datasets. We design real-world experiments to collect EEG data and gait data in cascade.’
The experiments (Figure 4) are conducted by seven healthy participants aged 26 + 2 including
four males and three females. In Step 1, each participant remains standing and relaxed with eyes
closed. The EEG data are collected by an EPOC+ Emotiv headset® which integrates 14 electrodes
(corresponding to 14 EEG channels) with a sampling rate of 128 Hz. The Emotiv headset gathers
brain signals in a non-invasive manner since it doesn’t require surgery to insert sensors into the
user’s skull [51]. In Step 2, each participant walks in an aisle to generate the gait data. In the
gait collection procedure, three IMUs are attached to the participants’ left wrist, the middle of
the back, and the left ankle, respectively. Each IMU (PhidgetSpatial 3/3/3%) with 80 Hz sampling
rate gathering nine-dimensional motor features contains a three-axis accelerometer, three-axis
gyroscope, and a three-axis magnetometer.

To investigate the impact of dataset sessions, both the EEG and gait data are collected in three
sessions. In every cycle of single session, the subject puts on the equipment (headset/IMUs), gath-
ers data, and then takes the equipment off. Therefore, in different sessions, the positions of the
equipment may have a slight deviation. Table 4 reports the details of the datasets used in this ar-
ticle. Each EEG or gait sample contains 10 continuous instances without overlapping. The single
session datasets (EID-S and GID-S) are collected in a single experiment session while the multi-
session datasets (EID-M and GID-M) are gathered in three sessions. All the sessions are conducted
in the same place but on three different days (each session in one day). The EEG data are easily
influenced if the emotional or physical state has changed, thus, we believe the collected data are
diverse because of the varying environmental factors (e.g., noise and temperature) and subjec-
tive factors (e.g., participants’ mental state and fatigue state). Similarly, the gait signals could be

"The experiment was approved by our ethics board.
8https://www.emotiv.com/product/emotiv-epoc- 14-channel-mobile-eeg/.
“https://www.phidgets.com/?&prodid=48.
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Table 4. Datasets Description, Australia

Dataset Biometric #-D Session Frequency Samples

EID-S EEG 14 Single 128 Hz 49,000

EID-M EEG 14 Multiple 128 Hz 147,000
GID-S Gait 27 Single 80 Hz 140,000
GID-M  Gait 27 Multiple 80 Hz 420,000

#-D denotes the number of dimensions.

affected by lots of variables like different shoes (comfortable/uncomfortable). In this article, as an
exploratory work, we focus on developng a robust discriminative deep learning model which is
strong enough to prevent the corruption of the aforementioned influencing factors. The investi-
gation of the detail effect brought by each specific factor will be left as a future research direction.

4.1.2  Parameter Settings. The Invalid ID Filter attempts to recognize the unauthorized subject
based on the unique EEG data. The filter chooses the RBF kernel with nu = 0.15. In the EEG Identi-
fication Model, the Delta band ([0.5 Hz, 3.5 Hz]) is filtered by a three-order Butterworth bandpass
filter. In the attention-based RNN, in the input layer, there are 14 nodes for EEG and 27 nodes
for gait signals. For both EEG and gait, we have two fully connected hidden layers (each has 64
nodes) and one LSTM layer with 64 cells; the output layer has seven nodes. The learning rate and
A are both set to 0.001. The weighted code is produced after 1,000 iterations. Here, eightfold cross-
validation is used to prevent overfitting. The dataset is randomly separated into eght equal-sized
subsets. One of the 10 subsets is used as a test set while the remaining subsets are used as a training
set. The user ID ranges from 0 to 6 and is represented in the one-hot label.

4.1.3 Metrics. The adopted evaluation metrics are accuracy, ROC, AUC, along with FAR and
FRR. DeepKey is very sensitive to the invalid subject and can acquire very high accuracy in Invalid
ID Filter Model for the reason that even a tiny misjudgment may lead to catastrophic consequences.
Therefore, FAR is more important than other metrics. Therefore, in DeepKey, FAR has higher pri-
ority compared to other metrics such as FRR.

4.2 Overall Comparison

4.2.1 System-Level Comparison. To evaluate the performance of DeepKey, we compare it with
a set of the state-of-the-art authentication systems. DeepKey is empowered to solve both the au-
thentication and identification problems. As shown in Table 5, DeepKey achieves a FAR of 0 and
a FRR of 1%, outperforming other uni-modal and multimodal authentication systems. Specifically,
our approach, compared to the listed uni-modal systems, achieves the highest EEG identification
accuracy (99.96%) and Gait identification accuracy (99.61%).

