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Abstract—Understanding and recognizing human activities is a fundamental research topic for a wide range of important applications

such as fall detection and remote health monitoring and intervention. Despite active research in human activity recognition over the

past years, existing approaches based on computer vision or wearable sensor technologies present several significant issues such as

privacy (e.g., using video camera to monitor the elderly at home) and practicality (e.g., not possible for an older person with dementia to

remember wearing devices). In this paper, we present a low-cost, unobtrusive, and robust system that supports independent living of

older people. The system interprets what a person is doing by deciphering signal fluctuations using radio-frequency identification

(RFID) technology and machine learning algorithms. To deal with noisy, streaming, and unstable RFID signals, we develop a

compressive sensing, dictionary-based approach that can learn a set of compact and informative dictionaries of activities using an

unsupervised subspace decomposition. In particular, we devise a number of approaches to explore the properties of sparse

coefficients of the learned dictionaries for fully utilizing the embodied discriminative information on the activity recognition task. Our

approach achieves efficient and robust activity recognition via a more compact and robust representation of activities. Extensive

experiments conducted in a real-life residential environment demonstrate that our proposed system offers a good overall performance

and shows the promising practical potential to underpin the applications for the independent living of the elderly.

Index Terms—Activity recognition, RFID, compressive sensing, subspace decomposition, feature selection

Ç

1 INTRODUCTION

THE population is aging worldwide due to increasing life
expectancy and low birth rate. With the recent develop-

ments in cheap sensor and networking technologies, we
have seen a wide range of activity recognition applications
for remote health monitoring and intervention and behavior
analysis. These applications enhance the quality of people’s
lives, afford a greater sense of security, and facilitate their
independent living [1], [2], [3], [4], [5]. For example, by
monitoring a person with dementia, it is possible to track

how completely and consistently the daily routines are per-
formed, and determine when assistance is needed.

Activity recognition is a core aspect of ubiquitous com-
puting as many application scenarios require an intelligent
environment to infer what a person is doing or attempting
to do. Essential to realizing these applications is activity rec-
ognition, which is emerging as an important research area in
recent years. In general, activity recognition techniques
have mainly focused on the direct observation of people
and their behaviors with cameras or wearable sensors
(e.g., accelerometer, gyro). To date, many efforts have been
made to learn human activities by mining from a broad
range of signal sources, such as videos and images [6], radio
frequency of wearable or wireless sensors [7], [8], Wi-Fi [9],
and even object vibration fluctuations [10].

Recognizing activity from wearable sensors has become a
popular research topic in the past few years. This approach
typically requires human subjects to wear a number of sen-
sors [11], [12] or RFID tags [13]. Hence, it has two main
shortcomings. It may be impractical to require people wear-
ing sensor devices all the time, and the other obstacle is that
those sensor devices typically need regular maintenance
(e.g., battery replacement). As a result, sensor based activity
recognition is not always practical, particularly in monitor-
ing elderly people with cognitive disabilities.

Recently, device-free activity recognition has drawnmuch
attention since it does not require subjects to wear any devi-
ces. Instead, sensor devices are placed in the environments,
and radio signal fluctuations induced by subject’smovements
can then be collected and analyzed to recognize activities [14],
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[15], [16], [17]. Radio Signal Strength indicator (RSSI) and
Channel State Information (CSI) are explored to correlate sig-
nal fluctuations to each of the activities. These systems typi-
cally require a dense deployment of sensor devices which
may incur high cost in both deployment and maintenance.
With the advancement of RFID technology, we have seen
more and more RFID tags and devices deployment in indoor
settings. Recentwork [18], [19] suggest exploiting RFID signal
for device-free activity recognition. Thesework typically have
stringent requirements on tag placement such as density and
distance between tags. For example, a recent study by
Wagner et al. [20] shows that an optimal tag placement is
needed to alleviate inaccuracy caused by the variability of
RSSI. Such optimal tag placement requirement may incur
considerable deployment cost, hindering the ease of RFID
deployment for practical applications. In addition, existing
works use passive tags mixing with active tags, in which
active tags need more expenditure in real deployment. They
usemore advanced signal measurement of RFID like CSI [21],
[22], however, not many RFID manufacturers can provide
such hardware-level support. Obtaining RSSI is still the easi-
est way to exploit RFID signal since it can be easily obtained
from off-the-shelf RFID devices, which result in more cost-
effective solutions. However, RSSI signal suffers from high
uncertainties due to the nature of signal fluctuation in real-
world conditions such as distraction, diffusion and degrada-
tion, and being noise-sensitive. Hence, it is particularly chal-
lengingwhen dealingwith fine-grained activities [18].

To overcome signal uncertainty, we exploit sparse repre-
sentation over RSSI, and study how to learn signal strength
fluctuation to improve system robustness and effectiveness.
Sparse coding is a common technique to model data vectors
as sparse linear combinations (i.e., sparse representation) of
basis elements, and has beenwidely used in image processing
and computer vision applications [23], [24], [25]. Prior work
on classification using sparse representation has mainly dealt
with images. There are few work on sparse representation for
activity recognition by exploring signal strength fluctuation
due to its high uncertainty in terms of physical and deploy-
ment in real world. We propose a dictionary learning
approach to uncover the structural information between RSSI
signals of different activities by learning the compact and dis-
criminative dictionaries per activity. In particular, we model
each predefined human activity by learning discriminative
dictionaries and its corresponding sparse coefficients using
features extracted and selected from raw RSSI streams.
The obtained sparse coefficients are systematically examined
as enhanced features to better discern different activities.
To enhance the robustness, we further design a Canonical

Correlation Analysis [26] (CCA)-based greedy feature selec-
tion approach to decipher the most informative features from
noisy RSSI raw signals.

In this paper, we develop an RFID-based, device-free
activity recognition system by leveraging off-the-shelf, pure
passive RFID tags and exploiting easy-to-obtain RSSI signal.
Fig. 1 illustrates the system setup and gives a high-level over-
view. Passive RFID tags are deployed in an environment
(e.g., on the wall in a room) forming a tag array. We design
our system in a way that it is insensitive to tag placement
such as distance between tags (Section 4.6), lowering the bar
for system deployment and making it a more practical solu-
tion. We conduct extensive real-world experiments by com-
paring our system to the state-of-the-arts, and discovering
the system bottleneck. The results demonstrate that our sys-
tem achieves robust performance (�70 percent accuracy for
12 daily activities in person-independent validation strategy
and �95 percent in person-dependent validation strategy).
Previous studies [20] show that tag density has a great impact
on system performance.We conduct empirical studies on tag
arrangement such as distance between tags. The results
show that our system allows arbitrary tag arrangement
within a specified distancewithout significant negative effect
on system performance (Section 4.6), alleviating nontrivial
tag configuration in real deployment. In general, our system
offers several advantages such as easy to deploy, mainte-
nance free, low cost, and lightweight in computational cost.
Themain contributions of ourwork are summarized below:

� We develop a compressive sensing dictionary-based
learning approach to uncover structural information
among RFID signals of different activities. Compared
to existing approaches, our approach achieves more
compact representation of activities while preserving
richer information and uncovering invariant pat-
terns, thereby underpinning an efficient and robust
activity recognition system.We show that, even using
noisy and uncertain RSSI signals, our algorithm still
achieves good performance in terms of both person-
independent and person-dependent activities.

