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Abstract—Recent years have witnessed advances of Internet
of Things technologies and their applications to enable contact-
less sensing and elderly care in smart homes. Continuous and
real-time respiration monitoring is one of the important appli-
cations to promote assistive living for elders during sleep and
attracted wide attention in both academia and industry. Most
of the existing respiration monitoring systems require expensive
and specialized devices to sense chest displacement. However,
chest displacement is not a direct indicator of breathing and
thus false detection may often occur. In this paper, we design
and implement a real-time and contactless respiration monitor-
ing system by directly sensing the exhaled airflow from breathing
using ultrasound signals with off-the-shelf speaker and micro-
phone. Exhaled airflow from breathing can be regarded as air
turbulence, which scatters the sound wave and results in Doppler
effect. Our system works as an acoustic radar which transmits
sound wave and detects the Doppler effect caused by breathing
airflow. We mathematically model the relationship between the
Doppler frequency change and the direction of breathing air-
flow. Based on this model, we design a minimum description
length-based algorithm to effectively capture the Doppler effect
caused by exhaled airflow. We conduct extensive experiments with
25 participants (7 elders, 2 young kids, and 16 adults, including
11 females and 14 males) in four different rooms. The partici-
pants take four different sleep postures (lying on one’s back, on
right/left side, and on one’s stomach) in different positions of the
bed. Experiment results show that our system achieves a median
error lower than 0.3 breaths/min (2%) for respiration monitoring
and can accurately identify Apnea. The results also demonstrate
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that the system is robust to different respiration styles (shal-
low, normal, and deep), respiration rate variation, ambient noise,
sensing distance variation (within 0.7 m), and transmitted signal
frequency variation.

Index Terms—Acoustic sensing, contactless sensing, Doppler
effect, respiration detection.

I. INTRODUCTION

NON-INTRUSIVE vital signs monitoring is an impor-
tant topic for smart home and smart healthcare [1]–[4].

Respiration rate is a vital sign that informs health condi-
tions, indicates progression toward recovery, and tracks decline
of illness. Abnormal respiratory events, such as obstructive
or central sleep apnea-hypopnea are quite common in the
elders [25]–[27]. These respiration disorders reduce sleep
quality and even threaten one’s life. In particular, chronic
obstructive pulmonary disease is the third most common cause
of death for people aged 65 and above [8]. Thus, it is crucial to
monitor one’s respiration continuously and accurately in real-
time at home for elders, especially those living alone, with
respiratory diseases.

The traditional way to monitor vital signs requires a per-
son to visit hospitals or wear dedicated respiration monitoring
devices, such as thoracic impedance pneumography [9] or
capnography [10]. However, these methods are quite costly
and also intrusive, preventing these systems from large scale
deployment at home settings. In order to develop cost-
effective and nonintrusive respiration monitoring systems
during sleep, researchers turn their attention to contact-
less sensing [4]–[7]. The approaches based on laser [12],
microwave [14], commodity Wi-Fi [15], [16], [32]–[38] or
acoustic devices [13], [31], [44] to monitor respiration rate
in a contact-free manner. These approaches typically mea-
sure respiration by detecting the displacement of human chest.
However, the chest movement is hard to measure with cur-
rent approaches when a user is covered by a thick blanket
or quilt during sleep. In addition, for a user suffering from
obstructive sleep Apnea (OSA), the respiration may stop (i.e.,
no exhaled airflow), but the chest can still move as if the
user is breathing normally [28]. As such, current approaches
based on chest movement detection cannot accurately moni-
tor respirations or reliably detect abnormalities. Considering
the cost and functional requirements of respiration monitor-
ing in home settings, an ideal respiration monitoring system
should: 1) directly sense breathing airflow, rather than chest
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movement; 2) leverage the existing cheap commodity devices;
and 3) be nonintrusive and ideally contact-free.

In this paper, we design and implement a contact-less human
respiration monitoring system using commodity speaker and
microphone. The system directly senses exhaled airflow with
a pair of acoustic transceiver which consists of one speaker
and one microphone. The speaker transmits inaudible sound
waves (i.e., disturb-free design) to be received by the micro-
phone. Our motivation is based on the observation that exhaled
airflow from breathing causes signal changes in the received
sound waves. Our aim is to detect such changes for respira-
tion monitoring. Note that our system does not require users
to wear any devices.

Building an acoustic-based respiration system entails many
practical challenges. First, although exhaled airflow would
cause changes in sound waves, it still remains elusive to reli-
ably monitor respirations by analyzing the received sound
waves. Besides, without a comprehensive theoretical model to
capture the inherent influences of respirations to the received
sound waves, it is hard to configure the monitoring system
to accurately monitor and reliably detect the sound waves.
Second, a user may change sleep postures and the direction
of exhaled airflow may vary during sleep. It is difficult to
quantify the influence of changing airflow directions. Third,
many real-life factors (e.g., body movement and wind) in the
environment may cause changes in the airflow from breathing,
affecting detection accuracy.

This paper aims to overcome these challenges. We first
conduct several experiments to: 1) study the feasibility of
sensing exhaled airflow leveraging the off-the-shelf acous-
tic devices and 2) investigate the characteristics of sound
wave changes during human breathing. Based on our empir-
ical study, we then build a theoretical model to describe the
relationship between the variation pattern of Doppler shifts
and the direction of breathing airflow. Based on our theoret-
ical model, we optimize the system parameters to effectively
catch the Doppler shift to substantially enhance detection
performance. We then profile the Doppler shift using power
spectrum density (PSD) in a specific band derived from the
model mentioned above. Afterwards, to meet the real-time
requirement, PSD is compressed exploiting minimum descrip-
tion length (MDL) principle [24]. To reduce the dimension of
PSD while keeping sensitivity for exhaled airflow, the com-
pressing method segments PSD into several bands and ensures
that the PSD segment in the same band has similar sensitiv-
ity for exhaled airflow. Finally, we leverage the periodicity
of respiration to differentiate body movement or other noise
factors to further improve the robustness and accuracy of our
system in real practical scenarios. A demo video is provided
at https://tinyurl.com/ybncm2jz, which verifies the feasibility
of sensing exhaled airflow using commodity acoustic devices
(00:00–03:47), illustrates the theoretical model described in
Section III-A (03:48–04:57), and records one measurement
study (04:58–08:22). The contributions of this paper can be
summarized as follows.

1) We design and implement a respiration monitoring
system which directly senses breathing airflow by lever-
aging commodity microphone and speaker.

2) We model the relationship between the exhaled airflow
direction and the Doppler frequency change pattern.
Based on the model, we design an MDL-based com-
pressing algorithm to effectively capture the Doppler
effect caused by exhaled airflow.

3) We design an auto-correlation-based method to charac-
terize the periodicity of the Doppler effect and differ-
entiate respirations from nonperiodic Apnea and body
movement.

4) We conduct extensive experiments to evaluate our
system in four different rooms with 25 participants. The
participants take four different sleep postures (lying on
one’s back, on right/left side, and on one’s stomach)
in different positions of the bed. The experiment results
show that our system achieves a median error lower than
0.3 breaths/min (2%) for respiration monitoring and can
accurately identify Apnea. We also conduct extensive
experiments to evaluate system robustness in various
scenarios and the results show that the system is robust
to different respiration styles (shallow, normal, and
deep), respiration rate variation, ambient noise, sensing
distance variation (within 0.7 m), and transmitted signal
frequency variation (within the band [20 kHz, 21 kHz]).

II. RELATED WORK

A. Contact-Based Methods

The traditional vital sign monitoring systems require
hospital visits and contact-based monitoring devices. For
instance, thoracic impedance pneumography [9] needs to
attach electrodes on a subject’s chest and measures the
change of electrical impedance during the subject’s respira-
tion. Capnography [10] utilizes the partial pressure of carbon
dioxide to monitor a subject’s respiration. Both devices need to
be operated by medical specialists in hospitals and clinics and
incur high deployment costs, which are not affordable for large
scale deployment in ordinary homes. Moreover, they require
subjects’ direct contact with the devices and cause inconve-
nience for everyday use. Other works [19] adopt wearable
sensing systems and build bed sensing systems with pressure
sensors [20]. However, they still need specialized devices and
are not suitable for large-scale deployment [21].

B. Contactless Method

Compared to the contact-based approaches, the contactless
methods do not require direct contact with monitoring devices.
In the literature, most of the contactless solutions leverage
various signals to detect chest movement during respiration,
such as laser [12], ultrasonic sensors [13], and radio frequency
technologies, like microwave [14], WiFi [15], [16], [32]–[38],
and RFID [46]. All these works detect respiration by mea-
suring the chest movement displacement during respiration.
However, the chest movement is hard to measure with current
approaches when a user is covered by thick blanket or quilt
during sleeping. Moreover, these methods assume that chest
movement is a reliable indicator of respiration. However, such
an assumption may not always hold in practice. For instance,
the users suffering OSA could stop breathing (i.e., no exhaled

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:10:49 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: CONTACTLESS RESPIRATION MONITORING USING ULTRASOUND SIGNAL WITH OFF-THE-SHELF AUDIO DEVICES 2961

airflow) but their chests may still move as if the users were
breathing normally [28]. It can be life-threatening if a monitor-
ing system considers such chest movements without exhaled
airflows as normal.

