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ABSTRACT
It is still challenging in telecommunication (telco) industry to accu-
rately locate mobile devices (MDs) at city-scale using the measure-
ment report (MR) data, which measure parameters of radio signal
strengths when MDs connect with base stations (BSs) in telco net-
works for making/receiving calls or mobile broadband (MBB) ser-
vices. In this paper, we find that the widely-used location based ser-
vices (LBSs) have accumulated lots of over-the-top (OTT) global
positioning system (GPS) data in telco networks, which can be
automatically used as training labels for learning accurate MR-
based positioning systems. Benefiting from these telco big data,
we deploy a context-aware coarse-to-fine regression (CCR) model
in Spark/Hadoop-based telco big data platform for city-scale lo-
calization of MDs with two novel contributions. First, we design
map-matching and interpolation algorithms to encode contextual
information of road networks. Second, we build a two-layer regres-
sion model to capture coarse-to-fine contextual features in a short
time window for improved localization performance. In our exper-
iments, we collect 108 GPS-associated MR records in the centroid
of Shanghai city with 12 × 11 square kilometers for 30 days, and
measure four important properties of real-world MR data related
to localization errors: stability, sensitivity, uncertainty and missing
values. The proposed CCR works well under different properties of
MR data and achieves a mean error of 110m and a median error of
80m, outperforming the state-of-art range-based and fingerprinting
localization methods.

1. INTRODUCTION
In the past decade, location-based service (LBS) has gained sky-

rocketing usage with big business value because location gives con-
text to current spatiotemporal events such as working, shopping,
payment, navigation, social networking, transportation and secu-
rity. Commercial examples of location context-aware applications
include Baidu Map, Alipay and Uber in China. In the age of con-
text, the global positioning system (GPS) plays an important role
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in locating accurately an mobile device (MD) outdoor with around
±10m errors based on satellite networks. Unfortunately, GPS has
a few weaknesses: 1) energy-consuming, 2) unavailable in many
MDs, 3) requiring line-of-sight to the satellites (e.g., GPS degrades
quickly indoors or underground), and 4) being often turned off for
some private reasons. Therefore, localization methods using mea-
surement report (MR) data from telco networks (GSM, CDMA and
LTE) have attracted intensive research interests in telecommunica-
tion (telco) industry [4, 7, 24, 22, 14, 15, 16, 2, 5].

When compared with GPS, the MR-based positioning systems
have the following advantages [22, 14, 1]: 1) energy-efficient, 2)
available in most mobile phones or devices, 3) better network cov-
erage and workable indoors and underground, and 4) active when
making calls or mobile broadband (MBB) services. Hence, city-
scale localization with telco big data is a good complement to GPS
for a better LBS experience without extra overhead. However, it is
still challenging to achieve a comparable localization performance
of GPS because the current localization error using telco networks
has a very large range 50 ∼ 1000m in different situations [24, 14,
16]. Similarly, city-scale localization has also been investigated us-
ing the WiFi network [8], which is another type of wireless sensor
network (WSN) for positioning tasks with a long history. Indeed,
integration of MD sensor, WiFi and telco network data can achieve
a high outdoor localization accuracy [1]. For simplicity, this pa-
per focuses on deploying a more accurate MR-based positioning
system in the telco big data platform [23, 13, 12, 17, 19]. Such a
direction is promising because the next-generation (e.g., 5G) telco
network will have denser structures (smaller cell sizes) which may
improve the localization performance.

The real-world MR data have four important properties affect-
ing the localization accuracy: stability, sensitivity, uncertainty and
missing values. First, due to multipath propagation, non-line-of-
sight propagation and multiple access interference [4], MR data
often change temporally for the same location and MD. If the tem-
poral stability of MR data is low, the positioning system should
adapt its parameters to the large variations of MR data for high
localization accuracy. Second, the spatial sensitivity of MR data
measures whether a small change of moving location will cause a
salient change of MR data. For example, if an MD moves 10m and
its corresponding MR data do not change, the positioning system
cannot differentiate the location points within 10m range. Third,
most MDs will not connect to the closest sector or base station
(BS) because the signal arriving at the BS from the MD is reflected
or diffracted and takes a longer path than the direct path. The high
connection uncertainty will deteriorate the localization accuracy.

http://dx.doi.org/10.1145/2983323.298334
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Table 1: Abbreviations & Meanings.
AGPS assisted global positioning system
AOA angle of arrival
BS base station

BSS business supporting system
CCR context-aware coarse-to-fine regression model
CDF cumulative distribution function

CDMA code division multiple access
CI cell ID

DPI deep package investigation
GPS global positioning system
GSM global system for mobile communications
IMSI International Mobile Subscriber Identity
LAC location area code
LBS location-based service
LTE long-term evolution
MBB mobile broadband
MD mobile device
MR measurement report
OSS operation supporting system
OTT over-the-top
RF random forest

RNC radio network controller
RSSI radio signal strength indicator
SGSN serving GPRS support node
TDOA time difference of arrival
TOA time of arrival

Usually, localization accuracy of MDs connecting to its closest BS
is much higher than that of MDs without doing so. Finally, not
all MR data have radio signal strength indicator (RSSI) values for
6 sectors [24]. More than 50% of real-world MR records contain
RSSI with only 1 or 2 BSs or sectors. The missing values of MR
data also deteriorate the localization accuracy because triangula-
tion or trilateration techniques cannot be performed [24]. To the
best of our knowledge, previous studies rarely investigate the four
important properties of big MR data.

