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Abstract—An electroencephalography (EEG) based Brain
Computer Interface (BCI) enables people to communicate with
the outside world by interpreting the EEG signals of their brains
to interact with devices such as wheelchairs and intelligent robots.
More specifically, motor imagery EEG (MI-EEG), which reflects
a subject’s active intent, is attracting increasing attention for a
variety of BCI applications. Accurate classification of MI-EEG
signals while essential for effective operation of BCI systems is
challenging due to the significant noise inherent in the signals
and the lack of informative correlation between the signals
and brain activities. In this paper, we propose a novel deep
neural network based learning framework that affords perceptive
insights into the relationship between the MI-EEG data and
brain activities. We design a joint convolutional recurrent neural
network that simultaneously learns robust high-level feature
presentations through low-dimensional dense embeddings from
raw MI-EEG signals. We also employ an Autoencoder layer to
eliminate various artifacts such as background activities. The
proposed approach has been evaluated extensively on a large-
scale public MI-EEG dataset and a limited but easy-to-deploy
dataset collected in our lab. The results show that our approach
outperforms a series of baselines and the competitive state-of-the-
art methods, yielding a classification accuracy of 95.53%. The
applicability of our proposed approach is further demonstrated
with a practical BCI system for typing.

Index Terms—EEG, deep learning, brain typing, BCI

I. INTRODUCTION

Brain-computer interface (BCI) systems have been widely
studied for various real-world applications from mind-
controlled service robots in the healthcare domain [1] to
enriched video gaming in the entertainment industry [2]. As
an important pathway between human brains and the outside
world [3], BCI systems allow people to communicate or
interact with external devices such as wheelchairs or service
robots, through their brain signals. Among the different types
of brain signals, motor imagery Electroencephalography (MI-
EEG) is especially popular and has demonstrated promising
potential in discerning different brain activities in BCI sys-
tems. Motor imagery is a mental process where a subject

imagines performing a certain action such as closing eyes or
moving feet. Basically, EEG1 is a method to analyze brain
activities by measuring the voltage fluctuations of ionic current
within the neurons of brains. In practice, electrodes are usually
placed on the scalp for the measurement in a non-invasive and
non-stationary way [4].

One of the most promising and widely discussed appli-
cations of EEG-based BCI is to enable people to type via
direct brain control [5]. In this paper, we aim at enabling a
brain typing system by enhancing the decoding accuracy of
EEG signals for a wider range of brain activities (e.g., multi-
class scenario). We envision a real-world implementation of
such a system which can interpret the user’s thoughts to infer
typing commands in real-time. Motor disabled people would
benefit greatly from such a system to express their thoughts
and communicate with the outside world.

However, EEG signals fluctuate rapidly and are subject to
various sources of noise including environmental noise such
as lighting and electronic equipment. Thus, the key issue
concerning an EEG-based BCI system is to accurately interpret
EEG signals so as to accurately understand the user’s intent.
More specifically, the design of a practical and effective BCI-
system is faced with the following major challenges. First,
EEG signals usually have very low signal-to-noise ratio [6].
As a result, EEG signals inherently lack sufficient spatial
resolution and insight on activities of deep brain structures.
Second, data pre-processing, parameter selection (e.g., filter
type, passband, segment window, and overlapping), and feature
engineering (e.g., feature selection and extraction both in the
time domain and frequency domain) are all time-consuming
and highly dependent on human expertise in the domain.
Third, the state-of-the-art approaches can achieve an accuracy
of at most 70∼85%, which though impressive is not sufficient
for widespread adoption of this technology. Fourth, existing

1In this paper, we will use the terms EEG and MI-EEG interchangeably.
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research mainly focuses on discerning EEG signals under the
binary classification situation and little work has been con-
ducted on multi-class scenarios. Intuitively, the more scenarios
an EEG-based control system can distinguish, the wider is its
applicability in the real-world.

To tackle the aforementioned challenges, we propose a novel
hybrid deep neural network that combines the benefits of
both Convolutional Neural Networks (CNNs) [7] and recurrent
neural networks (RNNs) [8] for effective EEG signal decoding.
Our model is capable of modeling high-level, robust and
salient feature representations hidden in the raw EEG signal
streams and capturing complex relationships within data via
stacking multiple layers of information processing modules
in a hierarchical architecture. Specifically, RNN is designed
to model sequential information while CNN is well suited to
extract higher-level spatial variations. In particular, a specific
RNN architecture, using Long Short-Term Memory (LSTM)
units, is designed to model temporal sequences and their long-
range dependencies more accurately than conventional RNNs.
In comparison, CNN is a typical feed-forward architecture and
is able to extract higher-level features that are invariant to local
spectral and temporal variations. The main contributions of
this paper are highlighted as follows:
• We design a unified deep learning framework that lever-

ages recurrent and convolutional neural networks to cap-
ture spatial dependencies of raw EEG signals based
on features extracted by convolutional operations and
temporal correlations through RNN architecture, respec-
tively. Moreover, an Autoencoder layer is fused to cope
with possible incomplete and corrupted EEG signals to
enhance the robustness of EEG classification.

• We extensively evaluate our model using a public dataset
and also a limited but easy-to-deploy dataset that we
collected using an off-the-shelf EEG device. The ex-
perimental results illustrate that the proposed model
achieves high levels of accuracy over both the public
dataset (95.53%) and the local dataset (94.27%). This
demonstrates the consistent applicability of our proposed
model. We have made our local dataset and the source
code used in our evaluations available to the research
community to encourage further research in this area and
foster reproducibility of results.

