
Context-Aware Content Filtering & Presentation
for Pervasive & Mobile Information Systems

Kaijian Xu
∗

School of Computer Engineering
Nanyang Technological University

Nanyang Avenue, Singapore 639798
xuka0001@ntu.edu.sg

Manli Zhu
Institute for Infocomm Research

21 Heng Mui Keng Terrace, Singapore 119613
mlzhu@i2r.a-star.edu.sg

Daqing Zhang
GET/INT Institut National des Télécommunications
9 rue Charles Fourier, 91011 Evry Cedex, France

daqing.zhang@int-edu.eu

Tao Gu
Institute for Infocomm Research

21 Heng Mui Keng Terrace, Singapore 119613
tgu@i2r.a-star.edu.sg

ABSTRACT
What constitutes relevant information to an individual may
vary widely under different contexts. However, previous
work on pervasive information systems has mostly focused
on context-aware delivery of application-specific informa-
tion. Such systems are only able to operate within narrow
application domains and cannot be generalized to handle
other heterogeneous types of information. To fill this gap, we
propose a context-aware system for information integration
that can handle arbitrary information types and determine
their relevance to the user’s current context. In contrast to
existing model-based approaches to context reasoning, we
log user interaction and perform usage mining using OLAP
to discover context-dependent preferences for different infor-
mation types. This allows us to build a more generic and
adaptive system that automatically selects the most relevant
content and presents it to the user in a succinct manner that
supports ease of consumption and comprehension.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—user-centered design

General Terms
context awareness, ambient intelligence, content integration,
filtering, presentation, adaptivity, OLAP, preference mining

1. INTRODUCTION
A key area in ubiquitous computing is the design of per-
vasive and mobile information systems which embed infor-

∗This work was carried out while the author was on intern-
ship at the Institute for Infocomm Research.

mation technology into the physical environment, delivering
relevant information on demand to users through ubiqui-
tous and connected computing devices. Such systems aim
to support, augment and enrich daily experiences by sup-
plying information in a context-aware manner.

One of the most crucial considerations in content provi-
sion for such systems is that people have different informa-
tion needs depending on their current context. Consider an
archetypal user named Alice, living in a smart home. In-
stalled in her living room is a wall-mounted display panel
on which she can summon up useful information for quick
reference. As she leaves for work in the morning, she may
check the weather forecast and her schedule for the day.
However, such information would be much less relevant to
her when she is relaxing after work in the evening. Instead,
she might want to refer to the television listings for inter-
esting programs to watch. Clearly, what constitutes useful
content to Alice varies according to the situation, reflecting
her contextual preferences.

Existing work on pervasive information systems has largely
focused on providing information within very specific appli-
cation domains, such as tour guides [6, 8, 9, 17, 19, 28], alerts
and reminders [5, 11, 18] and location-based search [21, 32]
and recommendation systems [22, 27]. Although these sys-
tems serve their intended purpose well, they are limited in
scope and can only handle information types specific to their
particular application.

User information needs in the real world are much more
varied, however, and could include a wide range of different
content, such as weather, news, stock and financial data,
personal schedule, television listings, movie show times, RSS
feeds, etc. Clearly, it would be infeasible to build a separate
system to provide of each type of information; a single uni-
fied system that could integrate and filter such a variety
of heterogeneous information types based on their relevance
to the user’s context would be the ideal solution. Yet, not
enough attention has been given to solving this problem.

Besides selecting the right type of content for the context, it
is also important to present it in an appropriate format that

makes it easy to comprehend. This is especially so in am-
bient and mobile computing environments, where we need
to effectively deliver the required information without over-
burdening the user. In Weiser’s treatise on calm computing,
pervasive systems are envisioned as able to smoothly and
easily transition between the center of our attention and the
periphery, increasing our knowledge without causing infor-
mation overload [29]. In a pervasive information system, the
user should be able to conveniently bring up the information
they require, quickly peruse it, and return to what they were
originally doing. The challenge here is to condense informa-
tion succinctly – providing enough, but not too much.