Additionally, visual analysis-based methods have also been
investigated. For instance, camera-based method [11] utilizes
a time-of-flight camera to record subjects’ daily activities and
adopts computer vision algorithms to analyze subjects’ respira-
tion. The main problem is that the camera-based methods may
raise users’ privacy concerns. Besides, camera-based methods
highly rely on good lighting conditions.

Acoustic-based approaches [53] have recently attracted
wide attention. The method proposed in [30] detects respi-
ration by recording breathing sound with earphone. However,
users may not be willing to wear earphone when they sleep.
The methods proposed in [31] and [44] detect respiration by
measuring chest displacement during breathing with acoustic
signals. As mentioned above, these methods cannot reliably
monitor respiration if a user is covered by blanket or in case
of OSA. The work [18] requires a specialized device to gen-
erate and receive high frequency (40 kHz) ultrasound signals.
Commodity speakers however typically transmit in the spec-
trum between 20 Hz to 20 kHz [48]. Moreover, many existing
respiration detection approaches are designed for a controlled
sleep posture, and thus do not work well when users change
their postures during sleep.

III. ACOUSTIC DOPPLER SHIFT CAUSED

BY EXHALED AIRFLOW

Theoretically, the basic principle supporting acoustic res-
piration detection is that the intermittent exhaled airflow of
respiration can be seen as turbulence and cause the Doppler
frequency shift. In this section we intend to answer the follow-
ing questions: 1) why exhaled airflow incurs acoustic Doppler
shift and 2) what is the relationship between the speed and
direction of exhaled airflow and the Doppler shift. In order
to answer the above questions, we first derive a mathemat-
ical model to quantify the Doppler frequency shift caused
by exhaled airflow. To verify the derived model, we conduct
real experiments using commodity microphone and speaker.
Finally, we study various factors that may interfere the acoustic
Doppler frequency shift, e.g., body movements, wind, etc.

A. Acoustic Doppler Shift Caused by Exhaled Airflow

The exhaled airflow can be regarded as turbulence, which
is able to scatter ultrasound signals. As turbulence contains
many unsteady vortices moving irregularly [29], the velocity
of turbulence at time t, i.e., u(t) is generally composed of
two parts: 1) average velocity ū and 2) fluctuating velocity
u′(t), i.e., u(t) = ū + u′(t). During breathing, the average
velocity of exhaled airflow mainly contributes to ū, whose
direction and norm are relatively steady, while the irregularly
moving vortices mainly contribute to u′(t), whose direction
and norm change over time. Projecting u(t) to the line between
the scatterer and the device, suppose the angle of u(t), ū and
u′(t) are γ (t), α, and β(t), respectively, the projection result
of u(t) can be denoted as

|u(t)| cos(γ (t)) = |ū| cos(α) + ∣
∣u′(t)

∣
∣ cos(β(t)). (1)

The traditional Doppler shift [47] is given by

�f =
(±2v

c

)

· f . (2)

Replacing v with the projection of u(t), i.e., v =
|ux(t)| cos(γ (t)), we can finally derive the Doppler shift
caused by exhaled airflow as

�f =
(±2|ux(t)| cos(γ (t))

c

)

· f

= ±2f
|ux| · cos(α) + ∣

∣u′
x(t)

∣
∣ · cos(β(t))

c
. (3)

�f is positive if the scatterer moves toward the device.
Otherwise, �f is negative.

According to our empirical results, the value of max(|u′(t)|)
can be roughly estimated as 0.9 m/s by setting α in (3) as π/2.
Then, the value of |ū| can be roughly estimated as 1.3 m/s by
setting α in (3) as 0. Referring to the above model, we have the
following observations. When angle α is close to 0, we have
|ū| ·cos(α)+|u′(t)| ·cos(β(t)) ≈ |ū|+|u′(t)| ·cos(β(t)) > 0, so
�fturb > 0. So we can only observe the frequency shift above
the transmit frequency f . When angle α changes from 0 to
π/2 gradually, we will observe that the frequency shift above
f decreases and the frequency shift below f starts occurring.
When angle α stabilizes at around π/2, we have |ū| ·cos(α)+
|u′(t)| · cos(β(t)) ≈ |u′(t)| · cos(β(t)), due to the randomness
of u′(t) in time domain and space, we will observe symmetric
frequency shifts below and above f simultaneously.

The Doppler frequency shift variation when α changes from
π/2 to π and the Doppler frequency shift variation when α

changes from 0 to π/2 are symmetric with respect to transmit
frequency f .

B. Empirical Verification of Acoustic Doppler Shift Caused
by Exhaled Airflow

In this section we conduct two experiments to verify:
1) the feasibility of sensing exhaled airflow using commod-
ity acoustic devices and 2) the theoretical model described in
Section III-A.

1) Experimental Settings: We bind a speaker (JBL Jembe,
6 Watt, 80 dB) and a microphone (SAMSON Meteor Mic,
16 bit, 48 kHz) as a simple acoustic radar, as shown in
Fig. 1(a). The device is placed in front of a subject facing
toward the effective sensing area where the exhaled airflow
passes [as shown in Fig. 1(b)] at a distance of 50 cm. The
speaker transmits inaudible ultrasound waves at f = 20 kHz
continuously. The speaker sends ultrasound signals which are
scattered in the effective sensing area due to the exhaled
airflow of the subject. Meanwhile, the microphone records
ultrasound signals (with the sampling rate of 48 kHz with
16 bits).

2) Experimental Protocol: The subject is asked to breathe
naturally first, and then wears a face mask and keeps breath-
ing. This process is repeated twice. The PSD of the reflected
ultrasound signal is shown synchronously.

3) Experiment Results: The experiment process was
recorded in the demo video provided at the end of
Section I (the part 00:00–03:47). From this experiment we
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(a) (b) (c) (d)

(g)(f)(e)

Fig. 1. Variation of Doppler frequency shift caused by exhaled airflow as radius angle varies. (a) Device we use. (b) Effective sensing area on the body of
subject. (c) Panorama of experimental environment. (d) Radius angle α = 0. (e) α = π/6. (f) α = π/3. (g) α = π/2.

observe: when the subject breathes naturally without face
mask, the echo PSD shows clear periodical amplitude varia-
tion, i.e., micro-Doppler shift around 20 kHz with respiration.
Note that the ultrasound signal backward scattered by exhaled
airflow is only a very small part of the echo and its power is
low. The main part of the echo is the ultrasound signal reflected
from the static room environment. This could explain the rea-
son that even though the signal backward scattered by exhaled
airflow embedded Doppler effect. The main frequency of the
echo keeps the same as transmitted signal at a frequency of
20 kHz. While breathing with face mask, the exhaled airflow is
blocked and the micro-Doppler effect disappears. The exper-
imental results demonstrate that exhaled airflow can indeed
cause Doppler shifts.

Next, we verify our theoretical model and conduct the
following experiments.

4) Experimental Settings: To facilitate the adjustment of
the acoustic beam direction, the acoustic transceiver [as shown
in Fig. 1(a)] is fixed on a tripod facing toward the effective
sensing area where the exhaled airflow passes [as shown in
Fig. 1(c)].

5) Experimental Protocol: To verify our theoretical model,
we first collect ultrasound echo signals in the following four
scenarios: breathing at different angles α = 0, π/6, π/3,
and π/2, respectively, where α denotes the angle between the
exhaled airflow direction and the acoustic beam direction. We
then compute the PSD of the received ultrasound echo in each
scenario to observe the micro-Doppler shift.

6) Experiment Results: As shown in Fig. 1(d)–(g), the
results of the Doppler shift with different angle α match the
results derived from our model. For α = 0 [Fig. 1(d)], we only
observe a relatively strong frequency shift above transmitting
frequency 20 kHz. For α = π/6 [Fig. 1(d)], the frequency
shift above 20 kHz reduces. When α = π/3 [Fig. 1(e)], the
frequency shift below 20 kHz starts to appear. While α = π/2
[Fig. 1(f)], we observe almost symmetrical frequency shifts on

both sides of 20 kHz. The experiment process was recorded
in the demo video provided at the end of Section I (the part
03:48–04:57)

Our experiments demonstrate that the Doppler frequency
shift varies with the angle between the exhaled airflow direc-
tion and the acoustic beam direction. With the angle changes,
the frequency shift may appear on one side or two sides of
the transmitting frequency.

C. Other Factors Interfering Acoustic Doppler Shift

Other factors may interfere with the acoustic Doppler
frequency shift caused by exhaled airflow. We now discuss
two factors: 1) body movement and 2) wind.