• We also present an operational prototype of a brain typing
system based on our proposed model, which demonstrates
the efficacy and practicality of our approach. A video
demonstrating the system is made available 2.

II. EEG CHARACTERISTICS ANALYSIS

The key point of the brain typing system is to precisely
classify the user’s intent signals. Although EEG signals have
low signal-to-noise ratio and are sensitive to background brain
activities and environmental factors, it is possible to recognize
human intent by employing appropriate feature representation
and classification.

2http://www.xiangzhang.info

TABLE I
THE CORRELATION COEFFICIENTS MATRIX. SELF, CROSS, AND PD
SEPARATELY DENOTE SELF-SIMILARITY, CROSS-SIMILARITY AND

PERCENTAGE DIFFERENCE.

Class 0 1 2 3 4 Self Cross PD
0 0.4010 0.2855 0.4146 0.4787 0.3700 0.401 0.3872 3.44%
1 0.2855 0.5100 0.0689 0.0162 0.0546 0.51 0.1063 79.16%
2 0.4146 0.0689 0.4126 0.2632 0.3950 0.4126 0.2854 30.83%
3 0.4787 0.0162 0.2632 0.3062 0.2247 0.3062 0.2457 19.76%
4 0.3700 0.0546 0.3950 0.2247 0.3395 0.3395 0.3156 7.04%
Range 0.1932 0.4938 0.3458 0.4625 0.3404 0.2038 0.2809 75.72%
Average 0.3900 0.1870 0.3109 0.2578 0.2768 0.3939 0.2680 28.05%
STD 0.0631 0.1869 0.1334 0.1487 0.1255 0.0700 0.0932 27.33%

To illustrate this point, we briefly analyze the similarities
between EEG signals corresponding to different intents and
quantify them using Pearson correlation coefficient. To be able
to effectively interpret multiple classes of human intents, we
assume that the EEG signals should meet the two hypotheses:
1) the intra-intent correlation coefficients should be consis-
tently higher than inter-intent correlation coefficients; 2) the
greater the difference between the intra-intent and inter-intent
correlation coefficients, the better the classification results.

According to the two hypotheses, we introduce two sim-
ilarity concepts used in our measurement: the self-similarity
and the cross-similarity. Self-similarity measures the similarity
of EEG signals within the same intent. We randomly select
several EEG data samples from the same intent and calculate
the correlation coefficient of each possible pair of samples.
The self-similarity for the specific intent is measured as the
average of all the sample pairs’ correlation coefficients. Cross-
similarity measures the similarity of EEG signals across differ-
ent intents. For each specific intent, we measure the correlation
coefficient of each possible intent pairs. In this work, the EEG
dataset (discussed in detail in Section IV-A) contains 5 intents,
hence there are a total of 20 intent pairs and 4 intent pairs
of each specific intent. Finally, for each specific intent, the
cross-similarity is the average of correlation coefficients of
each intent pair. Also, we measure the correlation coefficients
matrix for each specific subject and then calculate the average
matrix (by calculating the mean value of all the matrix).
For example, if there are 5 intents for a specific subject, we
calculate a 5 ∗ 5 similarity matrix. In the matrix, ρĭ,j̆ denotes
the correlation coefficients between the sample of the intent ĭ
and the sample of the intent j̆.

Table I shows the correlation coefficients matrix and the
corresponding statistical self- and cross-similarity. The last
column (PD) denotes Percentage Difference between the self-
similarity and cross-similarity. We can observe from the re-
sults that the self-similarity is always higher than the cross-
similarity for all intents, which means that the intra-intent
cohesion of the samples is stronger than the inter-intent
cohesion. Moreover, the percentage difference has a noticeable
fluctuation, which demonstrates that the intra-intent cohesion
varies between different intents. The above analysis results
justify the two hypotheses and lay the foundation for us to
design appropriate feature representations and the classifier.
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Fig. 1. The flow chart of the proposed approach. The input raw EEG data is a single sample vector denoted by Eī ∈ RK (take K = 64 as an example). The
C 1 layer denotes the first convolutional layer, the C 2 layer denotes the second convolutional layer, and so on. The same theory, the P 1 layer denotes the
first pooling layer; the FC 1 layer denotes the first fully connected layer; the H 1 layer denotes the first hidden layer. The stacked temporal-spatial feature is
generated by the FC 2 layer in the CNN and the H 5 layer in the RNN.

III. THE DEEP INTENT RECOGNITION MODEL
This paper proposes a hybrid deep learning model to classify

the raw EEG signal. In this section, we first provide an
overview of the proposed approach and then present the
technical details in subsequent sub-sections.

A. Overview

As mentioned in Section I, CNN and RNN have both
been demonstrated to be effective for the EEG data decoding.
Intuitively, we attempt to join the force of them. However,
the experiential experiments show that the stack of temporal
and spatial features can not outperform the use of only one
of them. Therefore, we design a feature adaptation method
to map the stacked features to a new space which can fuse
the distinctive information from temporal and spatial features.
Figure 1 illustrates the various steps involved. The essential
goal of our approach is to design a deep learning model
that precisely classifies the user’s intents based on EEG data.
In summary, we propose a hybrid approach which contains
several components: deep feature learning (Section III-B),
feature adaption and intent recognition (Section III-C).