These are the two key problems that must be solved in or-
der to develop a unified, comprehensive pervasive informa-
tion system. There are also a few lesser associated issues.
First, it is a natural extension of the first requirement that
such a system should be generic enough to handle arbitrary
content types in order not to be bound to any single ap-
plication area. We also observe that user preferences are
not static, but may change over time. As such, the system
needs to be adaptive in order to accommodate the evolution
of user contextual preferences over time. We further note
that the ability to support arbitrary context parameters will
help enable the system to be used for a wider variety of ap-
plications. Most present context-aware systems generally
deal with only few and fixed types of context information,
or context parameters, like time, day of week, device, loca-
tion and the presence of other people. However, many more
potentially useful possibilities exist, such as sensor data like
temperature and ambient light and sound levels, or output
obtained from other context-reasoning systems such as user
activity recognition or mood detection.

In this paper, we propose a method for content selection
and presentation that meets all the abovementioned require-
ments. Support for multiple arbitrary information types is
achieved by taking a modular approach, encapsulating each
information type in its own widget. By tracking user inter-
action with the system in a database and applying online
analytical processing (OLAP) techniques, our system is ca-
pable of self-learning the optimal selection and presentation
of content for a given user in a given context.

The rest of this paper is organized as follows. In Section 2,
we briefly review previous work in user modeling, context-
awareness and personalized content filtering and presenta-
tion. We introduce our proposed technique and outline its
implementation with a demonstrative prototype in Section
3. A discussion of implementation issues and other consid-
erations is given in Section 4. Future directions for research
are explored in Section 5. Finally, we conclude with a sum-
mary of our contributions.

2. PREVIOUS WORK
To provide a background, we will first survey existing work
in user modeling, context-awareness and content personal-
ization to examine how they tackle problems similar to those
we have identified earlier.

2.1 User Modeling
Many different techniques for modeling and mining user
preferences exist in the literature, especially in Web and E-

commerce applications. Since most of it is concerned with
content preferences rather than contextual preferences, we
will only briefly characterize some of the techniques here;
for a more in-depth introduction, the survey by Eirinaki and
Vazirgiannis [12] on Web personalization is recommended.

2.1.1 Rule-Based
Rule-based techniques build deep models of user preferences
and content characteristics, and relate preferences to con-
tent through a set of rules. For example, given demographic
information about customers who have and have not pur-
chased a particular product in the past, we can build a de-
cision tree to classify whether a new customer is likely to
buy the product or not. The decision tree thus serves as a
model of customer preference towards the product based on
customer demographics.

2.1.2 Co-occurrence-Based
Co-occurrence-based methods such as association rules [2,
14] and sequential patterns [3] revolve around detecting re-
peated patterns in historic data, such as different products
that tend to be purchased together, or recurring navigation
trails of different visitors to the same Web site. The discov-
ered patterns can then be applied to predict the preferences
of new users.

2.1.3 Content-Based
Another technique is to characterize the sort of content that
users are interested in, and then use traditional information
retrieval techniques to find relevant content. Such content-
based methods are most readily applied in text-based con-
texts such as Web pages and news articles. A common ex-
ample is using TF-IDF [24] vectors to represent text content
and user preferences. We can also leverage semantics to
characterize both users and content using ontologies. Near-
est neighbor algorithms [10] can then be applied find content
that is similar to the user’s interests.

2.1.4 Collaborative Filtering
Collaborative filtering collects opinions or ratings from many
users in order to provide recommendations. Individual al-
gorithms may vary, but the underlying assumption is al-
ways the same - that users with similar interests will agree
with each other in their ratings. Without building an ex-
plicit model of user preferences, collaborative filtering sug-
gests items or content based on user similarity. For more on
collaborative filtering, we suggest referring to the survey by
Adomavicius and Tuzhilin [1].

2.2 Personalized Information-at-a-Glance
The overwhelming amount of information that the World
Wide Web offers gave rise to the need to help users filter
and organize information, and to present it in a manner
that is convenient and easy to digest. This led to the de-
velopment of Web portals (e.g. iGoogle, MSN, My Yahoo!,
Netvibes), which consolidate and integrate various types in-
formation, (e.g. news, weather, financial updates, personal
schedule, notes) to create a customized browser start page
providing “information-at-a-glance”. However, most exist-
ing Web portals are not adaptive nor context-sensitive, and
remain heavily dependent on user configuration.

Some effort has gone into developing information-at-a-glance
applications that are more intelligent and adaptive. Ander-
son and Horvitz demonstrated MONTAGE [4], a personal-
ized start page for Web browsers that automatically clips
content from different Web pages and aggregates it into a
single page. It achieves this by learning some user prefer-
ences which it uses to compute the expected utility of avail-
able content. The final layout of the page is obtained by
solving a knapsack problem.