1) Body Movement: The Doppler frequency shift caused
by human body movement is much stronger than the Doppler
frequency shift caused by exhaled airflow. When body
movement exists, the Doppler frequency shift caused by
exhaled airflow will be hard to detect.

2) Wind: The exhaled airflow is the direct detecting target
in our system. When there exists wind in the effective sens-
ing area [as shown in Fig. 1(b)], the exhaled airflow will be
disturbed and influence the respiration monitoring accuracy.

In reality, when a person sleeps, most of these interference
factors can be eliminated or well controlled.

1) A person will generally keep stable and her respira-
tion rate can be roughly estimated while she is moving
or turning for a short while during sleep. To mitigate
the problem caused by body movement, we can sus-
pend respiration detection when body movement occurs
and activate it for detecting respiration after the body
movement disappears.

2) People who need respiration monitoring could be
asked to avoid fans or direct airflow blowing
directly toward their bodies, especially for the elders
and kids.
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Fig. 2. Overview of the proposed framework.

IV. RESPIRATION DETECTION EXPLOITING

PERIODICAL ACOUSTIC DOPPLER SHIFT

As mentioned in Section III-C, to design a respiration
detection system that is robust to breathing direction varia-
tion, we need to: 1) effectively capture the Doppler frequency
shift regardless of the breathing direction and 2) identify the
Doppler frequency shifts due to respiration from the received
ultrasound signals. We employ PSD to capture the Doppler
shift in a specific frequency band derived from the model
in (3). We notice that human respiration is generally periodical,
while Apnea and the interferences, such as body movement
have no periodicity. Based on this observation, we differen-
tiate respiration from other arhythmical factors by leveraging
the rhythmicity of human respiration.

Based on the above idea, we propose a framework (as shown
in Fig. 2) which consists of three key steps. In the first step, we
profile the Doppler frequency shift using PSD. Next, in order
to meet real-time requirement, we compress PSD into a short
vector base on the MDL principle. Finally, we measure the
periodicity of the elements in the short vector to detect whether
the subject is breathing without body movement or Apnea. If
the subject is detected as breathing without body movement or
Apnea, we locate each breath as the peak of Doppler frequency
shift. Otherwise, we use variance of Doppler shift to differen-
tiate Apnea and body movement. We now describe the three
key steps in details.

A. Profiling Doppler Shift Using PSD

PSD is an effective tool to profile the Doppler shift of the
echo. We first construct a sliding window to buffer the echo.
The sliding window abandons the obsolete echo sample and
accepts the latest one continuously. Then we use a high-pass
filter to filter out the ambient noise. Afterwards, we compute
PSD to profile Doppler effect.

According to our empirical study, the value of average
velocity ux is about 1.3 m/s, the value of maximum of fluc-
tuating velocity of exhaled airflow, i.e., max(|u′

x(t)|) is about
0.9 m/s. Based on the model described in (3), the theoreti-
cal upper bound of Doppler shift caused by exhaled airflow
(α = 0 and β(t) = 0) is 257 Hz. Due to the randomness of
fluctuating velocity u′

x(t) of exhaled airflow in time domain
and space, the upper bound of Doppler shift during 1 s is

about 200 Hz in practice. Therefore, we only retain the PSD
in the frequency band [f −200 Hz, f +200 Hz]. As our emitted
frequency is configured as an inaudible frequency of 20 kHz,
this range is [19800 Hz, 20200 Hz].

B. Compressing PSD

For convenience in the following description, we
define the part of echo PSD within the frequency band
[19 800 Hz, 20 200 Hz] as effective PSD vector.

From the overview of the proposed system (as shown in
Fig. 2), we can see that measuring the periodicity of Doppler
shift is the key procedure in step 3. Our intuition to measure
the periodicity of Doppler shift is to measure the periodicity
of each frequency bin (i.e., one element in the PSD vector).
However, the high dimension of PSD vector1 leads to high
computational overhead. We also observe that PSD values in
some adjacent bins exhibit similar trends, meaning that the
values in adjacent bins can be positively correlated. Based
on these observations, we propose to group the PSD values
in adjacent bins into a frequency band so as to enhance sig-
nal strength and reduce computational overhead. Ideally, the
frequency bins grouped into a frequency bands should exhibit
similar trends (named preciseness requirement), and mean-
while we want to minimize the total number of frequency
bands (named conciseness requirement).

The sensitivity and informativeness of each frequency bin
can be evaluated with its variance. For example, in our imple-
mentation, the iteration period of respiration detection system
is 0.1 s, i.e., respiration detection system produces a 300-
dimension1 effective PSD vector per 0.1 s. If we collect the
effective PSD vectors when monitoring respiration for 50 s,
the system accumulates 50/0.1 = 500 effective PSD vec-
tors, i.e., a 500 × 300 matrix. The sensitivity of ith frequency
bin can be measured as the variance of the ith column of
500 × 300 matrix. Larger variance indicates higher sensitiv-
ity and thus more informative in respiration monitoring. For
example, Fig. 3(a) shows a set of effective PSD vectors dur-
ing 5 min while breathing and Fig. 3(b) shows the variance
(highlighted as the red line). Thus, the problem is transformed
to segmenting the variance curve of effective PSD vectors
with respect to the above two objectives, i.e., conciseness and
preciseness.

As a matter of fact, the two requirements are contradic-
tory to each other. For example, if each bin is placed into an
independent band, preciseness is maximized but conciseness is
minimized. In contrast, if all the bins are grouped into the same
band, conciseness is maximized but preciseness is minimized.
Therefore, we need to find an optimal tradeoff between con-
ciseness and preciseness. To address this problem, we adopt
the MDL [24] which allows us to strike a balance between the
two requirements.

1The dimension of effective PSD vector d = NFFT×�f /Fs ·Fs = 48 kHz
is sampling rate; �f = 400 Hz is the width of frequency band [f − 200 Hz,
f + 200 Hz]. NFFT is number of FFT points when computing PSD. In our
implementation, we set NFFT as the length of data, i.e., NFFT = �t × Fs.
�t = 0.75 s is the buffer length in our system implementation. So d =
NFFT × �f /Fs = �t × Fs × �f /Fs = �t × �f = 0.75 × 400 = 300.
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(a) (b)

Fig. 3. Sensitivity of PSD for exhaling. (a) PSDs during breathing.
(b) Variance (red line) as the sensitivity of PSD for exhaling and the blue
dotted lines show an optimum partition employing the method based on MDL
principle.

In particular, the MDL cost is defined as L(H) + L(D|H),
where H is the partition strategy, D denote the data; L(H)

is the cost of the partition strategy; L(D|H) is the cost of
the data description using partition strategy H [24]. The best
partition strategy H is to minimize the MDL cost L(H)+L(D|H).

Given:
1) The variance of all the frequency bins in effective

PSD vector during the specific time slot, Vars =
{vf1 , vf2 , . . . , vfm}, where vfi is variance of the point at
frequency fi.

2) Partition Strategy H: Suppose Vars will be seg-
mented into n bands, and the cut-points are CPs =
{fc_1, fc_2, . . . , fcn+1}, where fc_j ∈ {f1, f2, . . . , fm}, j =
1, 2, . . . , n. CPs are in the ascending order, i.e., fc_1 =
f1 < fc_2 < . . . < fcn+1 = fm. The elements of Vars in
each band [fc_j, fcj+1 ] are compressed as

H
([

fcj , fcj+1
])

= max
(

Vars
([

fcj, fcj+1
])) + min

(

Vars
([

fcj , fcj+1
]))

2
(4)

then, the cost of partition strategy H, L(H) is defined as

L(H) =
n−1
∑

i=1

log 2
(

abs
(

fci − fci+1

))

. (5)

The cost of the data description using partition strategy H,
L(D|H) is defined as

L(D|H) =
n−1
∑

i=1

ci+1∑

j=ci

log 2
(

abs
(

vfj − H
([

fcj , fcj+1
])))

. (6)

We can see that L(H) measures the conciseness and L(D|H)

measures the preciseness. As mentioned previously, we need
to find a segmenting strategy that can minimize the MDL cost
[i.e., L(H)+L(D|H)]. In practice, the computation cost to find
the optimal segmenting strategy is prohibitively high since we
need to consider every subset of the points in the variance
curve. Therefore, we adopt the approximate method [23] to get
an approximate solution which provides a near-optimal group-
ing strategy (approximately 80% optimal) in much shorter
time. In Fig. 3(b), the blue dotted lines show the near-optimal
grouping result obtained using the approximate method.

We evaluate the performance of the grouping method with
the four most common sleep postures (sleeping on one’s back,

TABLE I
RESPIRATION DETECTION ERROR USING

DIFFERENT SEGMENT STRATEGY

on left side, on right side and on one’s stomach). We collect
four datasets, each of which contains data collected under each
of the four sleep postures. We also combine the four datasets to
form a mixed dataset. Then, we conduct the following experi-
ments to validate the effectiveness of our segmenting method.
The experiment settings in this section is the same as those in
Section III.