B. Deep Feature Learning

We aim to learn the representations of the user’s typing
intent signal which is a 1-D vector (collected at one point in
time). Let us represent the single input EEG signal as Eī ∈
RK (K = 64) where K is the number of dimensions in the
raw EEG signal. Next, we feed Eī to the RNN structure and
the CNN structure for temporal and spatial feature learning
in parallel. At last, the learned temporal features Xt and the
spatial features Xs are combined into the stacked feature X ′

for the latter feature adaption (Section III-C).
1) RNN Feature Learning: In the temporal feature process-

ing part, the RNN structure is employed for its powerful ability
for temporal feature extraction in time-series data. RNN,
which is one class of deep neural network, is able to explore
the feature dependencies over time through an internal state
of the network, which allows it to exhibit dynamic temporal
behavior. In this section, we take advantages of this trait to
represent the temporal feature of the input EEG signal.

We design an RNN model consisting of three components:
one input layer, 5 hidden layers, and one output layer. The
number of hidden layers is optimized by Orthogonal Array
Tuning method. Through the experiential experiments, the hid-
den layers are designed to including 3 fully connected neural
networks and two layers of Long Short-Term Memory (LSTM)
[9] (shown as rectangles in Figure 1) cells among the hidden
layers. Besides, the experiential experiments also show that
the activation function cannot improve the RNN performance
but bring overfitting. Therefore, the non-linear transition is not
employed in this paper. Assume a batch of input EEG data
contains nbs (generally called batch size) EEG samples and
the total input data has the 3-D shape as [nbs, 1, 64]. Let the
data in the i-th layer (i = 1, 2, · · · , 7) be denoted by Xr

i =
{Xr

ijk|j = 1, 2, · · · , nbs, k = 1, 2, · · · ,Ki}, Xr
i ∈ R[nbs,1,Ki],

where j denotes the j-th EEG sample and Ki denotes the
number of dimensions in the i-th layer.

Assume that the weights between layer i and layer i+1
can be denoted by W r

i(i+1) ∈ R[Ki,Ki+1], for instance, W r
12

describes the weight between layer 1 and layer 2. bri ∈ RKi

denotes the biases of i-th layer. The calculation between the
i-th layer data and the i+ 1-th layer data can be denoted as

Xr
i+1 = Xr

i ∗W r
i,i+1 + bri

Please note the sizes of Xr
i , W r

i,i+1 and bri must match. For
example, in Figure 1, the transformation between H1 layer and
H2 layer, the sizes of Xr

3 , Xr
2 , W[2,3], and br2 are separately

[1, 1, 64], [1, 1, 64], [64, 64], and [1, 64].
The 5-th and 6-th layers in the designed structure are LSTM

layers, so the calculation in these layers are implemented as
follows:

fi = sigmoid(T (Xr
(i−1)j , X

r
(i)(j−1)))

ff = sigmoid(T (Xr
(i−1)j , X

r
(i)(j−1)))

fo = sigmoid(T (Xr
(i−1)j , X

r
(i)(j−1)))

fm = tanh(T (Xr
(i−1)j , X

r
(i)(j−1)))

cij = ff � ci(j−1) + fi � fm
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Xr
ij = fo � tanh(cij)

where fi, ff , fo and fm represent the input gate, forget gate,
output gate and input modulation gate separately, and �
denotes the element-wise multiplication. The cij denotes the
state (memory) in the j-th LSTM cell in the i-th layer, which
is the most significant part to explore the time-series relevance
between samples. The T (Xr

(i−1)j , X
r
(i)(j−1)) denotes the op-

eration as follows:

Xr
(i−1)j ∗W +Xr

(i)(j−1) ∗W
′ + b

where W , W ′ and b denote the corresponding weights and
biases.

At last, we obtain the RNN prediction results Xr
7 and em-

ploy cross-entropy as the cost function. The cost is optimized
by the AdamOptimizer algorithm [10]. Xr

6 is the data in the
second last layer, which has a directly linear relationship with
the output layer and the prediction results. If the predicted
results have high accuracy, Xr

6 is enabled to directly map to
the sample label space and has the better representative of the
input EEG sample. Therefore, we regard Xr

6 as the temporal
feature extracted by the RNN structure and call it Xt.

2) CNN Feature Learning: While RNN is good in ex-
ploring the temporal (inter-sample) relevance, it is unable to
appropriately decode spatial feature (intra-sample) represen-
tations. To exploit the spatial connections between different
features in each specific EEG signal, we design a CNN
structure. The CNN structure is comprised of three categories
of components: the convolutional layer, the pooling layer, and
the fully connected layer. The convolutional layer contains a
set of filters to convolve with the EEG data and then through
the feature pooling and non-linear transformation to extract
the geographical features. CNN is well-suited to extract the
spatial relevance of the 2-D input data efficiently. In this paper,
we implement the CNN on the 1-D EEG data. As shown in
Figure 1, the designed CNN is stacked in the following order:
the input layer, the first convolutional layer, the first pooling
layer, the second convolutional layer, the second pooling layer,
the first fully connected layer, the second fully connected layer,
and the output layer.

The input is the same EEG data as the RNN. The input EEG
single sample Eī has shape [1, 64]. Suppose the data in the i-
th layer (i = 1, 2, · · · , 8) is denoted by Xc

i , X
c
i ∈ R[1,Kc

i ,di],
where Kc

i and di separately denote the dimension number and
the depth in the i-th layer. The data in the first layer only has
depth 1 and Xc

1 = E. We choose the convolutional filter with
size [1, 1] and the stride size [1, 1] in the first convolution. The
stride denotes the x-movements and y-movements distance of
the filter. The padding method is selected as same shape zero-
padding, which results in the sample shape keeping constant
in the convolution calculation. The depth of EEG sample
transfers to 2 through the first convolutional layer, so the shape
of Xc

2 is [1, 64, 2]. There is a Relu activation function designed
to work on the convolutional results.