� We propose a lightweight but effective feature selec-
tion method to assist the extraction of more discrimi-
native signal patterns from noisy RFID streams. We
particularly exploit an unsupervised and filter-based
feature selection approach based on CCA, which not
only retains the natural assignment of feature com-
ponents, but also uncovers the interdependency
between feature components.

� We validate and evaluate our system through proto-
type applications and conduct extensive experiments

Fig. 1. (a) The proposed lightweight setup: A person performs different activities between the wall deployed with an RFID array and an RFID antenna.
(b) The activities can be recognized by analyzing the corresponding signal strength fluctuation, Received Signal Strength Indicator (RSSI).
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in both office and home settings. Our experimental
results demonstrate the effectiveness and efficiency
of the proposed techniques.

The remainder of the paper is organized as follows. We
present the motivating applications and formulate our
research problems in Section 2. The proposed approach and
technical details are described in Section 3. In Section 4, we
report the experimental results. We overview the related
work in Section 5 and wrap up the paper in Section 6.

2 BACKGROUND

In this section, we first present several representative appli-
cations that can be benefited from our device-free activity
recognition system, and then discuss two important obser-
vations, which hold key groundings for the proposed recog-
nition algorithms.

2.1 Motivating Applications
Fall Detection. With the great progress of medical technolo-
gies, many countries are facing the issue of aging society
where there will be a lower proportion of people providing
necessary levels of care to a large portion of elderly people.
Meanwhile, the problem of huge nursing cost has a big
impact to aged care. The demand for home surveillance sys-
tems is rising, and such systems help elderly people stay at
their own homes longer and safer, which reduces the neces-
sity for caregivers to oversee individuals (especially seniors).

In particular, falls are the leading cause of fatal injuries
for people aged 65 and above [27]. By monitoring the activi-
ties of an elderly, we could detect the likely falls (e.g., get-
ting out of bed, going to bathroom), and issue an alert
timely. Obviously, it is impractical to require the older peo-
ple to carry devices all the time.

Ambulatory Monitoring. Posture recognition and monitor-
ing are critical in the medical care, e.g., ambulatory monitor-
ing, because physiological responses, such as changes in
heart rate or blood pressure, may result from changes in
body position and physical activities [28]. Continuous moni-
toring and automatic detection of subtle behavioral changes
are valuable for physicians and caregivers to estimate the
physical well-being of a person.

Sleep Monitoring. Sleep posture recognition is crucial
for elderly people as sleep disorders can be associated with
some particular diseases, e.g., restless leg syndrome and
diabetes [29]. Device-free activity monitoring is an improve-
ment and good supplementary over camera-based monitor-
ing, which suffers from privacy issues and poor performance
at low-light conditions.

2.2 Observations and Problem Formulation
To gain better understandings of the groundings about this
proposed work, we present two observations from the RFID
RSSI data we collected: i) RSSI signal variations are hard to fit
in a straightforwardway; and ii) there exist invariant underly-
ing patterns of RSSI signal variationswhich can be explored to
design a learning algorithm for identifying different activities.

Observation 1. It is well known that RSSI is quite compli-
cated in real environments due to signal reflection, diffrac-
tion, and scattering, especially for the passive RFID tags. It
is often severely affected by the propagation environment,
the tagged object properties, or human movements in the
signal coverage area. Moreover, the signal strength of a
passive RFID tag is uncertain and non-linear [18], [30]. As

shown in Fig. 2a, the RSSI variations cannot be easily fitted
using generic linear and polynomial regressions since the
fitting residuals are quite large. It is therefore impossible
to directly use raw RSSI signal in activity recognition.

Observation 2. Although RSSI reflects more on the uncer-
tainty and non-linear distributed patterns, we can still
observe some interesting characteristics of RSSI. More spe-
cifically, we discover that the variations of signal strength
reflect different patterns, which can be exploited to distin-
guish different activities. Fig. 2b shows the distinctive fluc-
tuation patterns of signal strength collected from activities
walking and kicking left leg, respectively. From the figure, it is
clear that the distribution and accumulative probability of
RSSI of these two activities are different anddistinguishable.

From above observations, RSSIs of passive RFID tags
embody certain patterns for different activities, which can
be exploited for effective activity recognition. We therefore
formulate our problem as follows.

Let S � Rt (t is the number of tags) be the domain of
observable signal strength fluctuation (RSSI indicator in this
work) s, and L 2 f1; . . . ; Kg � R be the domain of output
activity label l (K is the number of activities). Suppose
we have n RSSI and activity label pairs fðsi; liÞjsi 2 S;
li 2 L; i ¼ 1; . . . ; ng. The training dataset can be expressed as

S ¼ ½s1; . . . ; sn� 2 Rt�n

l ¼ ½l1; . . . ; ln�T 2 Rn:
(1)

Our goal is to learn a predictor F : S ! L using the training
dataset, to assign the most appropriate activity label for a
given query sample.

3 THE PROPOSED SYSTEM

The overall architecture of our proposed system is shown in
Fig. 3. The whole process consists of three main stages:

Fig. 2. (a) Signal strength fluctuation of the activity walking and its
corresponding linear/quadratic/cubic/polynomial fittings and residuals.
(b) The signal distribution pattern of activities walking (top) and kicking left
leg (bottom).

YAO ET AL.: COMPRESSIVE REPRESENTATION FOR DEVICE-FREE ACTIVITY RECOGNITION WITH PASSIVE RFID SIGNAL... 295

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:18:01 UTC from IEEE Xplore.  Restrictions apply. 



� Processing the noisy raw signal streaming data from
various RFID tag inputs into individual segments,
and then extracting low-level statistical features
from each segment and the salient subset of features
are selected (Section 3.1),

� Learning a compact and discriminative dictionary
for each activity using the selected features (Section
3.2), and

� Given a new streaming signal, the activity recogni-
tion problem is equivalent to finding the dictionary
from the learned activity dictionaries that best
approximates the testing sample (Section 3.3).