4.2.2  Component-Level Comparison. To have a closer observation, we provide the detailed per-
formance study of each component. In the Invalid ID Filter, to enhance the accuracy and robustness
of the classifier, EEG samples are separated into different segments, with each segment (without
overlapping) having 200 continuous samples. Six in seven subjects are labeled as genuine while
the other subject is labeled as an impostor. In the training stage, all the EEG segments are fed
into the one-class SVM with RBF kernel for pattern learning. In the test stage, 1,000 genuine seg-
ments and 1,000 impostor segments are randomly selected to assess the performance. We use the
leave-one-out-cross-validation training strategy and achieve a FAR of 0 and a FRR of 0.006.

In the EEG/Gait Identification Model, the proposed approach achieves an accuracy of 99.96% and
99.61% over the multi-session datasets, respectively. The detailed confusion matrix, ROC curves
with AUC scores, and the classification reports (precision, recall, and F1-score) over all the datasets
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Fig. 5. Confusion matrix and ROC curves of the datasets. CM denotes confusion matrix. The AUC are pro-
vided on the figures.

Table 6. Classification Report of the Datasets Including Precision, Recall, and F-1 Score

Datasets EID-S EID-M GID-S GID-M

Metrics |Precision Recall F1-score|Precision Recall F1-score|Precision Recall F1-score|Precision Recall F1-score
0 1.0 1.0 1.0 0.998 1.0 0.999 1.0 1.0 1.0 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0 0.9996  0.9998 0.996 0.996 0.996 0.9915  0.9904 0.9909
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9999 1.0 0.9999
3 1.0 1.0 1.0 1.0 0.9992  0.9996 0.9992  0.9988  0.999 0.9937  0.9948  0.9942
4 1.0 1.0 1.0 1.0 1.0 1.0 0.9976  0.998 0.9978 0.9949  0.996 0.9955
5 1.0 1.0 1.0 0.9996  0.9992  0.9994 0.9969  0.9984 0.9977 0.9963  0.996 0.9961
6 1.0 1.0 1.0 0.9996  0.9993  0.9994 0.9988  0.9972  0.998 0.9962  0.9953  0.9958

Average 1.0 1.0 1.0 0.9996 0.9996 0.9996 0.9983 0.9983 0.9983 0.9961 0.9961 0.9961

The proposed approach gains impressive results (higher than 99%) on all the metrics over all the seven subjects.