For the better MR-based positioning system, this paper makes
two main contributions. The primary contribution is an empirical
measurement over four important properties of big MR data, which
provides practical guidance on how to update the localization mod-
els and determine the lower limit of localization errors. As the sec-
ond contribution, we deploy a machine learning-based positioning
system from telco big data called context-aware coarse-to-fine re-
gression model (CCR) for MD localization in telco networks. Data-
driven predictive modeling generally includes constructing useful
feature vectors (aka predictor variables) and training good regres-
sion and classification models (aka predictors) with training data of
labeled features. After training, we aim to predict the location co-
ordinates without location labels, where training and test data have
no overlap in time intervals. The regression model can be updated
periodically by new coming data for a high accuracy.

First, we find that many LBS over-the-top (OTT) applications
from different MDs have automatically accumulated a large num-
ber of GPS data in telco networks, which enables automatically
labeling the MR data with the corresponding ground truth GPS co-
ordinates (as GPS is the most accurate sensor for outdoor local-
ization till now). This strategy avoids the high cost of additional
war driving to collect training data, where cars drive [22, 14] or
individuals walk [16] the area of interest continuously scanning for
BSs or sectors and recording the local area code (LAC) and Cell ID,
RSSI, and GPS location. Second, we use the map-matching algo-
rithm [18] to match low-sampling-rate GPS data from various MDs
to buildings and road networks. This can further improve the ac-
curacy of ground truth GPS coordinates by contextual information.
To link with the corresponding high-sampling-rate MR data by time

stamps, we use the most-frequent-path algorithm [20] to interpolate
mapped GPS data with different sampling rates. Thus, we obtain
automatically lots of GPS-associated MR data encoding structural
information of road networks as training data. Third, we train a
two-layer random forest (RF) [3] regression model that builds the
functional mapping from MR data to the ground truth GPS coor-
dinates. In the first layer, we input the labeled MR-based feature
vectors to train the regression model and output the predicted GPS
coordinates of the training data as the coarse location features. In
the second layer, we design the fine-grained contextual features in-
cluding velocity, direction and change of sectors in a time window
as input based on the coarse location features produced by the first
layer regression model. More specifically, the output of the first
layer regression model as well as a group of contextual fine-grained
features are used as the input of the second layer regression model
to calculate the accurate position. With the cascaded architecture,
CCR can capture coarse-to-fine contextual information for a higher
localization accuracy. The evaluations on real-world big MR data
confirms that CCR outperforms significantly the current state-of-
art localization methods such as the range-based Bayesian infer-
ence [24], the grid-based fingerprinting [14], and the map-aware
sequential matching [22, 16]. To summarize, we make the follow-
ing contributions in this work:

• We automatically obtain big GPS-associated MR data by in-
tegrating telco big data, which solves the high-cost label-
ing problem in previous localization methods on telco net-
works. Through measuring stability, sensitivity, uncertainty
and missing values of MR data, we show some practical
guidance on building reliable MR-based positioning systems.

• We deploy the CCR model for MR-based localization. First,
CCR uses map-matching and interpolation algorithms to en-
code structural information of road networks. Second, CCR
has a cascaded two-layer structure, where the coarse location
output by the first layer is processed to be the fine-grained
input feature to the second layer to capture contextual infor-
mation in a short time window. We conduct extensive exper-
iments on 108 GPS-associated MR records from 1.8 × 104

MDs to compare CCR with the state-of-art solutions under
different MR data properties.

Table 1 summarizes some important abbreviations appearing in
this paper. Section 2 describes the CCR localization model, which
includes map-matching, most-frequent-path interpolation and a two-
layer random forest regression model. Section 3 measures the real-
world MR data on their four properties: stability, sensitivity, un-
certainty and missing values. Section 4 compares the localization
performance between CCR and the state-of-the-art methods. Also,
it discusses some practical issues in deploying CCR according to
different properties of MR data. Section 5 reviews the related tech-
niques on localization in telco networks. Finally, Section 6 draws
conclusions and envisions future work.

2. CCR LOCALIZATION MODELS
Figure 1 shows the hierarchy of a typical UMTS (Universal Mo-

bile Telecommunications System) telco network and describes how
MR data are generated. The network in an urban area is divided into
several large regions denoted by location area code (LAC). Each
LAC contains several radio network controllers (RNC), which is
composed of several location-associated base stations (BS) or cell
towers. Each BS is associated with several sector antennas (usually
3 for three directions) denoted by cell ID (CI). Each cell uses a dif-
ferent set of frequencies from neighboring cells, to avoid interfer-
ence and provide guaranteed bandwidth within each cell. Before an
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Figure 1: The overview of MR data generation procedure.