We will describe the technical details of these stages and
the algorithms in the rest of this section.

3.1 Feature Representation
The first major task is to divide the continuous sequence of
RSSI data stream into a set of individual segments, where
each segment corresponds to a specific concept or an activ-
ity (e.g., one segment corresponds to Sitting, and another
segment corresponds to Standing etc). Segmentation helps
the classifier better understand the underlying activity, by
illustrating the temporal dependency, and to compress the
streaming data as well.

We incorporate the temporal information during the seg-
mentation process of feature transformation. We divide the
raw streaming signal data into segments where each seg-
ment is generated by a sliding window based method. So
all relevant information can be extracted as features from
each single segment.

The continuous S will be divided into a set of individual
segments with equal size S ¼ fS1; . . . ;Sng. We set segment
size to 6 in this work. It is well understood that high quality
and discriminative features are essential to improve the classi-
fication accuracy of any pattern recognition system. After
dividing the streaming segments, the information is then
transformed by designing 7 types of lightweight statistical fea-
ture vectors from each segment, and they are listed in Table 1.

The extraction process in our approach yields a total of m
feature vectorsO ¼ fo1; . . . ; oig, where o 2 Rm, withm ¼ 7� t
where t is the number of tags. However, some features might
confuse, rather than help, the classifier to discriminate activi-
ties. Also, due to the “curse of dimensionality”, the perfor-
mance may degrade sharply as more features are used when
there is not enough training data to reliably learn all the
parameters of the activity models. In general, to achieve the
best classification performance, the dimensionality of the fea-
ture vector should be as small as possible, namely keeping
only themost salient and complementary features.

Fig. 4 shows the correlations between features in a 2D
space. Fig. 4a shows that although the Mean feature can

roughly characterize the walking activity from the other four
activities, the two features (Max and Mean) cannot well sep-
arate the five activities. In Fig. 4b, the Variance feature can
help to identify activities high arm waving (horizontal) and
bending over, but these two activities cannot be characterized
well along the Min feature due to intersections and the over-
lapping. In such cases, the Min feature is irrelevant or
redundant, and does not provide useful information to
improve the classification accuracy. In addition, keeping the
dimensionality small could reduce the computational cost
such that the recognition algorithms can be implemented
and performed on lightweight devices such as mobile
phones. Besides, smaller and discriminative feature sets can
decrease the latency of recognition system, which is a main
concern in activity recognition applications.

To systematically assess the usefulness and identify the
most important features for discriminating different
activities, feature selection techniques are needed. In particu-
lar, we propose a filter-based unsupervised feature selection
method. Compared to the existing feature selection
approaches, which treat each component of features inde-
pendently, we study the correlations between features using
Canonical Correlation Analysis [26]. We compute the canon-
ical correlation for each pair of features and generate feature
subsets using a greedy algorithm based on computed pair-
wise canonical correlations.

CCA Ranking. The initial rankings for each pair of features,
where two feature vectors are given, and a projection is com-
puted such that they are maximally correlated in the
dimensionality-reduced space.Wefirst applyCCA to all pairs
of the extracted features. The result is a similarity matrix of
canonical correlations. For each pair of feature vectors {oi, oj}

that can be linearly mapped into: oi ! wT
oi
oi and oj ! wT

oj
oj,

where woi 2 Rm and woj 2 Rm, their correlation coefficient

rij can be obtained bymaximizing the following equation:

rij ¼
wT
oi
oio

T
j
wojffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
oi
oio

T
i
woi

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT
oj
ojo

T
j
woj

p : (2)

Fig. 3. The architecture of our proposed activity recognition system.

TABLE 1
Statistical Features and Brief Descriptions

No. Feature Description

1 Min Minimal value of Si
2 Max Maximal value of Si
3 Mean Average value of Si
4 Variance The square of standard

deviation of Si
5 Root Mean Square The quadratic mean value of Si
6 Standard Deviation Measure of the spreadness of Si
7 Median The median Si
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After applying to all pairs of features, we can generate an
initial ranking for all feature pairs. A higher rank is assigned
to those weakly correlated and thus complementary feature
pairs. Strongly correlated and thus redundant feature pairs
get lower ranks. The initial ranking facilitates the selection
of descriptive and complementary features.

Algorithm 1. Activity-Specific Dictionary Learning

Input: Training sample matrix O ¼ fo1; . . . ; oNg, dictionary
size d

Output: DictionaryD and sparse coefficients X
Initialize: Dictionary matrix Dð0Þ 2 Rm�K with ‘2 col-
umn normalization and J ¼ 1

1: while (!= stopping criteria) do
2: Use orthogonal matching pursuit to compute the sparse

coefficients xi for each training sample oi by solving the
optimization problem.

min
D;xi
jjoi �Dxijj22; s.t. jjxijj0 � to (3)

3: Update dj, the jth column ofDJ�1

4: for j ¼ 1 : N do
5: Find a group of vectors:

�j  fi : 1 � i � N; xiðjÞ 6¼¼ 0g (4)

6: Compute the overall representation error matrix Ej by:

Ej  ½oj; . . . ; joN � �
X
i 6¼j

dix
i
t (5)

7: Extract the ith column in Ej where i 2 �j to form ER
j

8: Apply SVD to obtain ER
j ¼ UDV, and di is updated

with the first column of U. The non-zero elements in

xit are updated with the first column of V� Dð1; 1Þ
9: end for
10: J ¼ J þ 1
11: end while

Forward Searching. We apply a simple greedy method to
find a feature subset based on their pairwise rankings,
which traverses the full search space provided by the initial
ranking of canonical correlation coefficients of the feature
pairs. Forward selection refers to a search that begins at the
empty set of features and the features are progressively
incorporated into larger and larger subsets. Then, we use
the classification performance to evaluate the new feature
combinations, and the searching process will be terminated
when either the predefined dimensionality of features is
reached or all features are already considered.

3.2 Activity Dictionary Learning
A well learned dictionary by fitting overcomplete basis with
a collection of training samples can generate more compact
and informative representation of given data, thus it helps to
achieve better recognition performance.We propose a sparse
representation based approach to recognize human activity
by investigating RSSI fluctuations. We learn one single dic-
tionary for each activity, which is formed by a set of basis
vectors learned by solving a sparse optimization problem.
Each basis vector can effectively capture part of the key
structural information of the training data from each activity.

There are several advantages in learning activity dictionar-
ies. First, the dictionary for each activity is learned from a col-
lection of training samples via solving a ‘1-norm optimization
problem [31]. Second, the dictionary learning and training
process of each activity is independent from other activities,
which makes an activity recognition system flexible and scal-
able, as no change is needed on the existing activity dictionar-
ies when a new activity is added. Finally, each dictionary can
be trained and learned by using only very small number of
training samples, which can effectively relax the heavy work-
load on labeling and annotating training data in activity rec-
ognition, as required by themost existing approaches.