are presented in Figure 5 and Table 6. The above evaluation metrics demonstrate that the proposed
approach achieves a performance of over 99% on all the metrics over each subject and each dataset.
To make a closer observation, taking the EID-M dataset as an example, we present the training and
testing curves. As shown in Figure 8, the horizontal and vertical axes denote the number of training
iterations and the accuracy, respectively. We can observe that our model starts at a rather high
level, converges steadily in the training stage, and does not suffer from the overfitting problem.
Furthermore, the overall comparison between our model and other state-of-the-art baselines are
listed in Table 7. RF denotes Random Forest, AdaB denotes Adaptive Boosting, and LDA denotes
Linear Discriminant Analysis. In addition, the key parameters of the baselines are listed here:
Linear SVM (C = 1), RF (n = 200), and KNN (k = 3). The settings of LSTM are the same as the
attention-based RNN classifier, along with the GRU (Gated Recurrent Unit). The CNN contains
two stacked convolutional layers (both with stride [1, 1], patch [2, 2], zero-padding, and the depths
are 4 and 8, separately.) followed by one pooling layer (stride [1, 2], zero-padding) and one fully
connected layer (164 nodes). Relu activation function is employed in the CNN. The methods used
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Table 7. Component-Level Comparison
Baseline Methods FID-S FIb-M
Accuracy Precision Recall Fl-score | Accuracy Precision Recall F1-score
SVM 0.4588 0.5848 0.4588 0.4681 0.7796 0.7815 0.7796 0.7796
RF 0.9875 0.9879 0.9876 0.9876 0.8124 0.8139 0.8124 0.812
Non-DL Baseline KNN 0.9897 0.9899 0.9898 0.9898 0.8211 0.8232 0.8211 0.8197
AdaB 0.2872 0.3522 0.2871 0.2337 0.3228 0.3224 0.3228 0.2815
LDA 0.1567 0.1347 0.1567 0.1386 0.3082 0.285 0.3082 0.2877
LSTM 0.9596 0.9601 0.9596 0.9597 0.8482 0.8509 0.8483 0.8489
DL Baseline GRU 0.9633 0.9636 0.99631 0.9631 0.862 0.8638 0.8626 0.8629
CNN 0.8822 0.8912 0.8813 0.8912 0.7647 0.7731 0.7854 0.7625
[19] 0.5843 0.5726 0.5531 0.5627 0.5735 0.5721 0.5443 0.5579
State-of-the-art [20] 0.8254 0.8435 0.8617 0.8525 0.8029 0.7986 0.8125 0.8055
[16] 0.8711 0.8217 0.7998 0.8106 0.8567 0.8533 0.8651 0.8592
Att-RNN | 0.9384 0.9405 09388  0.9391 0.9324 09343 09322 0.9326
Ours 1.0 1.0 1.0 1.0 0.9996 0.9996 0.9996 0.9996
Baselines Methods GID S GIb-M
Accuracy Precision Recall Fl-score | Accuracy Precision Recall F1-score
SVM 0.9981 0.9981 0.9981 0.9981 0.993 0.993 0.993 0.993
RF 0.9878 0.9878 0.9878 0.9878 0.9954 0.9954 0.9954 0.9954
Non-DL Baseline KNN 0.9979 0.9979 0.9979 0.9979 0.9953 0.9953 0.9953 0.9953
AdaB 0.5408 0.5689 0.5409 0.4849 0.5401 0.5135 0.542 0.4985
LDA 0.688 0.6893 0.688 0.6855 0.6933 0.693 0.6933 0.6915
LSTM 0.9951 0.9951 0.9951 0.9951 0.9935 0.9936 0.9936 0.9936
DL Baseline GRU 0.9949 0.9949 0.9949 0.9949 0.9938 0.9938 0.9938 0.9938
CNN 0.9932 0.9932 0.9932 0.9932 0.9845 0.9845 0.9845 0.9845
[9] 0.9721 0.9789 0.9745 0.9767 0.9653 0.9627 0.9669 0.9648
State-of-the-art [1] 0.9931 0.9934 0.9957 0.9945 0.9901 0.9931 0.9942 0.9936
[39] 0.9917 0.9899 0.9917 0.9908 0.9875 0.9826 0.9844 0.9835
Att-RNN 0.99 0.99 0.99 0.99 0.9894 0.9895 0.9895 0.9895
Ours 0.9983 0.9983 0.9983 0.9983 0.9961 0.9961 0.9961  0.9961

DL denotes Deep Learning. Att-RNN denotes attention-based RNN.

for comparison (three for EEG-based authentication and three for gait-based authentication) are
introduced as follows:

Jayarathne et al. [19] feed EEG data to a bandpass filter (8 Hz — 30 Hz), extract CSP (Com-
mon Spatial Pattern) and recognize the user ID by LDA.

o Keshishzadeh et al. [20] extract autoregressive coefficients as the features and identify the
subject by SVM.
e Gui et al. [16] employ low-pass filter (60 Hz) and wavelet packet decomposition to generate

features and distinguish unauthorized person through deep neural network.

e Cola et al. [9] hire neural networks to analyze user gait pattern by artificial features such
as kurtosis, peak-to-peak amplitude, and skewness.
e Al-Naffakh et al. [1] propose to utilize time-domain statistical features and Multilayer Per-
ception (MLP) for person identification.
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e Sun et al. [39] adopt a weighted voting classifier to process the extracted features like gait
frequency, symmetry coefficient, and dynamic range.

The primary conclusions from Table 7 are summarized as follows:

e Our approach achieves the highest performance over both EEG and gait datasets under
single session and multi-session settings.

e For most of the baselines, we observe lower accuracy in the EEG dataset compared to that
in the gait dataset, implying the EEG-based authentication is still challenging and our ap-
proach has room to improve; nevertheless, our model outperforms others and shows supe-
riority to both EEG-based or Gait-based methods.

e The results on single-session datasets are better than that on multi-session datasets. This is
reasonable, and it demonstrates that the number of sessions does affect the authentication
accuracy. This problem will be further analyzed in Section 4.3.1.

e Our model achieves better performance than Att-RNN. Since the diversity between our
model and Att-RNN is that we employ an external classifier, this observation demonstrates
that the external classifier is effective and efficient.