Table 2: A detailed example of the MR record.
Field Example Field Example

MRTime 2015/12/16 08:00:00.000 IMSI ************058
SRNCID 2350 BestCellID 31171
SRNTI 4753 RAB 0,1,2,3,4,5
Event 0,1,2,3,5,8,-999 Delay 3

UE_TXPower 20 RNCID_1 2350
CellID_1 31171 EcNo_1 -6.5
RSCP_1 -85 RTT_1 1037

UE_Rx_Tx_1 1033 RNCID_2 2350
CellID_2 31171 EcNo_2 -6.5
RSCP_2 -85 RTT_2 1037

UE_Rx_Tx_2 1033 ... ...
... ... ... ...

RNCID_6 2350 CellID_6 31171
EcNo_6 -6.5 RSCP_6 -85
RTT_6 1037 UE_Rx_Tx_6 1033

MD connects to the network, it measures parameters of radio signal
strength with nearby candidate sectors and connects to the best sec-
tor with the strongest signal strength. Generally, MR data contain
measurement parameters such as the radio signal strength indica-
tor (RSSI) for signal strength of 6 nearby sectors. Figure 1 shows
an example of MR record, including user ID IMSI (International
Mobile System Identity), time stamp, six BS ID (RNC ID or LAC
and CI for CDMA network; enodeB ID for LTE network), and six
RSSI = RSCP− EcNo (RSCP is Received Signal Code Power and
EcNo is Energy per Bit to Noise Power Density). Table 2 shows a
detailed example of the MR record. RNCID_x and CellID_x rep-
resent the RNC ID and Cell ID to identify a unique sector in the
location-associated BS. RTT_x is the round-trip-time [24] of the
signal from the MD to the sector. UE_Rx_Tx_x is the time that the
MD receives and transmits UE (user equipment) signal. The MR
record usually contains values from 6 nearby sectors. But more
than 50% MR records have missing values with no more than two
sectors [24] in the real-world telco network. Besides RSSI, MR
data can also have other radio parameter measurements such as
TOA/TDOA and AOA [4, 14]. Without loss of generality, we use
only RSSI as well as engineering parameters of location-associated
BSs to build the MR-based positioning system.

Figure 2 shows the data flow of the context-aware coarse-to-fine
regression (CCR) localization model in telco big data platform,
where (a) shows the OTT GPS locations (red dots) generated by
LBSs (GPS data often have low sampling rate) and (b) shows two
examples of MR data generated by call or MBB services (high sam-
pling rate). The red dots are the real GPS locations of the corre-
sponding MR data (the locations to predict using MR data). In the
training phase, CCR learns model parameters based on a large num-
ber of training samples such as [RSSI feature vector, GPS coordinate].

Algorithm 1: Training Data Acquisition.
Input: dmr - MR data, dott - OTT GPS data, map - map, tg - time granularity

to do interpolation
Output: TrainingData
urls = DPI(dott);1
raw_urlsgps = Extract_GPS(urls);2
trajsurl = Cut_Trajectories(raw_urlsgps);3
urlsgps = {};4
for each trajectory t in trajsurl do5

roadt = Map_Matching(t, map);6
for each adjacent points pi−1 and pi in roadt do7

pathi−1,i = Most_Frequent_Path(pi−1, pi);8
urlsgps = urlsgps∪ Interpolation(pi−1, pi, pathi−1,i, tg);9

TrainingData = match(urlsgps, dmr);10
Return TrainingData;11

In the prediction phase, CCR maps RSSI feature vectors of an MD
to the predicted positions and trajectories as shown in Figure 2 (c).
Figure 2 (d) shows the predicted location (blue dots) when com-
pared with the ground truth GPS location (red dots), where the lo-
calization error is the distance between the predicted location and
the ground truth GPS location. Although the MR records used in
this paper are generated by UMTS, the proposed CCR model can
be also used for MR records generated by both GSM or LTE. There
are two main steps in running CCR localization model:

• Training data acquisition: we automatically associate MR
records with corresponding GPS coordinates (longitude, lati-
tude). We use map-matching [18] and most-frequent-path [20]
interpolation algorithms to fulfil this step in Subsection 2.1.

• CCR training and prediction: we train a two-layer random
forest [3] regression model with coarse-to-fine labeled fea-
ture vectors, and predict location by mapping feature vectors
based on trained regression model. Details of this step are
described in Subsection 2.2.