1) Experimental Protocol: First, we compute four seg-
menting strategies by applying our method to the breathing
dataset of all four sleep postures (lying on one’s back, on
right/left side and on one’s stomach) as well as the mix ed
dataset, respectively, (as shown in Table I we denote these five
segmenting strategies as Segback, Segleft, Segright, Segstomach,
and Segmixed). Second, we create three uniform segmenting
strategies with the segment number 8, 10, 12 (as shown in
Table I we denote them as Seguniform-8, Seguniform-10, and
Seguniform-12). Finally, we replace the above eight segment-
ing strategies into our framework one by one, and test the
framework performance with the four different sleep postures.

2) Experimental Results: Table I shows the respiration
detection error using different segmenting strategies on dif-
ferent sleep posture datasets, i.e., Segmixed. We observe that
the segmenting strategy computed by applying our segment-
ing method to the mixed breathing dataset achieves smallest
error rate, while other seven segmenting strategies miss part of
breaths in some datasets. The error rate 0.3 (2%) of Segmixed
when sleeping on one’s stomach is caused by the fact that
when sleeping on one’s stomach, the Doppler shift is rela-
tively weak than the Doppler shift when sleeping on left of
right side. Weak Doppler shift will affect the accuracy of res-
piration monitoring. Nevertheless, our method is able to detect
the Doppler shift in both sides of transmitted frequency and
finally achieves error rate 2%, which is accurate enough for
many respiration monitoring applications.

With the best segmenting strategy computed from the mixed
dataset with our method, we compress effective PSD vector as
a vector composed of the median values of all the segments.

C. Online Respiration Detection

It is a common sense that human respiration is usually
rhythmical, i.e., relaxed periodicity, while body movement or
other noise factors discussed in Section III-C are not rhyth-
mical. Thus, the Doppler frequency shift embedded in echo
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(a) (b) (c) (d)

Fig. 4. Autocorrelation functions of the features corresponding to breathing, body movement, and environment noise. (a) One feature in the 75 s time
window, the green, black, and red dotted rectangles correspond to the time windows when breathing without movement, body movement occurring, and only
environment noise, respectively. (b)–(d) Autocorrelation function of the feature in green, black, and red time window, respectively.

PSD caused by respiration will inherit the relaxed period-
icity. Hence, the periodicity of Doppler frequency shift can
only occur during respiration. Therefore, we aim to exploit the
periodicity of Doppler frequency shift to detect human respira-
tion. In particular, we first measure the periodicity of Doppler
frequency shift variations based on the compressed effective
PSD vector. If the Doppler shift variation shows a strong peri-
odicity in a specific time window, we can infer that the subject
is breathing normally. Then we locate each breath as the peak
of the Doppler shift. Otherwise, we can conclude that there is
body movement or respiration arrest, i.e., Apnea occurring. In
latter case, we use variance of Doppler shift to differentiate
Apnea and body movement. By using a slide window, when
body movement is detected, the system will automatically
stop respiration detection, and when there is no movement
occurring, the system detects the apnea event.

1) Measuring the Periodicity of Doppler Shift: The period-
icity of Doppler frequency shift is reflected in the variation of
the echo PSD. We construct a sliding window to buffer the
compressed effective PSD vector. The sliding window aban-
dons the obsolete compressed effective PSD vector and accepts
the latest one continuously. Suppose the compressed effec-
tive PSD vector is M-dimension, and the length of the sliding
widow is N. The system updates an N × M matrix in each
iteration. We measure the periodicity of each column employ-
ing autocorrelation function. Given the jth (j = 1, 2, . . . , M)
column {x(1,j)x(2,j) . . . x(3,j)}, where x(i,j) is the element at ith
row and jth column of the matrix, the autocorrelation function
of jth column is defined as follows:

Rj(k) =
1
N

∑N−k
t=1

(

x(t,j) − μ
)(

x(t+k,j) − μ
)

σ 2
(7)

where μ and σ are the expectation and standard deviation of
the jth column, respectively. If the column is near periodical
[shown as the green time window in Fig. 4(a), corresponding
to breathing quietly], its autocorrelation function [as shown
in Fig. 4(b)] looks like a sinusoid but its amplitude decreases
gradually. If the column fluctuates randomly and significantly
[shown as the black time window in Fig. 4(a), correspond-
ing to body movement], its autocorrelation function [as shown
in Fig. 4(c)] looks like an exponential function with a base
smaller than 1. If the trend of the column is relatively stable
[shown as the red time window in Fig. 4(a), corresponding to
Apnea], its autocorrelation function [as shown in Fig. 4(d)]
varies irregularly.

Based on the characteristics of the autocorrelation func-
tion and our observations, we construct a model to recognize
whether one column of the matrix exhibit strong periodicity. It
can be used to dynamically filter out weak or none periodical
columns and also filter interferences due to body movement
as well as environment noise. In particular, the model works
as follows.

Given the autocorrelations, Rj(k), of the jth column, indexes
of peaks (i.e., local maximums, except for the first peak whose
values is 1) of the Rj(k) are denoted as kc1 , kc2 , . . . , kcnum .

1) If TPN1 ≤ num ≤ TPN2.
2) If Rj(kc1) > Rj(kc2) > . . . > Rj(kcnum) then the jth

column exhibits strong periodical. TPN1 and TPN2 are
two thresholds determined as follows. As human res-
piration rate typically ranges from 12 breaths/min to
40 breaths/min (note that, after exercise, human respira-
tion can reach 40 breaths/min), and the length of slide
window is 10 s in our experiments. Thus, there should
be 2∼6.7 breaths in one sliding window meaning that
there are 2∼7 peaks in the autocorrelation results. Thus,
in our experiments, we set TPN1 = 2 and TPN2 = 7 to
filter out body movements and other noise.

If the number of strong periodical columns is larger than
a specific threshold TSPA, we can infer that the subject is
breathing normally. Otherwise, there is body movement or
respiration arrest, i.e., Apnea happens. In our experiment,
TSPA = 3 works well in distinguishing periodic respirations
and nonperiodic body movement and Apnea. In the next
section, we describe how to identify normal breathing and
Apnea online.

2) Identifying Breaths and Apnea Online: As mentioned
above, when we infer that the subject is breathing normally
(i.e., the number of strong periodical columns is larger TSPA),
the next step is to identify each breathing. During exhaling, the
Doppler frequency shift will first increase and then decrease.
The variation of the Doppler frequency shift over time can be
described as the sum of instances of the periodical columns
(as described in Section IV-C1). Thus, the exhaling can be
identified as the peak of the normalized Doppler frequency
shift. When we infer that body movement or Apnea hap-
pens (i.e., the number of strong periodical columns is not
larger TSPA), we use the variance of Dopper shift to iden-
tify Apnea. Even though body movement and Apnea both
affect the periodicity of Doppler shift, they result in very
different Doppler shift variation. Body movement causes dras-
tic and irregular Doppler shift and Apnea causes no Doppler
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Fig. 5. Respiration detection results. The blue curve is the variation of the sum of instances of the periodical columns over time. The small red circles mark
all respirations.

shift. So, we can use variance of normalized Doppler shift
to identify Apnea. Specifically, if the variance of normal-
ized Doppler shift in sliding window, whose length is 7 s,
is larger than specific threshold Tvariance, then body movement
is detected. Otherwise, Apnea is detected. In our experiment,
Tvariance = 0.01 works well in differentiating Apnea and body
movement.

Fig. 5 shows an example of the respiration detection results
in 175 seconds’ time frame. The blue curve is the variation of
the sum of instances of the periodical columns over time. We
can see that the system accurately identifies breaths, marked as
small red circles, body movement (from 27 s to 36 s and from
109 s to 116 s) and Apnea (from 63 s to 78 s and from 143 s
to 155 s). By using slide windows, when body movement is
detected, the system will automatically stop respiration detec-
tion, and when movement stops, the system automatically
resumes the detection.

V. EXPERIMENTAL EVALUATION

In this section, we conduct comprehensive experiments
to evaluate the proposed system. First, we introduce the
system configuration and experiment settings. Then, we briefly
describe the baseline method. We conduct experiments with
25 participants (7 elders, 2 young kids, and 16 adults, includ-
ing 11 females and 14 males) in four different rooms. The
participants take four different sleep postures (i.e., on one’s
back, on right/left side, and on one’s stomach) in different
positions of the bed. We compare our system with the baseline
method in various experiment settings. In addition, we conduct
experiments to test whether the system can identify Apnea. We
also test the system robustness against body movement, wind,
different respiration styles (shallow, normal, and deep), respi-
ration rate variation, ambient noise, sensing distance variation,
and transmitted signal frequency variation.

A. System Configuration and Experiment Settings

Theoretically, our design is not limited to COTS micro-
phones and speakers and should be able to implement using
smartphones. In practice, we face some technical challenges
to implement using smartphone.