In DeepKey, the subjects passing the Invalid ID Filter are regarded as genuine only if their rec-
ognized IDs are consistent, i.e., E;p = Gyp. It can be inferred easily that the FAR of DeepKey is 0
as well. However, the FRR depends on one or more of these three scenarios: the false rejection of
Invalid ID Filter; the incorrect Gait identification; the incorrect EEG identification. In summary,
the overall FAR is 0 and the overall FRR is calculated as 1% =~ 0.006 + 0.994 % (1 — 0.9961 * 0.9996).

4.3 Impact of Key Parameters

4.3.1 Impact of Sessions. In practical applications, sessions in different scenarios may result in
a minor difference in equipment position, signal quality, and other factors. To investigate the im-
pact of sessions, we conduct external experiments by comparing the performance between single-
session datasets and multi-session datasets. The comprehensive evaluation metrics and the com-
parison over various baselines are listed in Table 6 and Table 7, while the comparison is summarized
in Figure 6. The experiment results show that on the multi-session datasets, compared with the
single-session datasets, we achieve a slightly lower but still highly competitive performance.

4.3.2  Impact of EEG Band. A series of comparison experiments are designed to explore the op-
timal EEG frequency band which contains the most discriminative features. The results presented
in Table 8 illustrate the following:

e The Delta band consistently provides higher identification accuracy compared to other fre-
quency bands for both single and multiple sessions. This observation shows that Delta pat-
tern contains the most discriminative information for person identification.
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Table 8. EEG Bands Comparison

EEG Bands
Dataset Baseline Methods Best Level Best Band
Delta Theta Alpha Beta Gamma  Full
SVM 0.4588  0.4682  0.7484  0.5955 0.5239 0.8788 0.8788 Full
RF 0.9875 0.8006 0.7729 0.6376 0.5469 0.8931 0.9875 Delta
Non-DL
KNN 0.9897 0.8084 0.7465 0.5553 0.4606 0.8792 0.9897 Delta
Baseline
AdaB 0.2872 0.2879 0.2318 0.3069 0.2922 0.3289 0.3289 Full
LDA 0.1567 0.1802 0.1957 0.1502 0.1306 0.4547 0.4547 Full
LSTM 0.9596  0.8126  0.8277  0.6906 0.6027 0.9273 0.9596 Delta
EID-S DL Baseline = GRU 0.9633 0.7996 0.8082 0.6902 0.6985 0.9251 0.9633 Delta
CNN 0.8822 0.7416 0.8079  0.6918 0.6059 0.8985 0.8985 Full
[19] 0.5843 0.4487 0.2918 0.3017 0.4189 0.5112 0.5843 Delta
State-of
h [20] 0.8254  0.7935 0.7019  0.6368 0.6621 0.8018 0.8254 Delta
-the-art
[16] 0.8711 0.8531 0.7556  0.6882 0.5101 0.7819 0.8711 Delta
Att-RNN  0.9384 0.7928 0.8318 0.6854 0.6046 0.9238 0.9384 Delta
Ours 1.0 0.9285 0.8366 0.5529 0.4558 0.9417 1.0 Delta
SVM 0.7796 0.5424 0.5664 0.6522 0.4915 0.7477 0.7796 Delta
RF 0.8124 0.7194 0.7351  0.6842 0.4765 0.8121 0.7194 Delta
Non-DL
KNN 0.8211 0.7501 0.7649  0.6611 0.3821 0.8162 0.7501 Delta
Baseline
AdaB 0.3228 0.3095 0.2478 0.2548 0.2529 0.3189 0.3228 Delta
LDA 0.3082 0.1681 0.1621 0.1824 0.1311 0.2995 0.3082 Delta
LSTM 0.8482 0.6926 0.7438 0.5726 0.5008 0.8185 0.8482 Delta
EID-M DL Baseline GRU 0.862 0.6935  0.7531 0.5672 0.5072 0.8221 0.862 Delta
CNN 0.7647  0.6712  0.7191 0.5588 0.4949 0.7749 0.7749 Full
[19] 0.9721 0.7019 0.7091 0.4189 0.4089 0.8195 0.9721 Delta
State-of-
b [20] 0.9931 0.6891 0.6988 0.5124 0.3397 0.7963 0.9931 Delta
the-art
[16] 0.9917 0.7199 0.6572 0.4911 0.3977 0.8011 0.9917 Delta
Att-RNN  0.9324  0.6847  0.6846  0.5732 0.4941 0.7976 0.9324 Delta
Ours 0.9996 0.9013 0.8989 0.4428 0.3661 0.8858 0.9996 Delta

The full band denotes the raw EEG data with full frequency bands.

e Our method gains the best outcome on both datasets with different sessions. This validates
the robustness and adaptability of the proposed approach.