An early foray into personalized information-at-a-glance in
pervasive computing by Zhu et. al. [31] uses proximity sen-
sors and RFID tags to detect and identify users who step
within range of a wall-mounted display panel. Content ex-
tracted from various sources are selected according to the
user’s preferences, summarized, and presented according to
predefined layout templates.

2.3 Context-Aware Content Provision
Most existing pervasive computing applications that sup-
port context-aware content provision follow the paradigm
illustrated in Figure 1. Sensors are used to collect context
parameters, which are variables relevant to determining the
current context, such as location and time. These are used
for context reasoning based on predefined or learned con-
text models. Content filtering is then performed based on
the inferred context. Due to space constraints, we will only
highlight a few examples to illustrate this.

sensors
context

parameters

inferred
context

content
repository

content
selection

context
reasoning

context
model

output

Figure 1: Model-based context reasoning paradigm
for content filtering.

This paradigm is most evident in the “tour guide” genre of
applications. For instance, the Museum Tour Guide [9] of
Chou et. al. uses rule-based methods to build a tour and give
directions to museum visitors based on their preferences. It
is able to adjust the tour as it progresses based on context,
such as whether the user is ahead of time or lagging behind.

Another example is context-aware information provision to
the mobile phone standby screen, proposed by Nakatsuru et.
al. [20]. They demonstrated a system which allowed users to
make word-of-mouth recommendations of shops and restau-
rants in a peer-to-peer fashion. The recommendation con-
tent is stored away upon receipt; only when the recipient’s
context matches the target context is it displayed on the
mobile phone standby screen.

Yu et. al. described a framework for context-aware media
personalization in [30] which performs context acquisition,
reasoning and learning to build an ontology-based context
model for in content filtering and recommendation.

2.4 Context as OLAP dimensions
Since our proposed system will employ OLAP to handle con-
text, we review previous work in this area as well. The con-
cept of treating context parameters as dimensions in OLAP
was pioneered by Stefanidis et. al. in their work on the
Context-Aware Preference Database System [25, 26] that
stores explicit context-dependent preferences in a database
as scalar values. The database stores only basic preferences,
which contain only one context parameter, some non-context
parameters, and the user-defined preference, or“degree of in-
terest.” More complex preferences involving more than one
context parameter need to be computed as a weighted sum of
basic preferences. Data cubes are used to store associations
between preferences and database relations, and OLAP is
employed to process context-aware queries at different lev-
els of abstraction.

3. OUR APPROACH
We will now describe our proposed system in detail.

3.1 Modular Approach for Information Types
Recall that we have identified two major needs in pervasive
and mobile information systems: filtering heterogeneous in-
formation types according to their relevance to the user’s
context, and condensing information in a succinct manner.

The “information-at-a-glance” approach of condensing and
integrating content (Section 2.2) fits our needs quite well.
It encapsulates each type of information within its content
block, or widget, allowing a modular approach to display lay-
out. The concept of selecting and aggregating content based
on predicted utility, as demonstrated in MONTAGE [4], can
also be employed. Borrowing from these ideas, we only need
to devise a means of predicting the utility of content based
on context in order to meet the first requirement.

To tackle the second requirement, we observe that amount
of content as perceived by a user depends on two dimensions
- quantity, that is to say, the number of distinct items, and
granularity, or the level of detail. For example, if we were to
consider news content, quantity would refer to the number
of stories being displayed, whereas granularity determines
whether news items are displayed as headlines only, with a
brief summary, or as a full story. Therefore, we design each
widget to support control over how information is presented
through presentation settings, given by the two parameters
quantity and granularity. With this, we simply have to come
up with a means of determining the most appropriate pre-
sentation setting depending on the context.

This modular approach is well suited for supporting a wide
range of different content since it defines a protocol for con-
trolling the presentation format for content independently of
information type; it also enables adaptive layout for display
on a variety of devices with different screen sizes. Any arbi-
trary content can be incorporated, and third-party content
provision is easily supported.

3.2 Devices and User Interface
We design the system to be usable with any device with a
display and simple selection controls, including desktop and
laptop computers, PDAs, mobile phones and touch screen

displays. Devices with attached sensors for collecting rel-
evant context parameters would be advantageous, e.g. mo-
bile devices with built-in GPS to supply location. To access
the system, devices connect to a central server and issue
a request containing the user and current context parame-
ters. The server will perform automatic selection and lay-
out of widgets and respond with content presented in the
“information-at-a-glance” format described earlier.