1) It is hard to ensure the that the transmitted acoustic beam
passes through the exhaled airflow when the smartphone
is placed on the nightstand or bed.

Fig. 6. Maximum detectable areas of one transceiver.

2) Even though the acoustic beam passes through the
exhaled airflow, the relatively low power of the speaker
on smartphone cannot ensure that the microphone
receive sufficiently strong echo.

Therefore, currently we implement our respiration mon-
itoring system with commodity microphones and speakers.
Specifically, our system consists of a pair of commodity
speaker and microphone [shown in Fig. 1(a)] which forms
an acoustic transceiver. The speaker is programmed to trans-
mit 20 kHz acoustic wave continuously, which is inaudible
to users. Meanwhile, the microphone receives the echo at
48 kHz sampling rate and sends it to the connected laptop for
data processing and respiration detection. For data collection
and processing, the transceivers are connected to two laptops
(Thinkpad T450 with Intel Core i5-5200 CPU, 8G RAM; Dell
Latitude E6540 with Intel Core i7-4800MQ, 4GB RAM). The
proposed respiration detection algorithms are implemented in
MATLAB and run on each laptop in real-time.

First of all, we test the maximum detectable areas of one
transceiver. To this end, we ask each participant to lie on a bed
and place one transceiver above the subject’s head for respi-
ration detection. The experiment settings and corresponding
results are illustrated in Fig. 6. We can see that the effective
maximum detection distance is about 100 cm and the angle of
the detectable area for sleeping on one’s back is about 35◦. We
note that one transceiver cannot fully cover all possible facing
directions of a subject. As such, we deploy two transceivers
at both sides of a subject to fully cover different sleeping pos-
tures. As shown in Fig. 7, two transceivers are placed at the
upper-left and upper-right of the head, respectively, facing the
effective sensing area [as shown in Fig. 1(b)] with an angle of
about 60◦. The perpendicular distance between mattress and
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(a) (b) (c)

Fig. 7. Device layout and detectable facing in different sleep postures. (a) Sleep on one’s back. (b) Sleep on right side and on one’s stomach while the head
(the head contour is highlighted as back dashed line) facing right. (c) Sleep on left side and on one’s stomach while the head (the head contour is highlighted
as back dashed line) facing left.

Fig. 8. System settings in real room environment.

device is about 50 cm and the distance between two pairs of
devices is about 160 cm. Fig. 8 shows the real experiment
environment.

According to the bias and limits of agreement of clinical
respiration rate monitoring device [49], our targeted error for
respiration monitoring should be smaller than 1 breaths/min.
This accuracy is not only enough for general respiration mon-
itoring applications but also can be used for the patients after
surgery [49].

B. Baseline Approach

To the best of our knowledge, the paper in [18] is the only
existing work that attempts to detect the airflow of respiration
using ultrasound signals. Thus, we choose it as the baseline for
comparison. However, the baseline method requires a special-
ized device to generate 40 kHz ultrasound signals. Moreover,
the respiration detection approach was designed for a con-
trolled sleep posture. For fair comparison: 1) the baseline
approach is implemented using the same devices and deploy-
ment manner and 2) we adopt the same optimal parameter
settings and configurations as specified in [18] and fine-tune
the system.

C. System Performance Evaluation

We conduct comprehensive experiments to evaluate our
system in four different rooms with 25 subjects, who have four
different sleep postures in different positions of the bed and
compare the system performance with the baseline approach.
The experiment process was recorded in the demo video
provided at the end of Section I (the part 04:58–08:22). In
addition, we conduct experiments to test whether the system
can identify Apnea.

1) Evaluation With Different Subjects: We recruit 25 par-
ticipants (7 elders, 2 young kids, and 16 adults, including
11 females and 14 males) to evaluate the effectiveness of

our system. To test the system usability for users, all par-
ticipants are asked to set up the system and properly adjust
facing direction of audio transceivers according to the require-
ments specified in Section V-A. We set aside 15 min for the
participants to lie on his/her back so that the participants really
fall asleep before measurements. We then detect the respira-
tion with each subject for about 2 h. During the measurements,
two subjects watch the video stream to record the ground truth
manually. Fig. 9(a) shows the CDF of respiration detection
error. We can see that the median respiration detection error
of our approach is 0, while that of the baseline approach is
around 0.9 breaths/min (6%). In addition, the max error of
our system is about 0.6 breaths/min (4%), while that of the
baseline is larger than 2.1 breaths/min (14%).

In addition, to further verify the proposed system, we
use micro-movement sensitive mattress sleep monitoring
system RS-611 (produced by Xinxingyangsheng Technology
Company, Ltd., Bejing, China) to record the ground truth dur-
ing the experiments. Two subjects are recruited to evaluate
system performance for about 2 h. The experimental results
show that the median error of the proposed system is 0.

This experimental results indicate: 1) our system is able
to accurately detect human respiration when the participants
sleep on his/her back, outperforming the baseline and 2) the
system is easy to set up for users in practice.

2) Evaluation With Different Sleep Postures: Except for
sleeping on one’s back, lying on one side and sleeping on
one’s stomach are also common sleep postures. With the
same experiment settings, all the 25 subjects are recruited
to evaluate the performance of our system under the con-
dition of subjects lying on one side and sleeping on one’s
stomach. Fig. 9(b)–(d) shows the CDF of respiration detec-
tion error when the subjects are sleeping on the left side,
right side, and lying on one’s stomach, respectively, (note
that here lying on one’s stomach requires the exhaled air-
flow not been blocked or covered by the pillow. Otherwise,
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(a) (b) (c) (d)

Fig. 9. Respiration detection error of 25 subjects with four different sleep postures. (a) Sleep on one’s back. (b) Facing left. (c) Facing right. (d) Sleep on
one’s stomach.

Fig. 10. Respiration detection median error in different positions in bed.

the system cannot detect respiration. In general, because of
hypoxia the subject has to change sleep posture if the nose
is covered by the pillow more than 10 s). The result shows
that our system outperforms the baseline method with differ-
ent sleep postures in terms of detection accuracy. In particular,
the median errors of our system are all 0, while the median
errors of the baseline are 0.3 breaths/min (2%), 0.6 breaths/min
(4%), and 1.2 breaths/min (8%), respectively, for different
sleep postures. In addition, the max error of our system can be
controlled smaller than 0.6 breaths/min (4%), while the max-
imum error of the baseline reaches 2.2 breaths/min (14.7%).
This is because when a subject sleeps on his/her back, the
angle between airflow direction and acoustic beam direction
is relatively small. Thus, the baseline method cannot reliably
detect the Doppler frequency shift. In contrast, our method is
able to detect the Doppler shift in both sides of transmitted
frequency. Thus, the Doppler shift caused by breathing with
all four sleep postures can be well captured.

3) Evaluation With Different Positions on Bed: In the
experiment, the subjects are asked to sleep in different posi-
tions of the bed, i.e., left part of the bed, middle part
of the bed, and right part of the bed. Fig. 10 shows the
CDF of median respiration detection error when the sub-
jects are sleeping in different positions of the bed. We can
see that our method outperforms the baseline method and
achieves a median respiration detection error lower than
0.3 breath/min.

4) Evaluation With Different Sleep Environments: We
deploy the system in four rooms with different sizes and lay-
outs. Fig. 11(a)–(d) shows the average respiration detection
error CDF in the four test rooms, respectively. The median
detection errors of our system for all four sleep postures in
four test rooms are 0 breaths/min, while the median errors of
the baseline are larger than 0.6 breaths/min (4%). There is no

obvious difference in the four test rooms for both our method
and the baseline. It indicates that our system is not sensitive
to the experiment environment.

5) Apnea Detection Evaluation: Detecting Apnea is an
important objective of monitoring respiration during sleep.
Even though body movement and Apnea both affect the peri-
odicity of Doppler shift, they result in very different Doppler
shift variation. Body movement causes drastic and irregular
Doppler shift and Apnea causes no Doppler shift. So, we can
use the variance of Doppler shift to identify Apnea.

Constrained by legal issues, we could not test our system
with real Apnea patients in hospitals for now. Instead,
we simulate central Apnea and obstructive Apnea follow-
ing the clinical symptom described as “hold breath for a
while” [31], [39], and simulate Hypopnea event following the
clinical symptom described as “breathing becomes shallow
gradually and then recovers” [31]. We recruit 23 participants
(13 male and 10 female) to test Apnea detection performance.
Each participant is asked to simulate Apnea and generate
body movement 10 times during the 30 minutes’ respira-
tion monitoring period. Fig. 12(a) and (b) show examples
of Doppler shift variation when Apnea and Hypopnea hap-
pen, respectively. The experimental results show that the
proposed system can accurately identify all the simulated
Apnea.

D. System Robustness Testing

In this section, we conduct experiments to evaluate the
robustness of our system. Specifically, we test various factors
which may influence the performance of our system, including
body movement, wind, different respiration styles (shallow,
normal, and deep), respiration rate variation, ambient noise,
sensing distance variation, and transmitted signal frequency
variation.