2.1 Training Data Acquisition
Algorithm 1 shows the overall procedure to obtain the training

data. Since the MR and OTT GPS data from OSS are automatically
stored in telco big data platform, the labeling of MR data can be
implemented without bringing any extra burden to telco networks.
First, we use DPI (deep package investigation) tools to extract the
urls in OTT data (line 1), where many urls have GPS coordinates.
We select urls with high qualities (eg. taxi services) to ensure sta-
ble and continuous trajectories along road networks. Second, we
extract the GPS coordinates from these urls (line 2) and cut the
long GPS trajectory into segments when the interval of time stamps
is larger than 5 minutes or two GPS distance is larger than 1 kilo-
meter (line 3). Because the sampling rates of MR records and GPS
data are quite different, it will cause lots of unmatched MR records.
For example, the sampling rate is 8 seconds per record in MR and
60 seconds per record in GPS data. To address this problem, we
propose a novel solution with map-matching [18], most-frequent-
path [20] interpolation to increase the sampling rate of GPS data.
Third, we match the GPS coordinates in a short trajectory with
the road network in the map (line 6). For each pair of adjacent
matched points (the projected position of a GPS coordinate to its
corresponding road), we compute the most-frequent-path between
these two points and do uniform interpolation along this frequent
path (lines 8 and 9). Finally, we match the interpolated GPS data
with the MR data by IMSI and time stamp in a sliding window. The
functions between line 5 and line 9 in Algorithm 1 are described in
a single thread form to demonstrate the design logic. In our dis-
tributed Hadoop/Spark system, they are implemented in parallel.
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Figure 2: The data flow of CCR model. (a) shows the OTT GPS locations (red dots) generated by LBSs (low sampling rate). (b) shows two
examples of MR data generated by call or MBB services (high sampling rate). The red dots are the real GPS locations of the corresponding MR data
(the locations to predict using MR data). (c) CCR takes as input of OTT GPS (training labels) and MR (training features) data to estimate model
parameters for training. In prediction, the trained CCR can predict the location given only MR data as input. (d) shows the predicted location (blue
dots) when compared with the ground truth GPS location (red dots), where the localization error is the distance between the predicted location and
the ground truth GPS location.

Algorithm 2: Map-matching.
Input: t - a trajectory from OTT, map - map
Output: roadt - the revised trajectory by mapping each point on road
for each point pi in t do1

calculate the candidate road set Ri for pi with probabilities estimated from2
distances;

for each adjacent points pi−1 and pi do3
calculate the transmission probabilities between the roads in Ri−1 and Ri;4

calculate the road sequence with the largest probability using HMM (Hidden5
Markov Model);
return the roadt by setting the GPS of each point as its projected position on6
corresponding road;

Algorithm 3: Most-frequent-path Interpolation.
Input: pi−1, pi - two adjacent points in map-matched trajectory roadt,

pathi−1,i - the most frequent path between pi−1 and pi, tg - time
granularity to do interpolation

Output: (pi−1, c1, c2, ..., pi)

n = d pi.time−pi−1.time

tg
e;1

length =
∑

roadr∈pathi−1,i
length(r);2

v = length
pi.time−pi−1.time ;3

result = (pi−1);4
for j = 1 to n do5

cj .position = pi−1.position + v × j × tg along pathi−1,i ;6
cj .time = pi−1.time + j × tg ;7
result = result ∪ ci;8

result = result ∪ pi;9
return result;10

Using Algorithm 1, we obtain the fine-grained GPS-associated MR
data for training CCR. Experiments show that map-matching and
most-frequent-path interpolation increase the training data quality
for better localization performance in section 4.

Algorithm 2 shows how to match each GPS point t in the gen-
erated trajectory set trajsurl to map using hidden Markov models
(HMMs) [18]. First, we select the candidate road set for each point
t. The probability of selecting a candidate road for a point t is
estimated by their closest distance. The transition probabilities be-
tween the roads in the candidate road set of two adjacent points
are estimated from historical data. Second, we use the Viterbi al-
gorithm to infer a road sequence with the largest probability from
the candidate road set. This road sequence is the map-matching
result. The GPS point t can be replaced by its projected position
on the corresponding road. Finally, we obtain a new map-matched
trajectory roadt encoding road network structures.

Algorithm 3 shows the interpolation procedure to increase the
sampling rate of GPS data. We uniformly insert new GPS points
between two adjacent GPS points in roadt with constant small time

Algorithm 4: CCR Training Procedure.
Input: TrainingData - the GPS-associated MR data
Output: mloc - localization models for longitude and latitude
for each record r in TrainingData do1

r.feature = [coarse features in Table 3];2

mloc,layer1 = a RF model using coarse features;3
for each record r in trainingdata do4

r.feature = [output of mloc,layer1, coarse features in Table 3,5
fine-grained features in Table 4];

mloc,layer2 = a RF model by adding fine-grained features;6
return mloc;7

Table 3: Coarse Features.
Features Description

rssi Received Signal Strength Indication
rscp Received Signal Code Power
ecno Ratio of energy per modulating bit to the noise spectral density
rncid RNC id
ci cell id
lon longitude of a sector
lat latitude of a sector
id unique id for a BS
height height of a BS
azimuth azimuth of a BS
mdtilt Mechanical Down Tilt
edtilt Electrical Down Tilt
bs_type type code of a BS (such Metrocell, Microcell, etc.)
company producer of a BS (such as HUAWEI, Nokia)
n_sector # associated sectors
n_bs # associated BSs