The pooling layer is a non-linear down-sampling transfor-
mation layer. There are several pooling options, with max

pooling being the most popular [11]. The max pooling layer
scans through the inputs along with a sliding window with a
designed stride. Then it outputs the maximum value in every
sub-region that the window is scanned. The pooling layer
reduces the spatial size of the input EEG features and also
prevents overfitting. In the first pooling layer (the 3rd layer
of the CNN), we choose the [1, 2] window and [1, 2] stride.
The maximum in each [1, 2] window will be output to the next
layer. The pooling does not change the depth and the shape
of Xc

3 is [1, 32, 2]. Similarly, the second convolutional layer
chooses [1, 2] filter and [1, 1] stride and results in a shape of
[1, 32, 4]. The results are made non-linear by the Relu unit. The
second pooling layer selects [1, 2] window and [1, 2] stride and
obtains the shape as [1, 16, 4].

In the full connected layer, the high-level reasoning features,
extracted through previous convolutional and pooling layers,
are unfolded to a flattened vector. For example, the data of the
second pooling layer (Xc

5 with shape [1, 16, 4]) is flattened to
the vector with shape [1, 64] (Xc

6). Then the output data can be
calculated by following the regular neural network operation:

Xc
7 = T (Xc

6)

Xc
8 = softmax(T (Xc

8))

At last, we have the CNN results Xc
8 with shape [1, 5] and

employ the cross-entropy as the cost function. The cost is
optimized by the AdamOptimizer algorithm. Xc

7 has a directly
linear relationship with the output layer and the predicted re-
sults. Therefore, we regard Xc

7 as the spatial feature extracted
by the CNN structure and call it Xs. The proposed approach
can automatically learn the distinguishable features from 1-
D EEG signals through the CNN structure. The order of the
channels does not matter if the training dataset and the testing
dataset have the same order. No effort is needed to transfer
the 1-D data to 2-D for spatial feature learning.

In summary, the temporal features Xt and the spatial
features Xs are learned through the parallel RNN and CNN
structures. Both of them have the direct linear relationship
with the EEG sample label, which means that they represent
the temporal and spatial features of the input EEG sample if
both RNN and CNN have high classification accuracy. Next,
we combine the two feature vectors into a flattened stacked
vector, X ′ = {Xt : Xs}.

C. Feature Adaptation

Next, we design a feature adaptation method to map the
stacked features to a correlative new feature space which can
fuse the temporal and spatial features together and highlight
the useful information.

To do so, we introduce the Autoencoder layer [3] to further
interpret EEG signals, which is an unsupervised approach to
learning effective features. The Autoencoder is trained to learn
a compressed and distributed representations for the stacked
EEG feature X ′. The input of Autoencoder is the stacked
temporal and spatial feature X ′. Assume h, X́ ′ denote the
hidden layer and output layer data, respectively.
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The data transformation procedure is described as the fol-
lowing:

h = WenX
′ + ben

X́ ′ = Wdeh+ bde

where Wen, Wde, ben, bde denote the weights and biases in
the encoder and the decoder.

The cost function measures the difference between X ′ and
X́ ′ as MSE (mean squared error) which is back-propagated
to the algorithm to adjust the weights and biases. The error
is optimized by the RMSPropOptimizer [12]. The data in the
hidden layer h is the transferred feature, which is output to
the classifier. Finally, the Extreme Gradient Boosting classifier
(XGBoost) is employed [13] to classify the EEG streams. It
fuses a set of classification and regression trees (CART) and
exploits detailed information from the input data. It builds
multiple trees and each tree has its leaves and corresponding
scores.

IV. EXPERIMENTS

In this section, we evaluate the proposed deep learning
model using a public dataset and a local dataset collected by
ourselves. At first, a public EEG dataset (called eegmmidb) is
used to assess our proposed deep learning model. The experi-
mental settings (Section IV-A), the overall comparison with the
state-of-the-art methods (Section IV-B), the parameter tuning
(Section IV-C), and the efficiency analysis (Section IV-D) are
separately reported in this section. In addition, we evaluate our
model on a local dataset for demonstrating the good adaptabil-
ity of the proposed method (the collected EEG dataset is called
emotiv) and present the corresponding results (Section IV-E).

A. Experiment Setting

We select the widely used EEG data from PhysioNet eeg-
mmidb (EEG motor movement/imagery database) database3.
This data is collected using the BCI200 EEG system4 [14]
which records the brain signals using 64 channels at a sam-
pling rate of 160Hz. The subject is asked to wear the EEG
device and sit in front of a computer screen and perform
certain typing actions in response to hints that appear on
the screen. The researchers have carefully annotated the EEG
data to correspond to the actions undertaken by the subject,
which are available from the PhysioBank ATM5. For our
experiments, we select a total of 280,00 labeled EEG samples
collected from 10 subjects (28,000 samples per subject). Each
sample is a vector of 64 elements, each of which corresponds
to one channel of the EEG data. The subjects performed 5
actions which are labeled as 0 to 4, as shown in Table II. In the
table, each action represents the subject imaging to perform
the corresponding action mentally instead of physically. For
example, the ‘left hand’ denotes the subject imagines s/he is
opening and closing the left hand without physical movement.