Why could Delta pattern outperform other patterns since Delta wave mainly appears in deep sleep
state? Here we give one possible reason. We know that the EEG patterns are associated with an
individual’s mental and physical states (organics and systems). For example, while the subject is
under deep sleep and producing Delta pattern, the majority of physical functions of the body (such
as sensing, thinking, even dreaming) are completely detached. Only the very essential life-support
organs and systems (such as breathing, heart beating, and digesting) keep working, which indicates
the brain areas corresponding to life-support functions are active. While the subject is awake (e.g.,
relax state) and producing Alpha pattern, the subject has more activated functions such as imaging,
visualizing, and concentrating. Also, more brain functions like hearing, touching, and thinking are
attached, which means that more physical brain areas (such as frontal lobe, temporal lobe, and
parietal lobe) are activated. At this time, the life-support organs are still working. In short, only
the life-support organs related brain areas are active in the first scenario (Delta pattern), while
the brain areas controlling life-support and high-level functions (e.g., concentrating) are active in

ACM Transactions on Intelligent Systems and Technology, Vol. 11, No. 4, Article 49. Publication date: May 2020.



49:20 X. Zhang et al.

100% —— EID-S
—— ED-M
1.000- — aiD-s
— GID-M
0.998 -
0.996 -
> 0%
1%}
© 0.994
3
(5]
U 0.992
g
0.990 -
0.988 - —— Training
— Testing
o 200 400 600 800 1000
Iterations
Fig. 8. Convergence curves. Fig. 9. Impact of datasize.

the second scenario (Alpha pattern). Thus, we infer that the Delta pattern corresponds to the life-
support organs and systems, which is the most stable function in different scenarios and the most
discriminative signal in inter-subject classification.

4.3.3 Impact of Datasize. Datasize is one crucial influence element in deep learning based al-
gorithms. In this section, we conduct experiments to train the proposed method over various data
sizes. As shown in the radar chart (Figure 9), four datasets are evaluated under different propor-
tions of training datasize. It has five equi-angular spokes which represent the proportion of datasize
(20%, 40%, 60%, 80%, 100%), respectively. The four concentric circles indicate the accuracy, which
are 85%, 90%, 95%, and 100%, respectively. Each closed line represents a dataset and has five in-
tersections with the five spokes. Each intersection node represents the classification accuracy of a
specific dataset with a specific proportion datasize. For example, the intersection of the EID-S line
and 20% spoke is about 0.92, which denotes that our approach achieves the accuracy of 92% over
the EID-S dataset with 20% datasize. The radar chart infers that gait datasets (GID-S and GID-M)
obtain competitive accuracy even with 20% datasize; nevertheless, EID-S and EID-M highly rely on
the datasize. This phenomenon is reasonable because EEG data has a lower signal-to-noise ratio
and requires more samples to learn the latent distribution pattern.

4.4 Latency Analysis

We also study the latency of DeepKey since low delay is highly desirable in real-world deployment.
The latency of DeepKey is compared to the response time of several state-of-the-art authentication
approaches. The comparison results are shown in Figure 7. The testing latency of our method is
0.39 s, which is competitive compared to the state-of-the-art baselines. Specifically, the reaction
time of DeepKey is composed of several components, with the Invalid ID Filter taking 0.06 s and
the ID Identification taking 0.33 s.

The overall system latency not only includes the computation latency but also includes the data
collection latency such as the time cost when wearing the EEG headset and the IMUs. In detail,
the data collection latency of our system is around 10 s, while EEG collection requires about 4 s
and gait collection requires above 6 s. We can see that the data collection latency is much higher
than computational latency; as a result, one major future direction to reduce system latency is to
save the equipment-related time (discussed in Section 4.5).
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4.5 Usability

The users have to sequentially wear two different devices to complete EEG and gait data collection,
which may lead to incontinence and time-wasting. In this section, we justify the usability of the
proposed DeepKey system in several aspects. First, the two equipments are non-invasive, light,
and easy-to-wear, which will not cost lots of user effort. Second, as mentioned in Section 4.4,
the authentication latency is very small (0.39 s); even counting the data collection latency, the
whole authentication procedure will cost less than 10 s, which is tolerable for the users. Third, the
proposed DeepKey aims at the highly confidential scenarios (e.g., military bases, the treasuries of
banks, and political offices) which require strict precision and very high fake-resistance, in which
the inconvenience is acceptable.