However, the information desired by the user may occasion-
ally be omitted, either because the system has not yet fully
learnt the correct preferences, or because of evolving user
preferences. To handle such cases, we include a button that
brings up a “start menu” list of all available widgets for the
user to choose from. Similarly, each widget is designed to
include menus with which the user can fine tune its pre-
sentation settings. Although having to issue such explicit
commands may be a slight hassle, it will only happen infre-
quently. Furthermore, users have the incentive to use the
commands in order to a) obtain the information they want,
and b) help the system to register their preferences correctly.

The system is designed to operate primarily on a“pull”basis,
activated by explicit user access such as firing up an applica-
tion on a computer or approaching a wall-mounted display
like in [31]. It deactivates once the application is closed or
the user walks away from the display. Although the inter-
face supports interaction through the start menu and widget
presentation controls, their use would be minimal once the
system has learnt the user’s preferences.

Besides serving the center of our attention when demanded,
the system can also function as a peripheral display [29].
Possible examples include mobile phone standby screens,
desktop docklets and wall-mounted screens serving as am-
bient displays when no users are in range. Unlike the inter-
active mode where multiple widgets may be included, the
peripheral mode should be less cluttered; one possibility is
to gradually cycle through the most relevant widgets one by
one instead of displaying everything at the same time.

3.3 System Architecture
An overview of how our system works is given in Figure 2.
Unlike the current paradigm of context-aware content pro-
vision in Figure 1, we do not perform any context reasoning.
Instead, we rely on co-occurrence analysis between content
and context parameters from usage logs to discover prefer-
ences for certain content under various (latent) contexts.

sensors
context

parameters

usage
logs

user
interaction

output

content
utility

content
repository

content
selection

co-occurrence
analysis

Figure 2: Proposed basic system architecture.

3.3.1 Co-Occurrence Analysis
We will begin by explaining the intuition behind using co-
occurrence analysis and how it works.

In pervasive and mobile information systems, the objective
is to support the user in their daily activities, allowing them
to summon relevant information as and when desired. We
observe that such information needs are episodic, that is
to say, they are recurring, and there is a correspondence be-
tween the information required and the context in which the
user requests it. We can leverage this by studying how often
the various information types and contexts occur together.
Intuitively, the greater the frequency of co-occurrence, the
more closely related the information and context.

To illustrate, we join Alice on her weekly shopping trip to
the supermarket on a Saturday morning. When she accesses
the system using a PDA, analysis of past usage would likely
reveal that the shopping list widget is accessed much more
frequently than other types of information in previous situa-
tions with context parameters (i.e. device, day of week, time,
location) that closely or fully match the present ones. This
implies that shopping list is most useful in this situation,
so we assign a higher content utility score to it compared to
other information types. It will then be favored by the con-
tent selection step. Notice that context of ‘grocery shopping’
does not need to be explicitly defined or identified.

Besides the type of information, we can also determine the
quantity and granularity of content favored by the user un-
der different contexts. For example, Alice might access the
system for news in two different situations - on a mobile
phone while commuting to work, and from the office com-
puter later in the day. If she prefers a headlines-only format
on the mobile phone and full stories on the desktop com-
puter, we will be able to discover this using the same analy-
sis as above, and assign a higher utility to the headlines-only
format in the former case, and vice versa.

Hence, given the user and context parameters, we can cal-
culate how useful each widget is to the user for each possible
presentation setting.

3.3.2 Content Selection and Presentation
With the utility scores obtained from co-occurrence analysis,
we can choose to employ different content selection strategies
depending on our needs.

The simplest way is to rank the information types accord-
ing to their utility and choose the top-k items for display.
Widgets would then be displayed from top to bottom in de-
creasing order of relevance, minimizing the need for scrolling.
This strategy is suitable for mobile phones, for instance,
since their small screens do not support fancy layouts.

For more complex layouts or where scrolling is not possible,
knapsack packing algorithms [23] can employed. Knowing
the predicted utility and screen space needed by each widget
under each setting, knapsack algorithms can select the set
of widgets that will provide the greatest total utility to the
user while maximizing use of available screen space, thereby
optimizing the selection and presentation of the content that
we display to the user.