3https://www.physionet.org/pn4/eegmmidb/
4http://www.schalklab.org/research/bci2000
5https://www.physionet.org/cgi-bin/atm/ATM

TABLE II
THE MOTOR IMAGERY TASKS AND LABELS AND THE CORRESPONDING

TYPING COMMAND IN THE BRAIN TYPING SYSTEM

Dataset Item Task 1 Task 2 Task 3 Task 4 Task 5

eegmmidb intent eye closed left hand right hand both hands both feet
label 0 1 2 3 4

emotiv intent up arrow down arrow left arrow right arrow eye closed
label 0 1 2 3 4
command up down left right confirmation

TABLE III
THE CONFUSION MATRIX OF 5-CLASS CLASSIFICATION

Ground Truth Evaluation
0 1 2 3 4 Precision Recall F1 AUC

0 2062 19 23 18 22 0.9618 0.9380 0.9497 0.9982
1 17 1120 19 15 20 0.9404 0.9084 0.9241 0.9977
2 13 13 1146 14 11 0.9574 0.9257 0.9413 0.9990
3 10 5 7 1162 10 0.9732 0.9028 0.9367 0.9990

Predict
Lable

4 18 21 15 23 1197 0.9396 0.9392 0.9394 0.9987
Average 0.9545 0.9228 0.9382 0.9985

To evaluate the performance of the classified results, we use
several typical evaluation metrics such as accuracy, precision,
recall, F1 score, ROC (Receiver Operating Characteristic)
curve, and AUC (Area Under the Curve).

B. Overall Comparison

In this section, we report the performance study and then
demonstrate the efficiency of our approach by comparing
with the state-of-the-art methods and other independent deep
learning algorithms. Recall that the proposed approach is a
hybrid model which uses RNN and CNN for feature learn-
ing, AE layer for feature adaption, and XGBoost classifier
for intent recognition. In this experiment, the EEG data is
randomly divided into training dataset (21,000 samples) and
testing dataset (7,000 samples). The accuracy of our method
is calculated as the average of 5 runs on 10 subjects.

Firstly, we report that our approach achieves the classifica-
tion accuracy of 0.9553. To take a closer look at the result,
the detailed confusion matrix and classification reports are
presented in Table III. We can observe that for every class, our
approach achieves an average precision no lower than 0.939.
Figure 2 shows the ROC curves of the 5 classes.

Additionally, the accuracy comparison between our method
and other state-of-the-art and baselines are listed in Table IV.
Wavelet transform [2], [15]–[18] and independent component
analysis (ICA) [19], [20] are state-of-the-art methods to pro-
cess EEG signals. The Deep Neural Network [17], [19], [21],
Random Forest (RF) [22] and Linear Discriminant Analysis
(LDA) [20] are applied to classify the EEG data. In addition,
the key parameters of the baselines are listed here: KNN (k=3),
Linear SVM (C = 1), RF (n = 500), LDA (tol = 10−4), and
AdaBoost (n = 500, lr = 0.3). To be fair, all the comparable
methods in Table IV are working on the same dataset with
their suggested best setting. The results show that our method
achieves the significantly higher accuracy of 0.9553 compared
to all the state-of-the-art methods. Our method also performs
better than other deep learning methods like RNN or CNN.
Moreover, compared with most existing EEG classification
research focusing on binary classification, our method works in
multi-class scenario but still achieves a high-level of accuracy.
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TABLE IV
PERFORMANCE COMPARISON WITH THE STATE OF THE ART METHODS. IN
THE BINARY/MULTI COLUMN, B DENOTES BINARY CLASSIFICATION AND

M (N) DENOTES N-CLASS CLASSIFICATION.

Index Methods Binary/Multi Acc
State
of the art 1 Almoari [2] B 0.7497

2 Sun [15] B 0.65
3 Mohammad [16] B 0.845
4 Major [19] B 0.68
5 Shenoy [21] B 0.8206
6 Tolic [17] B 0.6821
7 Rashid [18] B 0.92
8 Ward [23] M (3) 0.8
9 Sita [20] M (3) 0.8724
10 Pinheiro [1] M (4) 0.8505

Baselines

8 KNN M (5) 0.8769
11 SVM M (5) 0.5082
12 RF M (5) 0.7739
13 LDA M (5) 0.5127
14 AdaBoost M (5) 0.3431
15 RNN M (5) 0.9325
16 CNN M (5) 0.8409
17 Ours M (5) 0.9553

To demonstrate the advantage of our proposed hybrid model
for better learning of robust features from raw EEG data,
we also compare our method (joint RNN and CNN) with
the independent deep feature learning method (RNN, CNN).
All extracted features are classified by a XGBoost classifier.
The experimental results are listed in Table V, where we
can see that our approach outperforms RNN and CNN in
classification accuracy by 3.38% and 11.44%, respectively.
Our approach also achieves the lowest standard deviation
and range, implying that it is more stable and reliable. Note
that the RNN on its own (RNN works as both feature
extract method and classifier) without feature representation
achieves a higher accuracy of 0.9325 (in Table IV) than the
RNN+AE+XGBoost method (RNN works as feature extract
method), which exhibits an accuracy of 0.9215. This shows
that RNN represented features are unsuitable for other classi-
fiers and the inappropriate use of AE may decrease the signal
quality. Figure 3 illustrates separately the accuracy changes
along with the training iterations under three categories of
feature learning methods. Three curves (Figure 3) show that
the proposed joint method converges to its high accuracy in
fewer iterations than independent RNN and CNN. The learned
features are fed into the AE for further processing and finally
classified by the XGBoost classifier.

C. Parameter Tuning

In this section, we conduct a series of empirical studies
for analyzing the impact of various parameters on the clas-
sification accuracy of the proposed approach. We extensively
explore the impact of the following key factors: the training
data size, the RNN learning rate, the CNN learning rate, the
AE learning rate, the XGBoost learning rate, the AE hidden
neuron size, and the classifier. We next investigate the impact
of varying the data used for training on the accuracy of our
model. The results are illustrated in Figure 4. As expected,
the accuracy increases as more data are available for training.
Our method achieves an accuracy of 95% when 55% of the

available data set is used for training. There is only a marginal
improvement in accuracy with the inclusion of additional
training data. Also, observe that we can achieve an accuracy
of 87% with only 15% of training data. This indicates that our
approach is less dependent on the training data size. The time
required for training the model is shown on the right vertical
axis in Figure 4 and as expected varies linearly with the size
of the training data.