step such as 2 seconds. The points are interpolated on the road
along which we assume the MD moves with the uniform velocity.
We use most-frequent-path (MFP) algorithm [20] to infer the road
sequence between two adjacent points in roadt. MFP is the path
that most MDs move along, which is a type of useful collaborative
knowledge in the GPS data. The new GPS points are interpolated
along the calculated road sequence. After interpolation, we match
the new GPS position data and MR data with the same sampling
rate and obtain the training data. Using interpolation, the volume of
training data can be increased around 20 times and the localization
error can be reduced more than 10% confirmed in Section 4.

2.2 CCR Training and Prediction
Algorithm 4 shows the training procedure of CCR. We train a

two-layer regression model with the GPS-labeled MR data. The
first layer regression model takes as input 258 dimensional coarse
features partly in Table 3, such as RSSI and the related engineer-
ing parameters of BSs (e.g., antenna height, azimuth, longitude,
latitude and etc), and predict GPS location of each training sam-
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Figure 3: Stability measurement over time (hours and days) of MR data for two typical sectors A and B.

Table 4: Fine-grained Features.
Features Description

pred_lon pi ’s longitude from the output of the first layer
pred_lat pi ’s latitude from the output of the first layer
last_distance distance between pi−1 and pi
last_direction direction from pi−1 to pi
last_speed average speed from pi−1 to pi
last_time_gap time gap between pi−1 and pi
last_lon pi−1 ’s longitude from the output of the first layer
last_lat pi−1 ’s latitude from the output of the first layer
next_distance distance between pi and pi+1
next_direction direction from pi to pi+1
next_speed average speed from pi to pi+1
next_time_gap time gap between pi and pi+1
next_lon pi+1 ’s longitude from the output of the first layer
next_lat pi+1 ’s latitude from the output of the first layer
last_heading_change_angle delta angle between pi−1 and pi
last_speed_change delta speed between pi−1 and pi
next_heading_change_angle delta angle between pi and pi+1
next_speed_change delta speed between pi and pi+1
angle2azimuth the angle between pi and main BS’s azimuth

Algorithm 5: CCR prediction procedure.

Input: d′mr - MR data of a device, mloc - localization model, etbs -
engineering table of BSs

Output: t′ - a recovered trajectory
t′ = [];1
for i from 1 to |t′| do2

if i == 1 then3
posi(lon, lat) = mloc(d

′
mr[i, i, i + 1], etbs);4

if i == |t′| then5
posi(lon, lat) = mloc(d

′
mr[i− 1, i, i], etbs);6

else7
posi(lon, lat) = mloc(d

′
mr[i− 1, i, i + 1], etbs);8

t′.add((t′[i].time, posi(lon, lat)));9

return t′;10

Table 5: Statistics of GPS-associated MR Dataset.
Type Number

Time 30 days
Area 12× 11 square killometers
Data blocks 4× 4 blocks
Number of BSs 2, 697
Number of Sectors 18, 431
Number of IMSIs 17, 699
Number of Trajectories 2, 181, 990
Number of GPS-associated MR records
before map-matching and interpolation 4, 749, 150
Number of GPS-associated MR records
after map-matching and interpolation 103, 605, 330

ple. Based on the predicted positions, we add 34 dimensional
fine-grained contextual feature vectors partly in Table 4, velocity,
moving direction, moving distance, velocity change, moving di-
rection change, to train the second layer regression model. These
fine-grained features help to calculate longitude/latitude more accu-

rately. We confirm that this two-layer design performs much better
than the single-layer regression model in Section 4.

We choose RF [3] in each layer to do regression. The optimiza-
tion objective of RF for regression is

S =
∑

C∈leaves(T )

∑
i∈C

(yi −mc)
2, (1)

where yi is the target longitude/latitude, T is a tree in RF and
mc = 1

nc

∑
i∈C yi. This optimization function S guides the al-

gorithm to cut the feature space to small subspaces with similar
longitude/latitude values. The feature engineering and RF regres-
sion model are hand coded in Spark, which is based on Hive/Spark
SQL and the parallel RF algorithm [13]. Note that distributed RF is
scalable to big data without communication cost among machines
because each regression tree is trained independently.

Algorithm 5 shows the prediction procedure of CCR without
training data. In working scenarios, CCR maps the RSSI feature
vector of an MD to the predicted location coordinate. By predict-
ing a sequence of location coordinates, the trajectory of the MD is
recovered on the road networks.