3.3.3 Usage Logging
To support the co-occurrence analysis, we need to keep track
of past usage in a log. Based on what we have described in
Section 3.3.1, it would be most convenient if each log entry
corresponds to a single access to a single widget, since we
could then simply select the entries with similar and match-
ing context parameters and count them. As such, we design
each log entry to store the user, various context parameters,
the widget and its presentation settings, quantity and gran-
ularity. If we lack information about any of the fields or if
they are not relevant, we simply store a null.

As for when log entries are created, we define two cases -
explicit commands and implicit feedback. In the first case,
we assume that when a user accesses the system, they are
seeking information. If the information they want is not
shown, or is presented in the wrong format, the user issues
commands to rectify the situation. Since this represents
an explicit expression of contextual preference for a certain
information type or presentation format, we create a log
entry with the user ID, current context parameters, widget
ID, and where applicable, the presentation settings specified.

However, once the system has learnt the user’s contextual
preferences, the information they seek will be automatically
displayed, and the user will dismiss the system once they
have obtained the information they want, without issuing
any explicit commands. We can detect such instances and
treat them as implicit feedback that the desired information
was correctly selected and displayed in the right format.

3.4 Co-Occurrence Analysis with OLAP
We will now discuss specific details of how co-occurrence
analysis can be performed on the usage logs following the
OLAP paradigm. Unlike transactional databases that serve
day-to-day operations, OLAP is designed to assist “knowl-
edge workers in the role of data analysis or decision making”
[13], and are most widely employed in business intelligence
applications to support marketing decisions.

Using the log as defined in Section 3.3.3, we can formulate
a query to find entries that match the current context pa-
rameters and count them. But relatively few entries will
match the current context exactly. As such, we also need to
look for entries that are contextually similar. Intuitively, we
could start looking for entries that match all but one of the
context parameters, and then all-but-two, etc. Also, instead
of naively counting all entries, we should perform weighting
according to contextual similarity so that a closer match to
the current context counts as more.

However, given more than a few context parameters in the
logs, this approach will require an inordinately large number
of queries to service one request. This is untenable since we
expect the system to respond quickly to user requests. To
alleviate this problem, we can employ OLAP to precompute
and cache the row counts that we need. The application
of OLAP here is straightforward - we treat the user and
context parameters as OLAP dimensions describing a hy-
percube. For any point in the cube, we are interested in
the number of rows in the original table that satisfy the
conditions given by that point. We thus define measures
to count the number of instances of each widget, as well as

each presentation setting of each widget. The dimensions
and measures are shown in the fact table of our schema in
Figure 3. Since count() is a distributive aggregation func-
tion, it allows for highly efficient computation of measures
in materialization of cuboids.

OLAP also allows us to define concept hierarchies that al-
low us to map low-level concepts such as raw timestamp to
higher-level, general concepts such as the hour-of-day and
day-of-week. The star schema in Figure 3 shows sample di-
mension tables for user, device, day, time and location.
Using concept hierarchies, we can detect richer patterns by
matching at various concept levels. For instance, we can now
identify contextual preferences relating to “Saturday morn-
ing” or “weekday evenings”, which we could not do by simple
matching on raw timestamps. By defining a concept hier-
archy on users based on demographics, we can also mine
for preferences that are shared across people of similar age
groups, occupation, etc.

 log
fact table
user key

device key
location key
timestamp . . .
count(W)

count(<W, Q>)
count(<W, G>)

count(<W, Q, G>)
W = widget; Q = quantity; G = granularity

device
dimension table

device key
device type

location
dimension table

location key
location type

user
dimension table

user key
age group
occupation . . .

time
dimension table

timestamp
hour_of_day

3_hour_group
6_hour_group

day
dimension table

timestamp
day_of_week

weekday_or_weekend
special_occasions

Figure 3: Star schema for OLAP usage mining.

As a further improvement, we can discard old log entries
by setting an expiry. By considering only recent entries,
the system will be able to handle evolving user preferences.
Another possibility is to introduce weighting according to
how recent a log entry is, so that the influence of an entry
gradually diminishes as it becomes older. By giving higher
priority to recent preferences, the system can adapt even
faster to preferences changes.