Figure 5(a) to Figure 5(d) show that the proposed approach
performs differently under different learning rates in each
component. We choose the appropriate learning rates as 0.005,
0.004, 0.002, and 0.5 for RNN, CNN, AE, and XGBoost, re-
spectively. Figure 5(e) illustrates that the more hidden neurons
in AE, the better classification results. Therefore, we choose
800 neurons as a trade-off between the accuracy and efficiency.
Figure 5(f) shows that the XGBoost classifier outperforms
other classifiers and achieves the highest classification accu-
racy over the same features refined by RNN+CNN+AE. It
should be noted that all the not mentioned hyper-parameters
are set as default value except those shown in Table VI. All
the hyper-parameters are tuned using the Orthogonal Array
Tuning Method with cross-validation. [24].

D. Efficiency Analysis

Generally, deep learning algorithms require substantial time
to execute. This can limit their suitability for BCI applications
(e.g., typing) which typically require close to real-time perfor-
mance. For instance, the practical deployment of a BCI system
could be limited by its recognition time-delay if it takes two
minutes to recognize the user’s intent. In this section, we will
focus on the running time of our approach and compare it to
the widely used baselines. The results are shown in Figure 6.

We first illustrate the time required to train the model in
Figure 6(a). Our model requires 2,000 seconds for training,
which is significantly longer than other baseline approaches.
A breakdown of the training time required for the 3 com-
ponents, namely, RNN, CNN, and XGBoost is also shown.
XGBoost requires the most training time as the result of its
gradient boosting structure. However, training is a one-time
operation. For practical considerations, the execution time of
an algorithm during testing is what matters most. Figure 6(b)
shows that the testing time of our approach is less than 1
second, which is similar with other baselines (except KNN
which requires 9 seconds). In summary, the proposed approach
takes very short testing time although it requires more time to
train the model. Reducing the training time of our approach
will be part of our future work.

E. Adaptability Evaluation on Local EEG Dataset

To examine the adaptability and consistency of our model,
we further evaluate our proposed model on a limited but
easy-to-deploy dataset. We conduct the EEG collection by
using a portable and easy-to-use commercialized EEG headset,
Emotiv Epoc+ headset. The headset contains 14 channels
and the sampling rate is 128 Hz. The local dataset can be
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TABLE V
THE RECOGNITION ACCURACY OF 10 SUBJECTS UNDER DIFFERENT FEATURE LEARNING METHODS. THE IMPROVEMENT REPRESENTS THE INCREASE

AMPLITUDE OF OUR METHOD OVER THE MAXIMUM OF RNN AND CNN FEATURE LEARNING METHODS.

Feature learning S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Range average std
RNN 0.9005 0.8928 0.9506 0.9264 0.9487 0.9427 0.9098 0.9293 0.9643 0.8498 0.1145 0.9215 0.0341
CNN 0.9021 0.5938 0.9395 0.9659 0.9013 0.9942 0.9273 0.6177 0.9310 0.6358 0.4004 0.8409 0.1580
RNN+CNN 0.9390 0.9186 0.9784 0.9736 0.9967 0.9832 0.9675 0.9245 0.9758 0.8954 0.1013 0.9553 0.0335
Improvement 0.0369 0.0258 0.0278 0.0077 0.0480 -0.0110 0.0402 -0.0048 0.0115 0.0456 0.0590 0.0228 0.0209
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Fig. 2. The ROC curves of the 5-class classi-
fication. Note that X-axis is the logarithmic of
the False Positive Rate.
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Fig. 5. The classification accuracy with different hyper-parameter settings

accessed from this link6. Compared to the BCI 2000 system
(64 channels) used for construct the eegmmidb dataset, our
local equipment (Emotiv headset) only contains 14 channels
and is much easier to be deployed in a natural environment.

6https://drive.google.com/open?id=0B9MuJb6Xx2PIM0otakxuVHpkWkk

TABLE VI
HYPER-PARAMETER SETTING. FOR INSTANCE, RNN CONTAINS ONE
INPUT LAYER (64 NEURONS), 5 HIDDEN LAYERS (64 NEURONS EACH

LAYER), AND ONE OUTPUT LAYER (5 NEURONS). ONLY THE INPUT LAYER
NEURON NUMBER IS REQUIRED TO ADJUST WITH THE DIMENSION OF THE
INPUT DATA, ALL THE OTHER STRUCTURES AND HYPER-PARAMETERS ARE

FIXED AND SELF-ADAPTIVELY.

Hyper-parameter Value
Layer 7=1+5+1
Neuron size 64*1+64*5+5*1
Iterations 2500
Batch size 7000
Learning rate 0.005
Activation function Soft-max
Cost function Cross entropy

RNN

Regularization `2 norm (λ = 0.004)
Layer 8
Input neuron size 64
1st convolutional Filter [1,1],stride [1,1], depth 2
1st pooling Window [1,2], stride [1,2]
2nd convolutional Filter [1,2],stride [1,1], depth 4
2nd pooling Window [1,2], stride [1,2]
Padding method Zero-padding
Pooling methods Max
Activation function ReLU
1st fully connected 64
2nd fully connected 120
Output neuron size 5
Iterations 2500
Batch size 7000
Learning rate 0.004
Activation function Softmax
Cost function Cross entropy

CNN

Regularization `2 norm (λ = 0.001)
Layer 1+1+1
Neuron size 184+800+184
Iterations 400
Learning rate 0.01

AE

Cost function MSE
Objective Multi:softmax
Learning rate 0.5
max depth 6Classifier

Iterations 500

1) Experimental Setting: This experiment is carried out
using 7 subjects (4 males and 3 females) aged from 23 to

2018 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:07:55 UTC from IEEE Xplore.  Restrictions apply. 