Assuming there are K types of activities, we construct K
dictionaries (one dictionary for each activity). After that, a
new signal is evaluated using the K dictionaries to find the
most appropriate activity label. We present the details of
the proposed algorithm in the following.

Let Ok ¼ fok1; ok2; . . . ; oki g be the training sample from

activity class Ck. To learn and encode the information of the
testing samples belonging to a particular activity class, we
first construct an overcomplete dictionary Dk for each class
Ck. Recall the set of training samples from kth activity as
Ok ¼ fok1; ok2; . . . ; okNg, where oki 2 Rm, m is the feature
dimensions. We intend to learn a dictionary matrix
Dk 2 Rm�K (which equals to KðK > mÞ vectors fdk

1; . . . ;

dk
Kg), over which Ok has a sparse representation Xk ¼
fxk1; . . . ; xkNg. In this case, the original training matrix Ok can
be represented as a linear combination of no more than
tk0ðtk0 < < KÞ dictionary vectors. The optimization problem
can be formalized as

minD;XjjO�DXjj22; s.t. jjxijj0 � to: (6)

We adopt the K-SVD algorithm [32] to solve this problem,
which performs two steps iteratively until converged. The
first stage is the sparse coding stage, where D is kept fixed
and the coefficient matrix X is computed by orthogonal
matching pursuit algorithm. In the second stage, the dic-
tionary D is updated sequentially by allowing the relevant
coefficients to be unique to K-SVD, which results in a
faster convergence. The dictionary learning algorithm is
detailed in Algorithm 1. The complexity is proportional to
Nðd2K þ 2mKÞ.

3.3 Exploiting Dictionary Coefficients
One advantage of having class-specific dictionaries is that
each class is modeled independently from the others, and
hence the painful repetition of the training process can be
avoidedwhen a new type of activity is added into the system.

After learning K individual activity-specific dictionaries,
any new incoming test RFID signal can be represented in
terms of its dictionary basis from the learned dictionaries. To

Fig. 4. Illustrative examples of feature correlations in 2D space.
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calculate the sparse coefficients of an input RFID sample
w:r:t: a given dictionary, we use orthogonal matching pur-
suit [33] to project the testing RFID sample on the subspace
spanned by the dictionary basis, in which strong correlates
with the signal or its residual are selected and used to calcu-
late the coefficients.

Given multiple activity-specific dictionaries and coeffi-
cients obtained in Algorithm 1, a series of different methods
can be leveraged to classify a new test signal over these dic-
tionary basis. We propose several strategies of exploiting the
learned sparse coefficients, which are detailed as follows:

� Reconstruction error (RE). The reconstruction error
for the kth activity (k 2 ½1; K�) can be calculated as

ek ¼ jjo	 �DkXkjj2: (7)

Then the activity label of o	 can be assigned using

lo	 ¼ lðargmin
k

ekÞ: (8)

� Maximal coefficient (MC). The activity label is associ-
ated with the training samples having the largest
absolute value of coefficients of Xk

lo	 ¼ lðargmax
k

dikÞ: (9)

� Maximal mean of coefficients (MMC). The activity
label is the top label with the maximal sum of coeffi-
cients of Xk divided by dimension of o	 m

lo	 ¼ l

�
argmax

�X
i

di
k=m

�
: (10)

� Maximal sum of coefficients (MSC). The activity
label is the top label with the maximal sum of abso-
lute value of coefficients of Xk

lo	 ¼ l

�
argmax

�X
i

jdjik
��

: (11)

� Concatenate coefficients (ConSVM). We stack the
learned coefficients with original features to form a
new feature vector, and then feed the enhanced fea-
tures into SVM for classification.

Our proposed activity classification is summarized in
Algorithm 2.

Algorithm 2. Overall Algorithm for Activity Classification

Input: Sensor samples S ¼ S1; . . . ;SK , where K is the number
of activity classes; Querying signal samples
S	 ¼ fs	1; . . . ; s	Ig

Output: Activity label l	 ¼ fl	1; l	i ; . . . ; l	Ig of S	
1: Extracting Nk feature vectors of signal samples from each

activity class Ck using the proposed feature representation
Section 3.1

2: Constructing K activity-specific dictionaries D ¼ fD1; . . . ;
DKg

3: while i! ¼ I do
4: Transform S	 to featuresO	 (Section 3.1)
5: Computing sparse representation x	i of s	i using K dictio-

nariesD (Section 3.2)
6: Outputting activity label by exploiting coefficients Dk

(Section 3.3).
7: end while

4 EXPERIMENTS

In this section, we first briefly introduce the experimental
settings including hardware setup, tag placement, and data
acquisition. We then report our extensive experiment
studies on the proposed approach. Our experiments are
intended to address the following questions: i) how does
our proposed approach compare with other state-of-art
methods? ii) what are the optimal settings of our proposed
method? iii) how does proposed feature selection affect the
activity recognition performance? Sections 4.2, 4.3, and 4.4
devnote to these three questions correspondingly. We also
brief analyze the recognition delay of our proposed
approach in Section 4.5 and investigate the sensitivity of our
approach to indoor environments in Section 4.6.

4.1 Experimental Settings
Hardware Setup. We used one Alien 9,900+ RFID reader,
one circular antenna and Squig inlay passive RFID tags in
our experiments. Passive tags were placed on the wall
with certain distance. The antenna is � 1:3 m high from
the ground, arranged in an angle of � 70 degree to ensure
it can catch all the tags’ signals. The subjects stood between
the wall and the antenna (� 1.5 to 1.8 m) and performed
different predefined activities. A sequence of RSSI signals
were collected at a sampling rate of 0.5 second. The overall
set up is shown in Fig. 5.

It may be a concern that RFID-based activity recognition
systemsmay pose a potential risk to people’s health. Commer-
cial RFID readers and tags operate at electromagnetic frequen-
cies in the low-energy range, effectively eliminating the risk of
interaction with human cells. Furthermore, a passive tag itself
has no baseline electromagnetic activity and only produces a
signal in response to the interrogation from an RFID reader.
The tags themselves even have been approved for implanta-
tion in humans and have shownno negative health effects [34].

Sampling Rate. Passive RFID tags tend to be noisy. For
example, one of the challenges in existing RFID systems is
false negative readings, caused by missed detections (i.e., a
tag in the antenna’s reading range may not be detected).