3. DATASETS AND MEASUREMENTS
Table 5 shows the datasets for the measurements and experi-

ments. From the telco big data platform, we extract GPS-associated
MR records for a month, which covers 12 × 11 square kilometers
in centroid of Shanghai, China. We divide equally the entire area
into 4 × 4 = 16 blocks. For each block, we will train a CCR
localization model. The number of location-associated BSs in the
region of interest is 2697. The number of unique IMSI MDs is
17699, which covers a variety of mobile device types. This can be
used to evaluate the robustness of CCR for different types of MDs.
The number of trajectories is more than 2 millions. The number of
MR records which can be associated with GPS position is around 5
million by directly liking without map-matching and interpolation.
After map-matching and interpolation in Subsection 2, the num-
ber of GPS-associated MR records increases to 108, which is big
enough for evaluate the deployed CCR localization model.

3.1 Stability
Figure 3 shows the change of RSSI over time (hours and days) at

the same range of locations {100m, 200m, 300m} of two typical
sectors A and B. Generally, the smaller distance to the sector will
lead to stronger RSSI values. In 100m RSSI curve (black line), the
point is the average RSSI value of all GPS points at 100m around
the sector during each hour or each day. This temporal stability
measurement shows that even if each an MD stays at the same po-
sition, it still receives different RSSIs from the sector at different
time stamp. We see that the fluctuation over days (c) or (d) is
smaller than that over hours (a) or (b) in Figure 3. Through sta-
tistical analysis of all sectors in the dataset, the |∆RSSI| over days
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Figure 4: Sensitivity measurement over space of MR data (using
∆GPS when |∆RSSI| ≤ 0.7 for two sectors A and B.

(e.g., in (c) and (d)) is often less than 0.7, which implies that the
movement with RSSI change less than ±0.7 is indistinguishable
because of the temporal instability. Suppose that an MD is at 100m
of the sector A with RSSI −40. If it moves to 120m of the sector
with RSSI −40.7, the localization model cannot differentiate this
20m movement distance because the location 100m can also have
RSSI −40.7 due to temporal fluctuations. The key inspiration is
that if the localization model is not updated by the new training
data, the model may fail to capture the temporal change of RSSI
for bad localization performance.

Figure 3 (a) and (b) show that the change of RSSI over hours is
very large from time stamp 17 : 00 to 19 : 00, which is the work-to-
home peak hour. To enhance the localization performance, we need
to update models for each hour to capture the temporal variance
of RSSI. But in practice, we have insufficient and uneven training
data for each hour to learn new models so that we update partial
CCR models (build new regression trees in random forest by new
coming training data) per day rather than per hour. Our experiments
in Section 4 confirm that update models by new coming data will
enhance the overall localization performance. Although Figure 3
shows temporal stability for two typical sectors, most other sectors
have similar RSSI change patterns over time.

3.2 Sensitivity
Figure 4 shows the spatial sensitivity measurement of MR data

for two typical sectors A and B. For the same hour, from all the
RSSI values of the same sector, we select those pairs if |∆RSSI| ≤
0.7, where 0.7 is the temporal fluctuation threshold determined by
Figure 3. Then, we plot the histogram of the earth distance ∆GPS
of those pairs in Figure 4,

∆GPS = ||GPSRSSI1 − GPSRSSI2 ||earth. (2)

As we discussed, this distance cannot be differentiated by the lo-
calization models. We see that more than 50% of pairs have the
distance ≥ 25m, which implies these points cannot be recognized
within the radius 25m. The spatial sensitivity is consistent with the
systematic lower limit of the localization error. From these two typ-
ical sectors, the RSSI data cannot provide the median localization
error less than ±25m or around 50m. Although Figure 4 shows
the sensitivity measurement for two typical sectors, most other sec-
tors have similar distance ∆GPS histograms when |∆RSSI| ≤ 0.7.
From another perspective, we assume that |∆RSSI| ≈ 0 is a small
change of RSSI that cannot be easily recognized by localization
models. In our dataset, we find that lots of tested pairs with dis-
tance ∆GPS larger than 25m have almost zero change of RSSI,
i.e., |∆RSSI| ≈ 0. This phenomenon confirms that the sensitiv-
ity of MR data within the radius 25m is too low to be recognized
in practice. To enhance the localization performance in telco net-
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Figure 6: The distribution of MR data over the number of associated
BSs (a) and sectors (b).

works, we may improve the sensitivity of sensor (wireless sector
in this paper) by designing new hardware or signal measurement
methods. Our experiments in Section 4 support this analysis. CCR
can achieve this lower limit after providing sufficient training data.

3.3 Uncertainty
Uncertainty reflects the phenomenon that MDs do not always

connect to the closest sector or BS because of multipath, non-of-
sight signal propagations and multi-access interference. It is one
major source of large localization errors because the RSSI is very
weak if an MD connects to a farther sector or BS. Figure 5 (a)
shows the MR data distribution over ∆Distance,

∆Distance = ||GPSconnecting BS − GPSclosest BS||earth, (3)

which is the distance between the connecting BS and the closest
BS. If an MD connects to the closest BS, then ∆Distance = 0.
We see that around 50% data connect to the BS within 100m of
the closest one. Generally, if ∆Distance ≥ 300m, the localization
performance is not satisfactory, which occupies less than 30% of
the total data. Figure 5 (b) shows the MR data distribution over the
top K closest BSs. More than 50% MR data are generated by con-
necting with top 3 closest BSs, which often provides better local-
ization performance. More than 30% MR data are yielded without
connecting with top 6 closest BSs, which often produce worse lo-
calization performance. Our experiments in Section 4 confirms this
trend. Uncertainty may be improved in near future by adding more
BSs in the cell, which will assure an MD always find the closest BS
for stronger RSSI values as well as better service quality.