KNN SVM RF LDA AdaBoost RNN CNN Ours
0

500

1000

1500

2000

2500

T
ra

in
in

g
 t
im

e
 (

s
)

RNN

CNN

XGBoost

(a) Training time

KNN SVM RF LDA AdaBoost RNN CNN Ours
0

1

2

3

4

5

6

7

8

9

T
e

s
ti
n
g
 t
im

e
 (

s
)

(b) Testing time

Fig. 6. The training time and testing time comparison

(a) EEG collection (b) Raw EEG data

Fig. 7. EEG collection and the raw data. The emotiv dataset only consists
of the imagination task data since the rest state data is contaminated by eye
blink and other noises.

TABLE VII
THE CONFUSION MATRIX AND THE EVALUATION OVER emotiv DATASET

Ground truth Evaluation
0 1 2 3 4 Precision Recall F1 AUC

0 1608 35 51 21 18 0.9279 0.9415 0.9346 0.9982
1 18 1602 21 29 15 0.9507 0.9357 0.9432 0.9977
2 29 31 1642 27 22 0.9377 0.9437 0.9407 0.9990
3 19 25 11 1615 36 0.9467 0.9428 0.9447 0.9990

Predicted
Label

4 34 19 15 21 1676 0.9496 0.9485 0.9490 0.9987
Total 1708 1712 1740 1713 1767 4.7126 4.7122 4.7123 4.9926
Average 0.9425 0.9424 0.9425 0.9985

26. During the experiment, the subject wearing the Emotiv
Epoc+7 EEG collection headset, faces the computer screen
and focuses on the corresponding hint which appears on the
screen (shown in Figure 7). The brain activities and labels
used in this paper are listed in Table II. In summary, this
experiment contains 241,920 samples with 34,560 samples for
each subject. In order to distinguish with the aforementioned
eegmmidb dataset, we name this dataset as emotiv.

2) Recognition Results and Comparison: For each partici-
pant, the training set contains 25,920 samples and the testing
set contains 8,640 samples. The experiment parameters are the
same as listed in Table VI. The proposed approach achieves
the 5-class classification accuracy of 0.9427. The confusion
matrix and evaluation is reported in Table VII. Subsequently,
to demonstrate the efficiency of the proposed approach, we
compare our method with the state-of-the-art methods and
report the accuracy and testing time in Figure 8. To conclude,
our model still achieves good performance with EEG signals
collected from hardware with fewer channels and in a more
natural setting.

V. APPLICATION: BRAIN TYPING SYSTEM

Based on the high EEG signals classification accuracy of the
proposed deep learning approach, in this section, we develop

7https://www.emotiv.com/product/emotiv-epoc-14-channel-mobile-eeg/
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Fig. 8. The accuracy and testing time comparison over emotiv dataset

Fig. 9. Overview of the brain typing system. The user’s typing intent is
collected by the headset and sent to the server through client 1. The server
uses the pre-trained deep learning model to recognize the intent, which is
used to control the typing interface through client 2. The server and clients
are connected using TCP connections.

an online brain typing system to convert user’s thoughts to
texts. Compared with the state-of-the-art [25], the proposed
application achieves a trade-off of several characteristics: non-
invasive (low-cost, low-risk, and portable), complete functional
(input, cancel, delete, and confirm), high speed typing, and
full-dictionary8.

The proposed system contains 5 components: EEG headset,
client 1 (data collector), the server, the client 2 (typing
command receiver), and the typing interface. The user wears
the Emotiv EPOC+ headset (introduced in Section IV-E) which
collects EEG signals and sends the data to client 1 through a
Bluetooth connection. The raw EEG signals are transported
to the server through a TCP connection. The server feeds the
incoming EEG signals to the pre-trained deep learning model.
The model produces a classification decision and converts it
to the corresponding typing command which is sent to client
2 through a TCP connection. The typing interface receives the
command and manifests the appropriate typing action.

Specifically, the typing interface (Figure 10) can be divided
into three levels: the initial interface, the sub-interface, and the
bottom interface. All the interfaces have similar structure: three
character blocks (separately distributed in left, up, and down
directions), a display block, and a cancel button. The display
block shows the typed output and the cancel button is used to
cancel the last operation. The typing system in total includes
27 = 3∗9 characters (26 English alphabets and the space bar)
and all of them are separated into 3 character blocks (each

8The lack-dictionary represents: after the user types in the character, for
instance, w, s/he only has 6 choices (A,E,H,I,O,R ) for the next character
instead of the overall 26 choices. The contrast situation is full-dictionary.
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Fig. 10. The brain typing procedure to type the character ‘I’. Firstly, select
the left character block (contains ‘ABCDEFGHI’ characters) in the initial
interface and then confirm the selection to step in the corresponding sub-
interface; then, select the right character block (contains ‘GHI’ characters) in
the sub-interface and confirm to jump to the bottom interface; at last, select
the right character block (only contains ‘I’) and the character ‘I’ will appear
in the display block after the confirmation.

block contains 9 characters) in the initial interface. Overall,
there are 3 alternative selections and each selection will lead
to a specific sub-interface which contains 9 characters. Again,
the 9 = 3 ∗ 3 characters are divided into 3 character blocks
and each of them is connected to a bottom interface. In the
bottom interface, each block represents only one character.
As an example, Figure 10 shows the procedure to type the
character ‘I’.