1) Impact of Body Movement: Body movement generates
strong but arhythmical Doppler frequency shift variation. The
Doppler frequency shift caused by exhaled airflow would be
submerged. Under this condition, it is difficult to detect breath-
ing. To reduce the false alarm rate, our system is designed to
suspend respiration detection once body movement is detected
and recover for detecting respiration after the body movement
disappears. Twenty two subjects are recruited to test whether
our system can actually suspend when a body movement
occurs. We detect subjects’ respiration for about 30 min.
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(a) (b) (c) (d)

Fig. 11. Respiration detection error in four rooms of different sizes and layout.

(a) (b)

Fig. 12. Respiration detection when Apnea happens. (a) Apnea. (b) Hypopnea.

Fig. 13. Two examples of respiration detection process when body movement
occurs.

During the detection process, the subjects change sleep pos-
tures or move limbs several times. Fig. 13 shows two examples
that our system suspends the detection while body movement
occurs, and resumes detection when movement stops.

2) Impact of Wind: Our system works by sensing the
exhaled airflow. If the wind airflow in the effective sensing
area [as shown in Fig. 1(b)] is large enough, the system can-
not work well. To quantitatively test the impact of wind, we
conduct an experiment using fan to generate airflow toward
subject’s body. The airflow speed is measured by a handheld
anemometer (thermal anemometer testo 405-V1). We adjust
the airflow speed by adjusting the distance between the fan
and subject. The fan is placed at different places with dif-
ferent direction toward subject’s head. Twenty subjects are
recruited to test system performance under different airflow
speed. Fig. 14 shows the respiration detection median errors
with different airflow speed. We can see that when the indoor
airflow speed is higher than 1.5 m/s regardless of the fan
directions toward subject’s head, the system cannot detect

Fig. 14. Respiration detection error as the speed of interfering airflow varies.

respiration rate accurately. The experiment results imply that
our system is sensitive to indoor airflow. In reality, people
under monitoring conditions always avoid fans or air condi-
tions blowing directly toward their bodies, especially for elders
and kids.

3) Impact of Different Respiration Styles: Breathing
strength will affect the system performance. Generally,
a deeper breath will lead to a lower respiration detection error.
We recruit 21 subjects, including 4 young kids (8 years old
on average), 12 adults (26 years old on average), and 5 elders
(63 years old on average), to test the system performance when
different subjects breathing with different respiration styles.
In the first round, the participants breathe naturally. In the
next two rounds, the subjects are asked to intentionally con-
trol their breath and take relatively shallow and deep breath,
respectively. In each round, the system monitors their respira-
tion for about 30 min. Fig. 15 shows the respiration detection
median error for each subject category in each round. We
can see that when breathing naturally and deeply, the res-
piration detection median error for three subject categories
are all smaller than 0.5 breath/min. Even when the adults
breathe gently, the median error of the proposed system is
0. When young kids and elders breathe gently, the respiration
detection median error reaches 3.2 breaths/min (21.3%) and
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Fig. 15. Respiration detection error when subjects breathe with different
respiration styles.

TABLE II
RESPIRATION DETECTION ERROR WITH DIFFERENT AMBIENT NOISE

0.9 breaths/min (6%), respectively. Too gent breaths not only
mean low velocity, which results in weak Doppler shift (i.e.,
narrow frequency shift in PSD of echo) but also scatters back-
ward weak ultrasound signal which results in low energy (i.e.,
low amplitude in PSD of echo). Low energy reflected signals
and weak Doppler shifts will increase the respiration detec-
tion error rate. Fortunately, this problem can be mitigated by
decreasing sensing distance. When we decrease the distance
between the transceiver and subjects to 40 cm, the median
error of all subject categories reduces to 0.

4) Impact of Respiration Rate Change: As our system
detects the breathing rate by measuring the periodicity of
Doppler shift, respiration rate change will weaken the peri-
odicity and may influence our system. In this paper, we use
a sliding window method which can discard the obsolete
signals and adapt to the change of respiration rate. Twenty par-
ticipants are asked to do high intensity exercises like push-up,
which will increase the respiration rate significantly. Then, we
let the participants lie on the bed and detect their respiration
rates until the respiration rates gradually fall back to a normal
level (10∼15 breathing counts per minute). Fig. 16 shows two
examples of respiration detection results after high intensity
exercise. The blue lines show the measured Doppler frequency
shift and the pink lines track the instantaneous respiration
rates. We can observe that the respiration rates change from
about 40 breaths/min to about 15 breaths/min. Our system
accurately tracks both rapid breathing and slow breathing
throughout the process.

5) Impact of Ambient Noise: The proposed system senses
human respiration using ultrasound signal. The ambient noise
will also be received by the system. It is necessary to test
whether the ambient noise has impact on respiration detec-
tion. We test the proposed system in several typical real
scenes that continues to generate noise. Specifically, the
real scenes include: 1) talking in low voice; 2) talking in
normal voice; 3) talking in loud voice; 4) play music or
video; and 5) noise from air condition. Twenty subjects are
recruited to test system performance in the above five scenes.
Table II shows the experimental results. We can see that

Fig. 16. Two examples of respiration detection process as respiration rate is
changing.

Fig. 17. Respiration detect error as sensing distance is varied.

the typical ambient noise has no impact on the proposed
system. The proposed system senses exhaled airflow using
20 kHz ultrasound signal and capture the Doppler effect in
the frequency band [19.8 kHz, 20.2 kHz]. In real scenes, there
is hardly any ambient noise which can reach such a high
frequency band. Studies show that the highest frequency of
human voice is 3 kHz [40]; the highest frequency of music
is 16 kHz [41]; the highest frequency of the noise produced
by air condition or other household electric appliances is
8 kHz [42], [43]. The frequencies of all these ambient noises
are far below the system working frequency band, hence, the
ambient noise can be easily filtered out using lowpass filter.

6) Impact of Sensing Distance: We vary the distance
between transceiver and subject, ranging from 0.3 m to 1.1 m
with an interval of 0.1 m. 21 subjects are recruited to eval-
uate the performance of our system. At each position, we
test for 30 min. Fig. 17 shows the median respiration detect
error as distance varies. We can see that within 0.7 m,
the system achieves respiration detection error smaller than
0.5 breaths/min (3.3%). Beyond 0.7 m, the error will increase
with the distance mainly due to signal attenuation. We hence
suggest setting the distance between transceiver and subject
to a value smaller than 0.7 m. In practice user can also make
a tradeoff between respiration detection error and sensing
distance for a specific application environment.

7) Impact of Transmitted Signal Frequency: The frequency
of the transmitted signal should be higher than the upper
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TABLE III
EXPERIMENTAL RESULTS SUMMARY

Fig. 18. Respiration detect error as the frequency of transmitted acoustic
signal is varied.

bound of human audibility range, 20 kHz, and lower than
the upper limit of frequency response of commodity acous-
tic device 22 kHz. We vary the transmitted signal frequency
from 20 kHz to 22 kHz with an interval of 0.5 kHz. Twenty
three subjects are recruited to performance of our system for
about 10 min. Fig. 18 shows the median respiration detec-
tion error as the transmitted signal frequency varies. We can
see that within 21 kHz, the system achieves respiration detec-
tion error smaller than 1 breaths/min (6.7%). Beyond 21 kHz,
the error will increase with the transmitted signal frequency
mainly due to the decrease of frequency response of com-
modity audio system. For commodity audio device, beyond
21 kHz, the system frequency response will decrease dramat-
ically. In our system, we set the transmitted signal frequency
to 20 kHz. In practice user can also make a tradeoff between
respiration detection error and transmitted signal frequency for
a specific application environment.

In summary, the proposed system is robust to different res-
piration styles (shallow, normal, and deep), respiration rate
variation, ambient noise, sensing distance variation (within
0.7 m), and transmitted signal frequency variation (within
the band [20 kHz, 21 kHz]), but sensitive to wind and
body movement. The experimental results are summarized in
Table III.

E. Discussion

The experiment results demonstrate that the proposed
system can detect human respiration with four common sleep

postures in different positions of the bed. The proposed system
is robust to different respiration styles (shallow, normal, and
deep), respiration rate variation, ambient noise, sensing dis-
tance variation (within 0.7 m), and the transmitted signal
frequency variation (within the band [20 kHz, 21 kHz]). Yet,
we note that current implementation can be improved in the
following aspects.

1) Body Movement: As presented in Section V-D, the
system is sensitive to sporadic body movement during sleep
and the airflow around the subject. When body movement
occurs, the weak Doppler shift caused by exhaled airflow
would be submerged by the drastic and irregular Doppler shift
caused by body movement; when interference airflow exists
in the effective sensing area, the exhaled airflow will be dis-
turbed. We plan to detect and filter out Doppler shifts caused
by body movement in the future.