Fig. 5. Experimental setup: (a) bedroomsetup and (b) whole house setup.
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Meanwhile, RSSI data is sensitive to environments,
e.g., some disturbance from an environment can cause RSSI
fluctuations. Appropriate sampling rates can reduce the
aforementioned problems. However, too small sampling
rates make our method more sensitive to the noise of RFID
readings, while too big sampling rates blur the inter-class
activity boundaries. In our implementation, we collected
the continuous RSSI data streams every 
 0:5 second.Data
Collection. The data acquisition process involves six subjects
(five males and one female), and the set of 23 fine-grained,
orientation-sensitive activities (including 6 postures and 17
actions, as shown in Fig. 11). These activities are the most
common ones in people’s daily lives. Identifying orientation
of postures can be valuable when combined with the layout
of the place in practice. For instance, if we know that a table
is on the left side of an elderly person, based on the layout,
when the orientation of a fall is detected, it is possible to
estimate how severe the fall would be (e.g., she may hit the
table if she is falling to her left). In our experimental study,
each subject performed each activity for 120 seconds and all
23 different activities performed sequentially by one subject
were regarded as one set of activity data. We make the data-
set publicly available1 for reproducing our results and sup-
port other researchers in the area.

Validation Strategy. We validate our approach using two
strategies: person-dependent and person-independent. The for-
mer uses the partial samples of each subject for testing and
the remaining samples of the same participant are used for
training. The final result is the averaged value of all subjects.
This is reasonable since elderly people often live alone. The
latter applies the one subject out strategy, where we use the
data from five subjects as training examples to train our
algorithm and build activity recognition models. The data
from the left-out subject is used for testing. This process iter-
ates for every subject. The final result is the averaged value
across all the subjects.

Performance Metrics. Instead of using the overall classifica-
tion accuracy, we evaluate our proposed approaches using F1
score, which is a harmonicmean of precision and recall scores

F1 ¼ 2� Precision�Recall

PrecisionþRecall
: (12)

4.2 Overall Comparison
In this section, we report our experiments that focus on two
aspects: i) the performance comparison of a set of sparse repre-
sentation dictionary-based methods, and ii) the performance
comparison of our proposed method with other five widely
used generic classifiers in sensor-based activity recognition.

Dictionary-Based Approaches Comparison. We first com-
pared the series of proposed dictionary-based recognition
methods with varying number of selected features (Section
3.3) to discern the best strategy out of them before conducting
comparable experiments with other methods. Figs. 6a and 6b
show the results. From the figure, we can see that the recon-
struction error basedmethod produces theworst performance
in both person-dependent and person-independent scenarios,
with only less than 60 percent in accuracy. The other four
methods demonstrate the similar performance, all of which
can obtain nearly 96 percent F1-score under person-depen-
dent and over 60 percent F1-score under person-independent

strategy. We selected MC as the best strategy as it performs
the best and shows stable recognition among all proposed dic-
tionary based approaches compared toMCC andMSE, and its
light computational cost compared to ConSVM, which
requires a full spectrum of stacked coefficients as extra fea-
tures.WeusedMC in the following experiments.

Comparison with State-of-the-Arts. To evaluate the perfor-
mance of activity recognition, we further compared MC
with a few state-of-the-art methods widely used in the activ-
ity recognition community such as Multinomial Logistic
Regression with ‘1 (MLGL1), SVM with linear kernel
(LSVM), k nearest neighbor (kNN), random forest (RF), and
Naive Bayes (NB). We selected these methods since they
have already been successfully applied for sensor-based
activity recognition applications in the recent literature.

� Multinomial Logistic Regression with ‘1 (MLGL1) is a
modification of linear regression that is able to predict
dependent variables based on the logistic function.
Multinomial (or multivariate) computations are
solved by the decomposition into a series of binary
variables. In thiswork, we integrated the ‘1 regulariza-
tion into linear classifier in the objective term. Given
our multi-class posture recognition problem, we com-
bined the ‘1 regularization with multinomial logistic
regression, which models the conditional probability
Pwðlj ¼ �1joÞ. The prime problem with ‘1 regulariza-
tion can be calculated by optimizing the log likelihood

lk ¼ argminw
XK
k¼1
jjwkjj1 �

Xn
i¼1

XK
k¼1

likw
T
k oi

þ
Xn
i¼1

log
�XK

k¼1
expðwT

k oiÞ
� : (13)

� k-Nearest Neighbor (kNN) is a common classifier for
a variety of classification problems. It predicts the
class of a sample by a majority voting of the class
labels of theK nearest training instances.We set k ¼ 3.

� Linear Support Vector Machine (LSVM) aims at find-
ing the best separation of binary-labeled instances by
determining a hyperplane which maximizes the
margin between support vectors of different classes.
We set C ¼ 1.

� Random Forest (RF) builds a forest of decision trees
that have the same distribution but independent out-
put classes. It is based on a random selection of fea-
tures for each tree and construction of a combination
of the individual tree outputs. We set the number of
trees as 1,000.

� Naive Bayes (NB) classifier finds the most posterior
probability Prðlkjo	Þ for a given testing RSSI sample
o	 as its predicted activity label lðo	Þ

lk ¼ argmax
lk

PrðlkÞ
QD

j Prðo	j jlkÞPk
j PrðlkÞ

QD
j Prðo	j jlkÞ

¼ argmax
lk

PrðlkÞ
YD
j

Prðo	j jlkÞ;
(14)

where prior probability PrðljÞ is proportional to the
size of training samples in each posture class, which
is obtained via dividing number of samples belong-
ing to posture lj by total number of training samples,1. http://linayao.com/data/rssi-activity.zip
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i.e., PrðljÞ ¼
jolj j
jOj . K is the number of posture classes.

Conditional probability on each dimensional RSSI
Prðo	j jlkÞ � Nðmj; s

2
j Þ can be obtained from the train-

ing dataset.
We can clearly draw the following observations from the

results shown in Figs. 6c and 6d:

� The performance of all the methods are gradually
improved when more features are selected, and the
improvement are not obviously when a certain num-
ber of features are selected. Specially, the performance
may decrease with larger size of the feature size.

� Our dictionary-basedmethodMC consistently outper-
forms all the state-of-the-arts. LSVMshows the compa-
rable performance with MC under person-dependent
validation, but MC’s recognition accuracy is more
competitive compared with LSVM. This result shows
the better ability of our proposed method in dealing
with the intra-class variability across different persons.