Using OLAP for co-occurrence analysis means that we are
not bound to any particular context model, and can incorpo-
rate arbitrary context parameters without having to change
the system significantly. It is also not bound to any par-
ticular type of content, and allows us to arbitrarily add or
remove any widget from the system. This is especially ap-
pealing from the user’s point of view since all sorts of custom
and third-party content can be supported easily.

Figure 4 visually summarizes the complete architecture of
our context-aware content filtering and presentation system.

3.5 Implementation and Deployment
Our demonstrative prototype runs as a Web application on
the Apache Tomcat servlet container. It is built on the

Explicit
Commands

Implicit
Feedback

Users

Contextual
Preferences

Widgets

Utility
Evaluation

Content
Selection &

Layout

Context
(Parameters)

“must” “should”

display

ou
tp

ut

Devices

di
m

en
si

on
s

co
nte

nt
Information

Sources

OLAPUsage Log
| User | Device | Time | Location | … | Widget | Quantity | Granularity |

context parameters info. type presentation setting

Figure 4: Complete system architecture.

Apache Tapestry framework1, with a MySQL database for
user interaction logging and Mondrain OLAP server2 for
analysis. Our setup places the server in Alice’s smart home
setting, serving a single household. Alice has many op-
tions for accessing the system - from computers at home
and at work through a normal Web browser, on GPRS- and
WLAN-enabled mobile phones and PDAs, and on the wall-
mounted touch screen display we mentioned earlier. The
touch screen is powered by a computer that simply displays
a Web browser in full-screen mode.

For OLAP analysis, we use the star schema illustrated in
Figure 3, with device types falling under {phone, PDA, lap-
top, desktop, wall display} and location types {home, work,
shopping, friend, transport, other}. The time dimension is
grouped by hour, 3-hr groups {12mn-3am, 3am-6am, . . .}
and 6-hr groups {morning, afternoon, evening, night}. The
context hierarchy for users is not used. Since the setup is
only intended to serve as proof of concept, we have not fully
optimized the OLAP server for speed or storage efficiency.

A demonstration of the system in operation is given in Fig-
ure 5. Figure 5(a) shows a screenshot taken from the wall-
mounted display as Alice relaxes at home on a Saturday
evening. Television listings from her favorite cable channels
are displayed to help her choose what to watch later tonight.
The weather outlook helps her to plan activities for the next
few days. Since Alice is moderately superstitious, her horo-
scope is also displayed.

Figure 5(b) shows Alice accessing the system from a mobile
phone while commuting to work. Compared to the previous
example, the information shown here is of a more serious
strain. She is reminded of important meetings on her sched-

1http://tapestry.apache.org/
2http://mondrian.pentaho.org/

ule for the day, and a selection of news headlines keeps her
up to date on current events.

The system could potentially be operated on a larger scale,
running from a shared public server serving many people,
but such a large deployment may encounter scalability prob-
lems. Furthermore, such a setup may raise questions about
user privacy. These issues are discussed in the next section.

4. DISCUSSION
Having described our system, we will now compare it to
other existing methods, discuss potential implementation is-
sues and other considerations.

4.1 Comparison with Context Reasoning
Since the most significant difference between our proposed
approach and that of other existing context-aware content
provision applications is in the use of co-occurrence analysis
instead of context reasoning; a discussion of their relative
merits is warranted.

When context reasoning is used for content provision, it re-
quires a context model to be built, based on a fixed set of
context parameters and supporting a limited range of con-
texts - predefined or learned. This approach does not gen-
eralize well since different applications require support for
different contexts and parameters, leading to different con-
text models. Furthermore, human effort and intervention is
required to predefine the contexts and in annotation where
supervised learning is used. In contrast, co-occurrence anal-
ysis is able to support a wide range of contexts, constrained
only by the context parameters used. Contexts are treated
as latents in the system and do not need to be predefined.
Nonsensical combinations of context parameters are not a
concern either; since we log actual user interactions, only
meaningful values will be recorded.

(a) Screenshot from wall-mounted display. (b) Accessing the system from a mobile phone.

Figure 5: Demonstration of prototype system.

A shortcoming of co-occurrence analysis is its reliance on his-
torical log data. This results in situations where new users
to the system will have to go through a period in which their
preferences cannot be correctly determined because there is
not yet enough data in the logs. Fortunately, this prob-
lem can be alleviated using having default preferences based
on unpersonalized co-occurrence analysis. By defaulting to
generic preferences, the system will be able to learn per-
sonalized preferences for new users within a shorter time
compared to if it had started off with no preferences at all.