3.4 Missing Value
Not all MR records have RSSI values from 6 nearby sectors or

BSs [24]. Generally, the more values the better localization perfor-
mance. Figure 6 shows the MR data distribution over the number of

444



C
D

F
1.00

0.80

0.67

0.60

0.50

0.40

0.20

0.00
0 80 100 200 300 400 500

Error (meters)

(a)

No Interpolation

Interpolation with Interval 10s

Interpolation with Interval 2s

(b)
1.00

0.80

0.67

0.60

0.50

0.40

0.20

0.00
0 80 100 200 300 400 500

Error (meters)

Benchmark

One-Layer Model

Two-Layer Model
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associated BSs (a) and sectors (b). Some MR records have RSSI
values from different sectors in the same BS. This is the reason
why Figure 6 (b) shows more percentage of data having 6 sectors
than that of having 5 sectors. Experiments in Section 4 shows that
the RSSI values from different sectors in the same BS cannot im-
prove the localization accuracy. For example, MR data with RSSI
values from 6 sectors do not produce higher localization accuracy
than those with values from 5 sectors. We see that more than 60%
of MR data have RSSI values from less than 2 location-associated
BSs, which is the major source of large localization errors. There
are two main methods to overcome missing values in MR data: 1)
adding more BSs or improving sensor systems; 2) designing miss-
ing value imputation algorithm to estimate missing values. These
may be our future work for further studies.

4. LOCALIZATION PERFORMANCE
The extensive experiments run on a platform consisting of six

Huawei RH2288 servers with Intel(R) Xeon(R) CPU E5-2690 v2
@ 3.00GHz, 40 Cores and 189G Memory. We partition the GPS-
associated MR data in Table 5 into training and test data according
to the time stamp. Without specific descriptions, we use the first
24 days for training and the remaining 6 days for test purposes,
where the training data take around 80% and test data take around
20%. In CCR, we use a total of 540 trees in RF distributed into
6 machines. For each block of data in Table 5, we train a CCR
localization model. As a result, we train a total of 16 CCR models
for the centroid of Shanghai city, China. We use the localization
error, which is the earth distance between the predicted position and
the ground truth GPS position, to evaluate the performance of each
CCR model. We use the cumulative density function (CDF) [22,
16] of errors with respect to the proportion of the test data, where
the median (50%), mean and 67% error are reported. We also use
the area under curve (AUC) of CDF with the error less than 100m
to measure the performance of CCR. The metric AUC100m ∈ [0, 1]
is the proportion of test data with the error less than 100m. The
larger AUC100m the better localization performance.

4.1 CCR Performance
Figure 7 compares the performance of CCR in different settings.

First, in Figure 7 (a), we compare CDFs of CCR under three map
matching and interpolation settings as shown in Section 2: 1) no
interpolation, 2) interpolation with the 10 second time rate, and
3) interpolation with the 2 second time rate. Different interpola-
tion time rates will lead to different training data volume. For ex-
ample, the volume of training data with the 2 second time rate is
around 5 times larger than that with the 10 second time rate. We
see that more training data will lead to lower errors: AUC100m =
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Figure 9: CCR performance on connection uncertainty of MR data:
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{0.2618, 0.2865, 0.2984} for three settings, respectively. In the
meanwhile, the median error drops from 95.7m (no interpolation)
to 83.5m (2 second interpolation) and the mean error drops from
135.3m (no interpolation) to 118.0m (2 second interpolation). The
map-matching and interpolation with 2 second rate gains 14% im-
provement over no interpolation in terms of AUC100m. If we add
more training data by more days (e.g., 12 days versus 29 days of
training data when the same 1 day test data are used), the median
error reduces from 84.7m to 81.1m. Although such an improve-
ment is not that significant (less than 5%), it also confirms the busi-
ness value of big training data volume, which is consistent with the
conclusion made in [13]: bigger is really better.