2) Multiple Users: Current system can only be used to
monitor a single person lying on the bed at this moment. With
multiple persons lying on the bed, the exhaled airflow may be
blocked by other persons. In order to simultaneously moni-
tor multiple people, we plan to study the feasibility of using
motors to adjust acoustic transceivers in the future.

3) Apnea Detection: We note that due to legal issues,
we could not evaluate our system with real Apnea patients
in hospitals at this moment. The performance evaluation
of Apnea detection was conducted by simulating the typi-
cal symptoms of Apnea. To better evaluate the efficacy of
Apnea detection, we plan to conduct more extensive evalua-
tions by inviting real Apnea patients to our lab in future work.

VI. CONCLUSION

This paper presents a continuous and real-time respiration
monitoring system that is built purely using commodity audio
devices. It utilizes the Doppler effect generated by the exhaled
airflow of breath on the acoustic wave as the respiration indica-
tor. We formally model the relationship between the exhaled
airflow direction and the Doppler frequency change pattern.
Based on this model, we design an MDL-based algorithm to
effectively capture the Doppler effect caused by exhaled air-
flows. We implement a practical respiration monitoring system
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with commodity microphone and speaker and tested the detec-
tion performance in various experiment settings. The extensive
experiments demonstrate that 1) our proposed system achieves
low respiration detection error [lower than 0.3 breaths/min
(2%)] without assuming subject sleeping postures and posi-
tions in the bed and can accurately identify Apnea and 2) our
proposed system is robust to different respiration styles (shal-
low, normal, and deep), respiration rate variation, ambient
noise, sensing distance variation (within 0.7 m), and trans-
mitted signal frequency variation. In order to further enhance
the robustness of respiration monitoring performance, we plan
to improve the system so that it can mitigate the influences
caused by sporadic body movement during sleep. We also plan
to further evaluate our system in larger scale deployment in
ordinary homes.

ACKNOWLEDGMENT

The authors would like to express their special appreciation
to the 25 volunteers for participating in their experiments. The
study was approved by the medical ethics committee of NPU.

REFERENCES

[1] L. Catarinucci et al., “An IoT-aware architecture for smart healthcare
systems,” IEEE Internet Things J., vol. 6, no. 2, pp. 515–526, Dec. 2015.

[2] S. Amendola, R. Lodato, S. Manzari, C. Occhiuzzi, and G. Marrocco,
“RFID technology for IoT-based personal healthcare in smart spaces,”
IEEE Internet Things J., vol. 2, no. 2, pp. 144–152, Apr. 2014.

[3] Y. Zhang, L. Sun, H. Song, and X. Cao, “Ubiquitous WSN for health-
care: Recent advances and future prospects,” IEEE Internet Things J.,
vol. 1, no. 4, pp. 311–318, Aug. 2014.

[4] D. Graham, G. Simmons, D. T. Nguyen, and G. Zhou, “A software-
based sonar ranging sensor for smart phones,” IEEE Internet Things J.,
vol. 2, no. 6, pp. 479–489, Dec. 2015.

[5] Y. Gu, F. Ren, and J. Li, “PAWS: Passive human activity recognition
based on WiFi ambient signals,” IEEE Internet Things J., vol. 3, no. 5,
pp. 796–805, Dec. 2017.

[6] S. Mahmud, H. Wang, A. M. Esfar-E-Alam, and H. Fang, “A wire-
less health monitoring system using mobile phone accessories,” IEEE
Internet Things J., vol. 4, no. 6, pp. 2009–2018, Dec. 2017.

[7] Y. Gu et al., “MoSense: A RF-based motion detection system via
off-the-shelf WiFi devices,” IEEE Internet Things J., vol. 4, no. 6,
pp. 2326–2341, Dec. 2017.

[8] M. R. Vann. (2015). The 15 Most Common Health Concerns for Seniors.
[Online]. Available: http://goo.gl/EQn2fn

[9] J. N. Wilkinson and V. U. Thanawala, “Thoracic impedance monitoring
of respiratory rate during sedation—Is it safe?” Anaesthesia, vol. 64,
no. 4, pp. 455–456, 2009.

[10] M. B. Jaffe, “Infrared measurement of carbon dioxide in the human
breath:‘Breathe-through’ devices from Tyndall to the present day,”
Anesthesia Analgesia, vol. 107, no. 3, pp. 890–904, 2008.

[11] J. Penne, C. Schaller, J. Hornegger, and T. Kuwert, “Robust real-time
3D respiratory motion detection using time-of-flight cameras,” Int. J.
Comput. Assisted Radiol. Surgery, vol. 3, no. 5, pp. 427–431, 2008.

[12] T. Kondo, T. Uhlig, P. Pemberton, and P. D. Sly, “Laser monitor-
ing of chest wall displacement,” Eur. Respiratory J., vol. 10, no. 8,
pp. 1865–1869, 1997.

[13] S. D. Min et al., “Noncontact respiration rate measurement system
using an ultrasonic proximity sensor,” IEEE Sensors J., vol. 10, no. 11,
pp. 1732–1739, Nov. 2010.

[14] M. Nowogrodzki, D. D. Mawhinney, and H. F. Milgazo, “Non-invasive
microwave instruments for the measurement of respiration and heart
rates,” in Proc. NAECON, 1984, pp. 958–960.

[15] X. Liu, J. Cao, S. Tang, and J. Wen, “Wi-Sleep: Contactless sleep
monitoring via WiFi signals,” in Proc. RTSS, 2014, pp. 346–355.

[16] R. Ravichandran et al., “WiBreathe: Estimating respiration rate using
wireless signals in natural settings in the home,” in Proc. PerCom, 2015,
pp. 131–139.

[17] S. Venkatesh, C. R. Anderson, N. V. Rivera, and R. M. Buehrer,
“Implementation and analysis of respiration-rate estimation using
impulse-based UWB,” in Proc. IEEE Mil. Commun. Conf. (MILCOM),
2005, pp. 3314–3320.

[18] P. Arlotto, M. Grimaldi, R. Naeck, and J. M. Ginoux, “An ultrasonic
contactless sensor for breathing monitoring,” Sensors, vol. 14, no. 8,
pp. 15371–15386, 2014.

[19] R. Paradiso, “Wearable health care system for vital signs monitoring,”
in Proc. EMBS, 2003, pp. 283–286.

[20] S. Nukaya, T. Shino, Y. Kurihara, K. Watanabe, and H. Tanaka,
“Noninvasive bed sensing of human biosignals via piezoceramic devices
sandwiched between the floor and bed,” IEEE Sensors J., vol. 12, no. 3,
pp. 431–438, Mar. 2012.

[21] H. Gokalp and M. Clarke, “Monitoring activities of daily living of the
elderly and the potential for its use in telecare and telehealth: A review,”
Telemed. E-Health, vol. 19, no. 12, pp. 910–923, 2013.

[22] P. D. Welch, “The use of fast Fourier transform for the estimation of
power spectra: A method based on time averaging over short, modified
periodograms,” IEEE Trans. Audio Electroacoust., vol. AE-15, no. 2,
pp. 70–73, Jun. 1967.

[23] J.-G. Lee, H. Jiawei, and K.-Y. Whang, “Trajectory clustering: A
partition-and-group framework,” in Proc. SIGMOD, 2007, pp. 593–604.

[24] P. D. Grünwald, I. J. Myung, and M. A. Pitt, Advances in Minimum
Description Length: Theory and Applications. Cambridge, MA, USA:
MIT press, 2005.

[25] J. R. Cooke and S. Ancoli-Israel, “Normal and abnormal sleep in the
elderly,” Handbook Clin. Neurol., vol. 98, no. 98, p. 653, 2011.

[26] D. Norman and J. S. Loredo, “Obstructive sleep apnea in older adults,”
Clinics Geriatric Med., vol. 24, no. 1, pp. 151–165, 2008.

[27] T. L. Lee-Chiong and U. Magalang, “Monitoring respiration during
sleep,” Clinics Chest Med., vol. 24, no. 2, pp. 297–306, 2003.

[28] Wikipedia. Accessed: May 5, 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Obstructive_sleep_apnea

[29] H. Tennekes and J. L. Lumley, A First Course in Turbulence. Cambridge,
MA, USA: MIT Press, 1972.

[30] Y. Ren, C. Wang, J. Yang, and Y. Chen, “Fine-grained sleep monitoring:
Hearing your breathing with smartphones,” in Proc. INFOCOM, 2015,
pp. 1102–1194.

[31] R. Nandakumar, S. Gollakota, and N. Watson, “Contactless sleep apnea
detection on smartphones,” in Proc. Mobisys, 2015, pp. 45–57.

[32] H. Wang et al., “Human respiration detection with commodity WiFi
devices: Do user location and body orientation matter?” in Proc. ACM
Int. Joint Conf. Pervasive Ubiquitous Comput., 2016, pp. 25–36.

[33] H. Abdelnasser, K. A. Harras, and M. Youssef, “UbiBreathe: A ubiqui-
tous non-invasive WiFi-based breathing estimator,” in Proc. 16th ACM
Int. Symp. Mobile Ad Hoc Netw. Comput., 2015, pp. 277–286.