Taking a closer look at the accuracy for each activity in
terms of person-dependent and person-independent valida-
tions from Fig. 7, we can see that the results under person
dependent validation shows robust outcomes, where almost
all the activities can be correctly identified. For the person-
independent validation, our method can distinguish sitting,
sitting to standing and arm weavingwith reasonable good per-
formance, also can recognize falling with over 60 percent
accuracy across different persons. But it fails to identify
some lower body activities (e.g., kicking) and also confuses
walking with sitting to standing due to failure to capture the
activity signatures of different persons. The possible reasons
might lie in that i) from the methodology perspective, intra-
class variability is still a big challenge for activity recognition
community, and more informative and discriminative pat-
terns discerning different persons should be developed from

the RSSI fluctuations, and ii) from the hardware setting per-
spective, according to our preliminary research on tag place-
ment related to tag density, single-line tag placement is
capable of capturing signal variations, but it may fail to
detect fine-grained body movements, such as sitting leaning
right or left. Furthermore, it is also hard to capture the signal
variations caused by subjects with different heights.

To achieve better accuracy and higher sensitivity, we
tried to increase single-line tag placement to multiple lines,
eventually forming an array. Different lines correspond to
different parts of human body. For instance, the upper line
of tags would be expected to reflect the variations from
upper human body like waving arms or shaking head; the
middle line of tags would be more sensitive to movements
of torso; and the bottom line of tags are supposed to have
more response to lower body movements such as falling. In
this way, we may perform more robust activity recognition
with the collected full spectrum of RSSI variations. More
technical details can refer to our previous work in [30].

4.3 Parameter Tuning
Impact of Selected Feature Size k. The top k features control how
many of the top effective features are used to feed into the clas-
sification algorithm.We varied the value of k from 4 to 84 (full
feature set) with 5 stepsize under some fixed dictionary size d.
The results are shown in Figs. 8a and 8c. For all the feature
selection tests, we kept the dictionary size fixed. The result
shows that in most cases feature selection improves classifica-
tion performance in comparison with the full feature set. We
also can observe that the increasing number of features
selected, the performance increases as well until k reaches
around 64 in both person-dependent and person-independent
validations, at that point our classification algorithm performs
the best. After that, the performance shows some slight degra-
dation, especially for the person-independent scenario.

Fig. 6. (a) Dictionary-based methods comparison under person dependent validation. (b) Dictionary-based methods comparison under person inde-
pendent validation. (c) Comparison with other methods under person dependent validation. (d) Comparison with other methods under person inde-
pendent validation (the legend of (d) is same as (c)).

Fig. 7. (a) Confusion matrix under person dependent validation. (b) Confusion matrix under person independent validation.
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Impact of Dictionary Size d. The activity dictionary is an
overcomplete set of vectors and the number of vectors indi-
cates the size of the dictionary. Similar to the experiment of
studying the impact of k, we varied the dictionary size d
from 4 to 59 with a set of fixed feature size k. The results are
reported in Figs. 8b and 8d. From the figure we can see that
the classification performance reaches the highest at a certain
point (e.g., d ¼ 9 for Fig. 8b). After that, the performance
stays stable and even slightly decreaseswhen d gets larger.

Impact of Training Size. The third important factor of affect-
ing the activity recognition performance is how much train-
ing data should be involved in our proposed method. We
conducted the evaluation with fixed k ¼ 69 and d ¼ 9 by
varying the training ratio of the whole dataset from 0.1 to 0.2
with stepsize 0.2 for the person-dependent scenario. The
results are shown in Fig. 9a. We can observe that only using
10 percent samples for the training, our proposed method
reaches over 80 percent accuracy, and it reaches over 90 per-
cent with only 20 percent data as the training data. The per-
formance keeps improving along with more training
samples. In our experiments, we set 0.2 as our default train-
ing percentage. Fig. 9b shows the result under the person-
independent scenario, where we used p ðp ¼ 1; 2; 3; 4; 5Þ per-
son data for training and 1 person’s data for testing. The per-
formance keeps increasing from over 50 percent with 1
person’s data as the training data, and stabilizes over 66 per-
cent when we used 3 persons’ data as training data. The
improvement is not quite significant after that, thus we set it
as our default setting under person-independent validation.

4.4 Comparison on Feature Selection
In this experiment, we evaluated our proposed CCA based
feature selection method with three widely adopted feature
selection methods in terms of efficiency (e.g., running time)
and effectiveness (e.g., precision/recall/F1). Specially, we
compared the proposed CCA-based forward selection with
fisher score, sequential forward with relief-f score and forward
selection with F-statistics score based methods.

� Fisher Score. It is for quantifying the score of ith fea-
ture oi

Si ¼
PK

k¼1 nkð�oik � �oiÞT ð�oik � �oiÞPK
k¼1 nkvik

; (15)

where nk is the number of samples in the kth activity
class, �oik and vik are the mean and the variance of the
ith feature, and �oi is the mean of the ith feature.

� Sequential Forward with Relief-F Score (SFRF). This
technique estimates the relevance of features accord-
ing to how well their values distinguish between the
data points of the same and different activity classes
that are close to each other. It computes a weight for
each feature to quantify its merit. Its weight is
updated for the signal samples presented in each
activity class, according to the evaluation function

Si ¼ Si þ
X

j2L;j 6¼lðoiÞ

P ðljÞ
1� P ðljÞ joi � nearmissjiðoiÞj

� joi � nearhitiðoiÞj;
(16)

where nearmissjðoiÞ and nearhitiðoiÞ denote the
nearest RSSI samples to oi from the same and differ-
ent activity classes, respectively.

� Forward Selection with F-Statistics Score (SFSS). This
method measures the discrimination of multiple sets
of real numbers, which can be calculated using

Si ¼
Pl

j¼1ð�oji � �oiÞ2Pl
j¼1

1
nj�1

Pnj
k¼1ðojk;i � �ojiÞ2

; (17)

where nj is the number of samples in the jth activity
class, �oi denotes themean value of tag i in the training
dataset, and �oji is the mean value of the ith tag in the
jth activity class. The numerator indicates the dis-
crimination between positive and negative sets, and
the denominator indicates the one within each of the
two sets. The larger the F-score is, the more likely this
feature is discriminative in the activity recognition.

A robust feature selection method should generate con-
sistent feature selections for a given task and a given set of

Fig. 8. Experiments on parameter tuning: (a) Impact of different feature size k with a set of fixed dictionary size d under person dependent validation,
(b) impact of different dictionary size d with a set of fixed feature size k under person independent validation, (c) impact of different feature size k with
a set of fixed dictionary size d under person independent validation, and (d) impact of different dictionary size d with a set of fixed feature size k under
person independent invalidation.