4.2 Comparison with Rule Mining
Our approach is related to the application of association
rule mining (ARM) by Kammanahalli et. al. on past usage
to determine users’ contextual preferences with respect to
presentation format and medium in a Web-based collabora-
tion tool [15]. Both methods rely on the association between
context parameters and preferred settings.

However, application of ARM is plagued by the difficulty of
selecting an appropriate minimum support, or minsupp. Too
high a minsupp will result in many patterns being missed
and lead to poor personalization, whereas too low a setting
will result in an oversized ruleset. Also, since it is an offline
technique, rules must be recomputed periodically in order
to accomodate preference changes. On the other hand, our
OLAP hypercube efficiently summarizes all the associations
that can be derived from the log data, and dynamically ad-
justs to reflect shifting preferences.

Furthermore, OLAP is inherently designed to handle mul-
tiple levels of abstraction, allowing us to use concept hier-
archies to finding preferences at different levels. Multi-level
ARM could also accomplish this, but it is more complex
than simple ARM and has substantially higher storage and
computational costs.

4.3 Content Personalization
Clearly, content personalization using methods such as those
discussed in Section 2.1 can be applied independently for
each widget to further improve the user experience. How-
ever, we do not devote too much attention to this since our
focus is on contextual rather than content preferences.

4.4 Scalability
The use of OLAP for analysis leads to potential scalabil-
ity problems - if we perform full materialization of the data
cube, storage space required may explode given too many
dimensions and multiple level concept hierarchies. As such,
partial materialization is preferred. Other potential opti-
mizations include computing only iceberg cubes [7].

4.5 Complexity
The knapsack problem is known to be NP-hard [16]; this
may impact content selection and layout using the knapsack
packing approach. However, exact solutions can be found
within linear to polynomial time for most knapsack prob-
lems encountered in practice [23], and approximations can
be obtained even faster. Since accuracy is not highly critical
in our application, we may settle for a reasonable approxi-
mation so as to service user requests in a timely fashion.

4.6 Privacy
The tension between privacy and personalization is a diffi-
cult problem in user design. Since our system relies on log-
ging user interactions, it may lead to privacy concerns. We
believe these concerns are manageable through responsible
implementation and deployment. For instance, our proto-
type is set up as a private system serving one household,
rather than a public server shared by many users. As long
as the server does not share any user information or pref-
erences with external parties, it offers an acceptable level
of privacy to the users. Also, since the server is physically
located in the home, appropriate network security measures
can be taken to help safeguard sensitive information.

5. FUTURE WORK
We would like to explore two main directions for future work
on this system.

First, there is a need to evaluate the system for its speed, ac-
curacy and adaptability. Based on this evaluation, we could
then optimize the system to return more relevant results
with shorter latency, and to learn and adapt to new and
evolving preferences within a shorter time. Various weight-
ing options and OLAP optimizations can be explored to im-
prove accuracy, efficiency and scalability.

We are also interested in potential feature improvements,
such as the ability to support multiple concurrent users at a
single wall-mounted display. The potential of the system as
a peripheral display can also be further explored. Perhaps
widgets could have a special “peripheral mode” in which in-
formation is presented in a simple and intuitive graphical
format rather than in text form.

6. CONCLUSION
The contributions of this work are as follows. We have pro-
posed a method for integrating arbitrary information types
that is capable of choosing between various types of infor-
mation depending on their relevance to the current context.
By characterizing the “amount of information” by means of
two parameters, quantity and granularity, we are also able
to determine the preferred format for presenting the infor-
mation in the given context. All this is achieved by using
OLAP techniques to perform co-occurrence analysis to de-
termine contextual preferences from usage logs, as opposed
to the current paradigm of context reasoning using models.
The techniques we have developed enable us to build perva-
sive information systems that can effectively deliver a large
variety of information to assist users in their daily lives.

7. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE TKDE,
17(6):734–749, 2005.

[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining
association rules between sets of items in large
databases. In Proc. SIGMOD, 1993.

[3] R. Agrawal and R. Srikant. Mining sequential
patterns. In Proc. ICDE, 1995.

[4] C. R. Anderson and E. Horvitz. Web montage: A
dynamic personalized start page. In Proc. WWW,
2002.