In the brain typing system, there are 5 commands to control
the interface: ‘left’, ‘up’, ‘right’, ‘cancel’, and ‘confirm’.
Each command corresponds to a specific motor imagery EEG
category (as shown in Table II). To type every single character,
the interface is supposed to accept 6 commands. Consider
typing the letter ‘I’ as an example (see Figure 10). The
sequence of commands to be entered is as follows: ‘left’,
‘confirm’, ‘right’, ‘confirm’, ‘right’, ‘confirm’. In our practical
deployment, the sampling rate of Emotiv EPOC+ headset is
set as 128Hz, which means the server can receive 128 EEG
recordings each second. Since the brainwave signal varies
rapidly and is very easy to be affected by noises, the EEG
data stream is sent to server each half second, which means
that the server receives 64 EEG samples each time. The 64
EEG samples are classified by the deep learning framework
and generate 64 categories of intents. we calculate the mode
of 64 intents and regard the mode as the final intent decision.
Furthermore, to achieve steadiness and reliability, the server
sends command to client 2 only if three consecutive decisions
remain consistent. After the command is sent, the command
list will be reset and the system will wait until 3 consistent
decisions are made. Therefore, client 2 must wait for at least
1.5 seconds for a command and the entire process of typing
each character takes at least 9 (6∗1.5) seconds. In other words,
theoretically, the proposed brain typing system can achieve the
highest typing speed of 6.67 = 60/9 characters per minute.

VI. DISCUSION

The proposed framework achieves the highest accuracy
compared to the state-of-the-art EEG classification methods.
The classification accuracy of the public dataset (eegmmidb) is
consistently higher than the local real-world dataset (emotiv).
The possible reason may be due to the different channels of
two datasets (eegmmidb contains 64 channels and emotiv only
takes 14 channels). In general, our framework can achieve high
classification accuracy with both datasets.

The accuracy in the online mode is, however, lower than
what can be achieved in an offline setting (over 95%), which
could be attributed to a number of reasons. At first, the user’s
mental state and fluctuations in emotions may affect the quality
of the EEG signals. For example, a scenario where the offline
dataset used to train the deep learning model is collected when
the user is in an excited emotional state but then applied in
an online setting when the user is upset, would lead to low
accuracy. In addition, subtle variations in the way the EEG
headset is mounted on the subject’s head may also impact
online decision making. Specifically, the position of each of
the electrodes (e.g.. the 14 electrodes in the Emotiv headset)
on the scalp may vary during training and testing. Moreover,
the EEG signals vary from person to person, which makes
it difficult to construct a common model that applies to all
individuals. Part of our future work is to identify the intra-class
variabilities shared by all the activities of different subjects.
Last but not least, some limitations are caused by the intrinsic
attributes of the headset. For instance, the headset used in
our case study is too tight for the user to wear longer than
30 minutes and the conductive quality of the wet electrodes
decreases after prolonged usage.

VII. RELATED WORK

EEG decoding and interpretation mainly consists of two
research efforts: EEG feature representation and EEG classi-
fication. Effectively representing features from raw EEG data
is critical for the classification accuracy due to the complexity
and high dimensionality of EEG signals. Vzard et al. [26]
employ common spatial pattern (CSP) along with LDA to
pre-process the EEG data and obtain an accuracy of 71.59%
to binary alertness states. The autoregressive (AR) modeling
approach, a widely used algorithm for EEG feature extraction,
is also broadly combined with other feature extraction tech-
niques to gain a better performance [27], [28]. Duan et al.
[29] introduce the Autoencoder method for feature extraction
and finally obtain a classification accuracy of 86.69%. Power
spectral density [30] is extracted as EEG data features to
input into SVM. The work achieves 76% accuracy with the
data from FC4 ∼ AF8 channels and 92% with the data
from CPz ∼ CP2 channels. Recently, more and more studies
exploit deep learning [31], [32] to classify EEG signals. The
work in [33] builds one deep belief net (DBN) classifier and
achieves the accuracy of 83% on binary classification. An
approach combining CNN and stacked Autoencoder (SAE)
is investigated in [34] to classify EEG Motor Imagery signals
and results in 90% accuracy.

Based on the EEG signal decoding, a few types of research
start to explore the non-invasive brain typing method. The
approach in [25] enables ALS patients to type through BCI
and achieves the typing rate of 6 characters per minute. The
authors in [35] investigate three kinds of typing interfaces and
illustrate that both matrix presentation and RSVP (rapid serial
visual presentation) can work well.
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VIII. CONCLUSION AND FUTUREWORK
In this paper, we present a hybrid deep learning model to

decode the raw EEG signal for the aim of converting the
user’s thoughts to texts. The model employs the RNN and
CNN to learn the temporal and spatial dependency features
from the input raw EEG data and then stack them together.
Our proposed approach adopts an Autoencoder to recognize
the stacked feature and to eliminate the artifacts and employs
the XGBoost classifier for the intent recognition. We evaluate
our approach on a public MI-EEG dataset and also a real-
world dataset collected by ourselves. Both results (95.53% and
94.27%) outperform the state-of-the-art methods.

Our future work will focus on improving the accuracy in the
person-independent scenario, wherein some subjects are used
for training and the rest of subjects are involved in testing.
Our recent study on human activity recognition atop multi-task
learning based framework [36] shows the capability to capture
certain underlying local commonalities under the intra-class
variabilities shared by all the activities of different subjects.
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