Fig. 9. (a) Impact of training ratio under the person dependent validation, (b) impact of number of persons as training data under the person
independent validation, (c) robustness evaluation, and (d) running time comparison.
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features independently from the input data. In order to
investigate the robustness of the proposed feature selection
method, we employed feature selection on all six subjects,
and expected the evaluated feature selection methods to
generate similar feature types and subsets. For all rank-
based methods, we generated complete feature rankings
from 1 to 7 features for CCA based feature selection and
from 1 to all 84 feature components for F-statistics, Relief-F,
Fisher. Rankings were generated for 10 cross validation
runs. The robustness of feature selections was computed by
the intersection of the generated rankings as follows:

IðiÞ ¼ \
m
j¼1F

p
j ðiÞ

i
; (18)

where Fp is the set of corresponding features in the gener-
ated ranking list, FpðiÞ ¼ ffð1Þ; . . . ; fðiÞg; i � n, and n is the
total number of features.

Fig. 9c shows the portion of shared features for all com-
pared feature selection methods and all the target dimen-
sions. We can clearly observe that the robustness of CCA
based method is significantly higher compared with other
generic selection methods. Besides, based on our previous
study, our method reaches the best performance when the
size of feature subset is around 69, at which point the ratio
of shared features are also the highest.

We then compared the running timeof the feature selection
process since recognition delay is a critical concern for activity
recognition applications. The running time can be split into
the feature ranking time and the feature set evaluation time
according to the nature of the algorithms. Our rank-based fea-
ture selections perform an initial ranking for thewhole feature
set and therefore have constant running time independent of
the actual amount of features to be selected. Fig. 9d plots the
running time of three classic feature selection based methods
over the whole dataset. We observe that our proposed CCA-
based feature selection has competitive performance in com-
parison to the other two feature selection basedmethods even
though the fisher scoremethod uses the least time.

4.5 System Latency Analysis
Fast detection of activities is critical, particularly for applica-
tions such as aged care. For example, we should send an
alert to notify care givers as quickly as possible to offer med-
ical assistance for the elderly people when a fall occurs.

Our system has about 4 � 4:5 seconds recognition
latency, which results from two main factors, namely i) data
collection and ii) feature selection. The latency caused by
feature selection can be referred to our previous experiment
in Section 4.4, particularly Fig. 9d. The latency from data
collection comes from two aspects. First, our system evalu-
ates subject’s postures every 0.5 second by using the RSSI
stream of the latest two seconds. Second, the RSSI collector
is programmed with a timer to poll RSSI with a predefined
order of transmission, taking around one second to com-
plete a new measurement with no workarounds.

4.6 Sensitivity to Indoor Environments
Activity recognition from the RSSI changes remains a chal-
lenging task in complex indoor environments due to the dif-
fraction and reflection effects from furniture, layout and
subject’s differences on performing activities. In this section,
we report some empirical results of several experiments
regarding practical issues of our proposed system. These
experimental studies aimed at

� Evaluating the effect of the distances between RFID
tags on the system performance (Section 4.6.1);

� Examining the performance of the proposed system
on object changes (e.g., moving a chair) (Section
4.6.2);

� Studying the effect of the distances between subject
and tag array on the system performance (Section
4.6.3); and

� Investigating how well the system deals with orien-
tation-sensitive activities (e.g., sitting leaning back or
sitting leaning forward) (Section 4.6.4).

4.6.1 Sensitivity of Tag Density

We claim one of advantages of our proposed system is to
relax the deployment from time-consuming and complex tag
placement problem due to the robust feature selection and
compact dictionaries. As long as the tags and the reader can
form a signal field, the tags can be arbitrarily arrangedwithout
significant negative effect on the system performance. To
show this declaration,we systematically studied the sensitivity
of RFID tag density. Specifically, we varied the distance
between two tags from 0.3 to 1 m and ran our system. In
general, smaller distances between tags cause some high
correlations and redundancy. Whilst, too sparse tag arrange-
ments cannot capture useful and complete RSSI patterns. Inter-
estingly, the results of our system (shown in Fig. 10) shows the
insensitivity to the varying tag density, of which the results are
more stable for person-dependent setting compared to the per-
son-independent setting. This advantage makes our system
more practical and attractive in real deployment.

4.6.2 Sensitivity to Room Furniture Changes

To evaluate the sensitivity of the proposed system to room
furniture change, we conducted an experiment where sub-
jects performed activities with and without a chair. In our
experiment, we evaluated four activities: Standing, Walking,
Falling, and Bending Over. Fig. 10c shows the results. From
the figure we can observe that the recognition performance
slightly drops, without any significant change. The results
indicate that the furniture changes affect on the recognition
accuracy, but not in a significant way. The degree of the
effects might be dependent on the material, size and

Fig. 10. Performance comparison of different tag density (distance
between tags): (a) Person-dependent, (b) person-independent, (c) per-
formance comparison on furniture changes, and (d) performance com-
parison on human-tag distance.
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location of the object. More sophisticated investigations on
this will be part of our future work.

4.6.3 Sensitivity to Human-Tag Distance

We varied the distance between the subject and the tags
from 20 to 100 cm with 20 cm intervals due the spatial con-
straints of the testing area, and recorded the system recogni-
tion performance. From the result in Fig. 10d, we can clearly
see that the performance generally remains stable in our
experiment. The reason might lie in the fact that we used
the industry level high-performing RFID reader that covers
bigger area. The small changes in the centimeter level do
not bring significant influence.

4.6.4 Sensitivity to Activity Orientations

We also explored the potential of identifying the orientation-
sensitive activities (shown in Fig. 11). From the experimental
results (see Fig. 12), we can see that the most errors happen
when identifying the activities with a similar intra-class gap
(e.g., falling left and falling right). From the results, we can
see that our method can accurately recognize most of orien-
tation sensitive activities in a cluttered indoor environment
under person-dependent validation.

5 RELATED WORK

The goal of activity recognition is to detect human physical
activities from the data collected via various sensors [6], [35].
There are generally twomainways for activity recognition: i)
to instrument people, where sensors and RFID tags are
attached to human bodies, and ii) to instrument the environ-
ment, where sensors are deployed inside an environment.

5.1 Activity Recognition by Instrumenting People
Wearable sensors such as accelerometers and gyros are com-
monly used for recognizing activities [36]. For example, Kern
et al. [37] design a network of three-axis accelerometers dis-
tributed over a user’s body. The user’s activities can then be
inferred by learning the data provided by these accelerome-
ters about the orientation and movement of the correspond-
ing body parts. However, such approaches have obvious
disadvantages including discomfort of wires attached to the
body as well as the irritability that comes from wearing sen-
sors for a long duration. For example, Krishnan et al. [38] pro-
pose an activity inference approach based on motion sensors
installed in a home environment to avoid such problems.