[5] M. Beigl. MemoClip: A location based remembrance
applicance. In Proc. HUC, 2000.

[6] F. Bellotti, R. Berta, A. D. Gloria, and M. Margarone.
User testing a hypermedia tour guide. IEEE Pervasive
Computing, 1(2):33–41, 2002.

[7] K. S. Beyer and R. Ramakrishnan. Bottom-up
computation of sparse and iceberg CUBEs. In Proc.
SIGMOD, 1999.

[8] K. Cheverst, N. Davies, K. Mitchell, and A. Friday.
Experiences of developing and deploying a
context-aware tourist guide: the GUIDE project. In
Proc. MobiCom, 2000.

[9] S.-C. Chou, W.-T. Hsieh, F. L. Gandon, and N. M.
Sadeh. Semantic web technologies for context-aware
museum tour guide applications. In Proc. WAMIS,
2005.

[10] T. Cover and P. Hart. Nearest neighbor pattern
classification. IEEE ToIT, 13(1):21–27, 1967.

[11] A. K. Dey and G. D. Abowd. CybreMinder: A
context-aware system for supporting reminders. In
Proc. HUC, 2000.

[12] M. Eirinaki and M. Vazirgiannis. Web mining for Web
personalization. ACM TOIT, 3(1):1–27, 2003.

[13] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann Publishers, 2000.

[14] J. Hipp, U. Güntzer, and G. Nakhaeizadeh.
Algorithms for association rule mining — a general
survey and comparison. SIGKDD Explorations,
2(1):58–64, 2000.

[15] H. Kammanahalli, S. Gopalan, S. Varadarajan, and
K. Ramamritham. Context-aware retrieval in
web-based collaborations. In Proc. PERCOMW, 2004.

[16] R. M. Karp. Reducibility Among Combinatorial
Problems, pages 85–103. Plenum, New York, NY,
USA, 1972.

[17] R. Kramer, M. Modsching, J. Schulze, and K. ten
Hagen. Context-aware adaptation in a mobile tour
guide. In Proc. CONTEXT, 2005.

[18] N. Marmasse and C. Schmandt. Location-aware
information delivery with comMotion. In Proc. HUC,
2000.

[19] A. Maruyama, N. Shibata, Y. Murata, K. Yasumoto,
and M. Ito. P-Tour: A personal navigation system for
tourism. In Proc. 11th ITS World Congress, 2004.

[20] T. Nakatsuru, K. Murakami, and H. Sakai.
Context-aware information provision to the mobile
phone standby screen. In Proc. MDM, 2006.

[21] V. Naresh, P. Pingali, V. Varma, M. Krishna, and
P. Venkata. Location based web search on
GSM/GPRS mobile phones. In Developers Track Proc.
WWW, 2006.

[22] M.-H. Park, J.-H. Hong, and S.-B. Cho.
Location-based recommendation system using
bayesian user’s preference model in mobile devices. In
Proc. UIC, 2007.

[23] D. Pisinger. Algorithms for Knapsack Problems. PhD
thesis, Dept. of Computer Science, University of
Copenhagen, 1995.

[24] G. Salton. Automatic Text Processing. Addison-Wesley
Longman, Boston, MA, 1988.

[25] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Modeling
and storing context-aware preferences. In Proc.
ADBIS, 2006.

[26] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Adding
context to preferences. In Proc. ICDE, 2007.

[27] Y. Takeuchi and M. Sugimoto. CityVoyager: An
outdoor recommendation system based on user
location history. In Proc. UIC, 2006.

[28] M. J. Weal, D. T. Michaelides, D. E. Millard, D. C. D.
Roure, and G. Fitzpatrick. Observations on pervasive
information systems design. In Proc. Workshop on
Principles of Pervasive Information Systems Design,
2007.

[29] M. Weiser and J. S. Brown. The coming age of calm
technolgy, pages 75–85. Copernicus, New York, NY,
USA, 1997.

[30] Z. Yu, X. Zhou, Z. Yu, D. Zhang, and C.-Y. Chin. An
OSGI-based infrastructure for context-aware
multimedia services. IEEE Communications
Magazine, 44(10):136– 142, 2006.

[31] M. Zhu, D. Zhang, J. Zhang, and B. Y. Lim.
Context-aware informative display. In Proc. ICME,
2007.

[32] Loki. Free location-based search and navigation
toolbar. http://loki.com/.