[34] O. Kaltiokallio, H. Yigitler, R. Jäntti, and N. Patwari, “Non-invasive res-
piration rate monitoring using a single COTS TX-RX pair,” in Proc. 13th
Int. Symp. Inf. Process. Sensor Netw. (IPSN), 2014, pp. 59–69.

[35] X. Liu, J. Cao, S. Tang, J. Wen, and P. Guo, “Contactless respira-
tion monitoring via off-the-shelf WiFi devices,” IEEE Trans. Mobile
Comput., vol. 15, no. 10, pp. 2466–2479, Oct. 2016.

[36] N. Patwari, L. Brewer, Q. Tate, O. Kaltiokallio, and M. Bocca,
“Breathfinding: A wireless network that monitors and locates breathing
in a home,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 1, pp. 30–42,
Feb. 2014.

[37] N. Patwari, J. Wilson, S. Ananthanarayanan, S. K. Kasera, and
D. R. Westenskow, “Monitoring breathing via signal strength in wireless
networks,” IEEE Trans. Mobile Comput., vol. 13, no. 8, pp. 1774–1786,
Aug. 2014.

[38] C. Wu et al., “Non-invasive detection of moving and stationary
human with WiFi,” IEEE J. Sel. Areas Commun., vol. 33, no. 11,
pp. 2329–2342, Nov. 2015.

[39] WebMD. Accessed: Apr. 21, 2018. [Online]. Available: http://www.
webmd.com/sleep-disorders/guide/sleep-disorders-symptoms-types

[40] Human Voice Frequency Range. Accessed: May 3, 2018. [Online].
Available: http://www.seaindia.in/blog/human-voice-frequency-range/

[41] Table of Musical Notes and Their Frequencies and
Wavelengths. Accessed: May 5, 2018. [Online]. Available:
http://www.liutaiomottola.com/formulae/freqtab.htm

[42] P. Susini et al., “Characterizing the sound quality of air-conditioning
noise,” Appl. Acoust., vol. 65, no. 8, pp. 763–790, 2004.

[43] S.-P. Huang and R.-P. Lai, “Frequency characteristics of interior noises in
houses,” in Proc. World Sustain. Build. Conf., Sep. 2005, pp. 1503–1508.

[44] T. Wang et al., “C-FMCW based contactless respiration detection using
acoustic signal,” Proc. ACM Interact. Mobile Wearable Ubiquitous
Technol., vol. 1, no. 4, 2017, Art. no. 170.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:10:49 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: CONTACTLESS RESPIRATION MONITORING USING ULTRASOUND SIGNAL WITH OFF-THE-SHELF AUDIO DEVICES 2973

[45] P. Nguyen, X. Zhang, A. Halbower, and T. Vu, “Continuous and fine-
grained breathing volume monitoring from afar using wireless signals,”
in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), 2016, pp. 1–9.

[46] Y. Hou, Y. Wang, and Y. Zheng, “TagBreathe: Monitor breathing with
commodity RFID systems,” in Proc. IEEE Int. Conf. Distrib. Comput.
Syst., 2017, pp. 404–413.

[47] W. G. Carrara, R. S. Goodman, and R. M. Majewski, “Spotlight synthetic
aperture radar: Signal processing algorithms,” J. Atmos. Solar Terrestrial
Phys., vol. 59, no. 5, pp. 597–598, 1997.

[48] G. Zhang et al., “DolphinAttack: Inaudible voice commands,” in Proc.
ACM Conf. Comput. Commun. Security (CCS), 2017, pp. 103–117.

[49] A. Gaucher, D. Frasca, O. Mimoz, and B. Debaene, “Accuracy of res-
piratory rate monitoring by capnometry using the Capnomask(R) in
extubated patients receiving supplemental oxygen after surgery,” Brit.
J. Anaesthesia, vol. 108, no. 2, pp. 316–320, 2012.

[50] A. G. Hagargund, R. Udayshankar, and N. Rashmi, “Radar based cost
effective vehicle speed detection using zero cross detection,” Int. J. Elect.
Electron. Data Commun., vol. 1, no. 9, Nov. 2013.

[51] J. Dybedal, “Doppler radar speed measurement based on a 24 GHz
radar sensor,” M.S. thesis, Norwegian Univ. Sci. Technol., Trondheim,
Norway, 2013

[52] P. Yolanda, T. Guzmán, and J. T. Gonzales, “Development of a low-cost,
short-range radar system to measure speed and distance,” Tecciencia,
vol. 12, no. 22, pp. 99–106, 2017.

[53] I. Bisio et al., “Ultrasounds-based context sensing method and appli-
cations over the Internet of Things,” IEEE Internet Things J., to be
published, doi: 10.1109/JIOT.2018.2845099.

Tianben Wang received the B.S. degree in com-
puter science from Northwest A&F University,
Yangling, China, in 2011, and the M.S. degree in
computer application technology from Northwestern
Polytechnical University, Xi’an, China, in 2013,
where he is currently pursuing the Ph.D. degree.

His current research interests include ubiquitous
computing, contactless behavior sensing, and intel-
ligent elder assisting technology.

Daqing Zhang (M’11–SM’16) received the
Ph.D. degree from the University of Rome
La Sapienza, Rome, Italy, in 1996.

He is a Chair Professor with the School of
Electrical Engineering and Computer Science,
Peking University, Beijing, China. He has authored
or co-authored over 200 technical papers in leading
conferences and journals. His current research
interests include context-aware computing, urban
computing, mobile computing, big data analytics,
and pervasive elderly care.

Dr. Zhang was a recipient of the ten-year CoMo Rea Impact Paper Award
at IEEE Per-Com 2013, the Honorable Mention Award at ACM UbiComp
2015, the Best Paper Award at IEEE UIC 2015 and 2012, and the Best
Paper Runner-Up Award at Mobiquitous 2011. He is an Associate Editor
of the ACM Transactions on Intelligent Systems and Technology and the
IEEE TRANSACTIONS ON BIG DATA. He served as the General or Program
Chair for over ten international conferences and giving keynote talks at over
16 international conferences.

Leye Wang received the B.Sc. and M.Sc. degrees in
computer science from Peking University, Beijing,
China, and the Ph.D. degree from Institut Mines-
Télécom/Télécom SudParis, Évry, France, and the
Université Pierre et Marie Curie, Paris, France.

He is currently a Senior Researcher with the
Department of Computer Science and Engineering,
Hong Kong University of Science and Technology,
Hong Kong. His current research interests include
mobile crowdsensing and ubiquitous computing.

Yuanqing Zheng (S’11–GS’12–M’14) received the
B.S. degree in electrical engineering and M.E.
degree in communication and information system
from Beijing Normal University, Beijing, China, in
2007 and 2010, respectively, and the Ph.D. degree
from the School of Computer Engineering, Nanyang
Technological University, Singapore, in 2014.

He is currently an Assistant Professor with the
Department of Computing, Hong Kong Polytechnic
University, Hong Kong. His current research interest
includes mobile and wireless computing and RFID.

Dr. Zheng is a member of the ACM.

Tao Gu (S’03–M’07–SM’14) received the bach-
elor’s degree from the Huazhong University of
Science and Technology, Wuhan, China, the M.Sc.
degree from Nanyang Technological University,
Singapore, and the Ph.D. degree in computer sci-
ence from the National University of Singapore,
Singapore.

He is currently an Associate Professor in com-
puter science with RMIT University, Melbourne,
VIC, Australia. His current research interests include
mobile computing, ubiquitous/pervasive computing,

wireless sensor networks, distributed network systems, sensor data analytics,
cyber physical system, Internet of Things, and online social networks.

Dr. Gu is a member of the ACM.

Bernadette Dorizzi received the Ph.D.
(Thèse d’état) degree (with a focus on inte-
grability of dynamical systems) theoretical physics
from the University of Orsay (Paris XI-France),
Orsay, France, in 1983.

She led the Electronics and Physics Department
with Telecom SudParis (formerly, INT), Évry,
France, from 1995 to 2009, where she has been
a Professor since 1989, and the Dean of Research
since 2013. She has coordinated the Biosecure
Network of Excellence, and is currently the

Chairwoman of the Biosecure Foundation. She is in charge of the Interaction
for Multimedia Research Team. She has authored over 300 research papers
and has supervised over 20 Ph.D. thesis. Her current research interests
include pattern recognition and machine learning applied to activity detection,
surveillance-video, and biometrics.

Xingshe Zhou received the M.S. degree from
Northwestern Polytechnical University, Xi’an,
China, in 1984.

He is a Professor with the School of Computer
Science, Northwestern Polytechnical University. He
is the Director with the Shaanxi Key Laboratory of
Embedded System Technology, Xi’an. His current
research interests include embedded computing and
pervasive computing.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:10:49 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/JIOT.2018.2845099


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