Recently, researchers are exploring smart phones
equipped with accelerometers and gyroscopes to recognize
activities and gesture patterns. For example, Brezmes et al.
[39] have implemented a real-time classification system for
some basic human movements using a conventional mobile
phone equipped with an accelerometer. The results show
that the capacity of conventional mobile phones in execut-
ing in real-time all the necessary pattern recognition algo-
rithms to classify the corresponding human movements.
Kwapisz et al. [40] describe a different implementation that
uses phone-based accelerometers to perform activity recog-
nition. The authors use labeled accelerometer data from
twenty-nine users for daily activities such as walking, jog-
ging, climbing stairs, sitting, and standing, and induce a
predictive model for activity recognition. To improve the
robustness of activity recognition using mobile sensors,
Henpraserttae et al. [41] address two major issues in using a

tri-axial accelerometer-embedded mobile phone for contin-
uous activity monitoring, i.e., the difference in orientations
and locations of the device. Their algorithms are suitable for
accurate activity recognition using a mobile phone regard-
less of device orientation and location. An extensive survey
on sensor-based activity recognition can be found in [42].

Apart from sensors, RFID has been increasingly explored
in the area of human activity recognition. Some research
efforts propose to realize human activity recognition by com-
bining passive RFID tags with traditional sensors (e.g., accel-
erometers). Daily activities can be inferred from the traces of
object usage via various classification algorithms such as
Hidden Markov Model, boosting and Bayesian networks
[13], [43]. Other efforts dedicate to exploit “pure” RFID tech-
niques for activity recognition. For example, Wang et al. [44]
use RFID radio patterns to extract both spatial and temporal
features, which are in turn used to characterize various activ-
ities. However, such solutions require people to carry RFID
tags or even readers (e.g., wearing a bracelet).

5.2 Activity Recognition by Instrumenting
Environment

Recently, there have emerged research efforts focusing on
exploring device-free activity recognition. Such approaches
require one or more radio transmitters, but people are free
from carrying any receiver or transmitter. Most device-free
approaches concentrate on analyzing and learning distribu-
tion of radio signal strength (RSSI) or radio links. The main
idea is to exploit the phenomenon that RSSI changes signifi-
cantly when an object is passing by. For instance, Liu et al.
[45] introduce a novel application that uses RF tag arrays for
activity monitoring to provide an economically attractive
solution to the traditional image analysis-based approaches.
Youssef et al. [14] propose to pinpoint people’s locations by
analyzing the moving average and variance of wireless sig-
nal strength. Zhang et al. [18] develop a sensing approach
using an RFID tag array. Different from previous schemes,
this work is more cost-effective because it uses passive
tag arrays together with a few active RFID tags. Another
advantage is that it proposes several algorithms to reduce
noise in the readings of passive RFID tags and achieves better
accuracy. Zhu et al. [46] further develop a novel approach for
RFID reader localization using passive RFID tags. However,
most of these efforts focus on localization and tracking. There
are not much work on study device-free activity recognition.
Sigg et al. [17] propose a device-free activity recognition sys-
tem based on a sensor array. Compared to this work, we
develop a robust dictionary-based algorithm for identifying
larger set of daily activities, which extensively exploits the
handy and low-cost radio signals of passive RFID devices.

5.3 Sparse Representation
The theory of sparse representation aims at finding efficient
and compact representations for signals in signal processing
[31], which is primarily suitable for problems like denoising,
compression, inpainting. Sparse representation in general
refers to the process of choosing a good subset of dictionary
elements along with the corresponding coefficients to repre-
sent a signal.

Sparse representation has been widely used in video
tracking, e.g., the monitored object is modeled as a sparse
linear combination of a series of templates [47], [48]. The
employed dictionary plays an important role in sparse
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representation or sparse coding based image reconstruction
and classification, while learning dictionaries from the train-
ing data has led to state-of-the-art results in image classifica-
tion tasks. It has several successful applications, such as face
detection and image classification [23], [24], [25]. For exam-
ple, [25] directly took the training samples of all classes as
the dictionary to represent the query face image, and classi-
fied it by evaluating which class leads to the minimal recon-
struction error of it.

To the best of our knowledge, our work is the very first of
few on investigating the dictionary-based sparse representa-
tion in human activity recognition by learning signal strength
stream. Compared to our previous work in [30], [49], we fur-
ther develop the dictionary-based sparse learning algorithm
for constructing activity dictionary, and explore multiple

strategies of using the learned sparse coefficients of dictionar-
ies under person-independent scenario. Moreover, we have
conducted extensive and thorough evaluations in terms of
person-independent alongwith person-dependent scenarios.

6 CONCLUSION

We have presented in this paper the technical details of a
device-free, unobtrusive human activity recognition system
that holds the potential to support independent living of
older people, which is a critical research and development
area given the significant challenges presented by the ageing
population in most countries nowadays. We particularly
investigate a dictionary-based approach for sparse represen-
tation of noisy and unstable radio frequency identification

Fig. 11. Our proposed algorithm can detect and classify 23 postures and actions with an average accuracy of over 96 percent.

Fig. 12. The confusion matrix of our proposed approach for orientation-sensitive activity recognition.
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(RFID) streaming signals. Our approach achieves a more
compact representation of activities while preserves richer
information, thereby supporting efficient and robust recog-
nition of human activities. The ideas proposed in this paper
are generic and applicable in many other applications. In
particular, we adopt the orthogonal matching pursuit to
solve the sparse optimization problem. We have imple-
mented our system to validate the proposed techniques and
some demonstration video clips are available from the first
author’s homepage.2 We have conducted extensive experi-
ments using real datasets collected in both office and home
settings, and the experimental results demonstrate effective-
ness, efficiency, and robustness of our proposed approach.
We have also investigated the way of extracting robust fea-
tures from raw signal strength stream by designing a simple
but highly rank-based feature selection method. Our dataset
is publicly available to other researchers in the community.3

Our future work will concentrate on validating and fur-
ther developing this system in more complex and dynamic
environments, e.g., what if the locations of furniture change
and what if there are different ways when performing activ-
ities. The work presented in this paper is the first step to rec-
ognize high-level, complex human activities. While we only
focus on atomic postures in this paper, there are widely rec-
ognized three types of human activities: i) actions, which
consist of multiple postures for a single person with tempo-
ral dimension, e.g., “walking”; ii) interactions, which are
activities that involve two or more persons, e.g., shaking
hands with others; and iii) group activities, which are activi-
ties performed by conceptual groups of people, e.g., having
a meeting with a group of people. Identifying and recogniz-
ing more complex human activities is one main goal of our
future work, e.g., inferring concurrent activities, eating and
watching TV.
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