Even so, we agree that simplifying the authentication procedure will promote the deployment
of the system. We attempt to solve this issue in the future. On the one hand, with the develop-
ment of hardware- related techniques, the EEG headset is becoming more portable and affordable.
For example, the developed cEEGrids,'? flex-printed, multi-channel sensor arrays that are placed
around the ear using an adhesive, are easy and comfortable to wear and dispatch. This is a good
choice of EEG acquisition equipment, although the cEEGrids are currently expensive. On the other
hand, a potential solution is to develop a device-free authentication system and measure gait sig-
nals by environmental sensors such as RFID (Radio Frequency IDentification) tags. The Received
Signal Strength Indication (RSSI) of an RFID tag measures the received signal power which reflects
the target subject’s walking information [49]. Another possible solution targeting the two-factor
design is to integrate gait sensors into the EEG headset. This will decrease the equipment expense
and require less user effort, although this may cause a slight decrease in the authentication accu-
racy due to the fewer IMUs (there are three IMUs in our experiments but only one IMU after the
integration with Emotiv headset). In the future, the wide deployment of the DeepKey authentica-
tion system in a real-world environment is possible.

5 DISCUSSIONS AND FUTURE WORK

In this article, we propose a biometric identification system based on both EEG and gait informa-
tion. In this section, we discuss the open challenges and potential future research directions.

First, the datasets used in this article only have limited participants. Extensive evaluations over
more subjects are necessary. However, compared to some existing works ([50], [4], and [39] have
8, 9, and 10 subjects in their experiments, respectively), we believe our participation scale is ac-
ceptable. Our work has already demonstrated that DeepKey can be used in settings such as small
offices which are accessed by a limited group of people. In addition, evaluation can be improved by
extending observations on how the system performs in different conditions. For example, consid-
ering changes in EEG signals during more trials, and longer times (hours, days, or even months)
to understand if these are consistent and reliable for detection.

Second, wearable sensors like an EEG headset and wearable IMUs are required in the data col-
lection stage of the DeepKey system. Extensive experiments are meaningful in the future to inves-
tigate how the placement position of the wearable sensor matters. The EEG headset position on
the head and the IMU position on the arms may affect the authentication performance.

Additionally, a promising future work is the real-world online deployment of the proposed
DeepKey system. Since we have demonstrated the effectiveness and efficiency of DeepKey in the
offline situation, a future step is to build a real-time authentication environment to evaluate the
online performance.

Ohttp://ceegrid.com/home/.
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The brain signals could be easily affected by environmental factors (e.g., noise), subjective fac-
tors (e.g., emotion and fatigue), and other brain activities (e.g., eye-opening, staring at a specific
image, mental working). The proposed DeepKey is robust to objective and subjective factors due
to the deep representation learning. As for other brain activities, various brain activities may lead
to different authentication performance. In this work, we collect the brain signals while the user
is relaxing with eyes closed because this status will produce more stable EEG signals and have
less intra-subject difference. One future work is supposed to investigate how the different brain
activities will impact the authentication accuracy.

Furthermore, the proposed DeepKey still faces the challenge of the “in the wild” scenario since
the gathered EEG data are easily corrupted by physical actions like walking. In this work, the EEG
and gait data are gathered in two separate steps. However, in outdoor environments, the user is
hardly standing still and waiting for the authentication. Fortunately, our system has competitive
performance in a fixed indoor environment (such as bank vouchers) which can provide a stable
data collection environment and mainly concerned about high fake-resistance.

6 CONCLUSION

Taking advantage of both EEG- and gait-based systems for fake-resistance, we propose DeepKey, a
multimodal biometric authentication system, to overcome the limitations of traditional unimodal
biometric authentication systems. DeepKey contains three independent models: an Invalid ID Fil-
ter Model, a Delta band based EEG Identification Model, and a Gait Identification Model, to detect
invalid EEG data, and recognize the EEG ID and Gait ID, respectively. The DeepKey system outper-
forms the state-of-the-art baselines by achieving a FAR of 0 and a FRR of 1%. In addition, the key
parameters (such as sessions and EEG frequency band) and the system latency are also investigated
by extensive experiments.

This work sheds light on further research on multimodal biometric authentication systems based
on EEG and gait data. Our future work will focus on deploying the DeepKey system in an online
real-world environment. In addition, the gait signals are currently gathered by three wearable
IMUs, which may obstruct the large-scale deployment in practice. Therefore, another direction
in the future is to collect gait data from non-wearable gait solutions (e.g., sensors deployed in
environments).
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