Second, in Figure 7 (b), we compare CCR in three conditions:
1) benchmark one-layer model without RSSI features, 2) RSSI fea-
tures of one-layer model, and 3) RSSI features of two-layer model.
The benchmark is proposed in [22, 16] where the RSSI values
are not used as features. Instead, only feature vectors about sec-
tors, such as ID, location and engineering parameters in Table 3
are input to one-layer RF regression model for localization. Sim-
ilarly, the one-layer model uses the features in Table 3 including
RSSI values for regression. The two-layer model is the proposed
CCR, which uses all features in both Tables 3 and 4 to incorpo-
rate coarse-to-fine features. We see that two-layer model performs
much better than one-layer model as well as benchmark. For three
conditions, AUC100m = {0.2347, 0.2647, 0.2984}, respectively.
Two-layer model gains 12.7% and 27% improvements over one-
layer model and benchmark, respectively. The median/mean error
reduces from 105.8m/148.7m (benchmark) and 94.8m/132.5m
(one-layer model) to 83.5m/124.3m (two-layer model), which con-
firms the effectiveness of incorporated contextual fine-grained fea-
tures. This reconfirms the conclusion made in [13]: enriching the
variety of features will improve the predictive performance.

We partition the 24 day training data into 4× 4 = 16 blocks for
16 small CCR models. Table 6 shows the training time and mem-
ory usage of one CCR model on 6 servers, where each server is
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Figure 10: CCR localization performance on MR data with different missing number of BSs and sectors.

Table 6: CCR Training Time and Space.
Step Time (minutes)

Coarse feature engineering and preparation 7.00
Training time of the first layer model 22.99
Fine-grained feature engineering 6.54
Training of the second layer model 26.65

Model Space (memory size)
First-layer RF 5.7GB
Second-layer RF 5.3GB

allocated 90 regression trees for training. The coarse feature en-
gineering and preparation requires around 7 minutes for each data
block. The training time of the first layer of CCR is around 23
minutes, and output the predicted location of training samples. It
takes around 6.5 minutes to compose the contextual fine-grained
features. The training time of the second layer of CCR is around
27 minutes. Totally, we need around 5.7GB and 5.3GB mem-
ory to store the parameters of the first and second layer regres-
sion trees. When compared with the histogram-based fingerprint-
ing method [14], the time and space complexities of CCR is much
lower. In working scenarios (prediction phase), CCR maps the in-
put feature vector to the predicted coordinates with a significantly
faster speed than that in training phase.

4.2 CCR on Four Properties of MR
Figure 8 shows the performance of CCR on the temporal sta-

bility of MR data. Test1 uses 1 ∼ 7 days of training data and
evaluates the median errors for the next 8 ∼ 21 days (test data).
In Section 3.1, we have shown that the temporal stability of RSSI
over days will affect the localization performance. We see that the
median error curve varies from 70m to 100m in Test1, which con-
sists with our analysis in Figure 3. Also, we find that the trained
CCR performs steadily worse when the time flies, which indicates
that we need to update CCR regularly based on new coming train-
ing data. To verify this hypothesis, Test2 uses new coming train-
ing data 8 ∼ 14 days and evaluates the median errors of the next
15 ∼ 21 days (test data). We find that Test2 has the overall me-
dian error lower than that in Test1, which confirms that updating
CCR regularly based on new coming data really captures the re-
cent temporal variance in MR data. Another important observation
is that weather also influences the localization performance. Rain-
ing or bad weather often degrades the localization performance in
Test1, where days {2, 3, 4, 2, 13, 14} are big raining days with an
average median error 89.5m, while other days have an average me-
dian error 75.6m in Test1. This is our future work to enhance the
robustness of CCR to different weather conditions.

Generally, CCR produces a median error of 80m in Figure 7,
which still has a gap with the lower limit of the median error 50m
based on the spatial sensitivity of MR data in Figure 4. One pos-
sible reason is that the training data is still insufficient for CCR to

achieve this lower limit. To verify this hypothesis, we collect more
training data (52998 samples) by fine-grained walk with 0.5m per
step around sectors A and B in Figure 4. On the test data (46917
samples), we obtain a median error around 46.1m, which is almost
the same with the lower limit 50m. Future work may focus on in-
creasing sensitivity of MR data either by designing new sensors or
by new algorithms for better localization performance.

Figure 9 evaluates the performance of CCR on uncertainty of
MR data. In (a), we see that the bigger ∆Distance defined in
Eq. (2) has the larger errors, consistent with our analysis in Fig-
ure 5. For example, ∆Distance ∈ [0, 100) has a median error
68m and a mean error 88.8m, while ∆Distance ∈ [300, 1000)
has a median error 176m and a mean error 223.7m. Obviously,
we can see smaller ∆Distance has smaller locating error. This is
because the closer connecting sectors provide stronger and more
stable RSSI values. So the locating error is reduced with the de-
crease of ∆Distance. In Figure 9 (b), we see that connecting top
[1, 3) closest sectors have a median error 70m and a mean error
92m, while connecting top [10, 30) closest sectors have a median
error 149m and a mean error 199m. When K increases, the error
also increases. These results are consistent with the observations
in Figure 9 (a). Through extensive empirical studies, we find an
approximate rule on localization errors:

• The average localization error is often within 1/4 ∼ 1/2 of
the distance between the MD and the connecting BS.

As a result, it is necessary to reduce the uncertainty of MR data, i.e.,
force the MD connecting the closest sector or BS. In near future,
LTE may build more BSs to reduce the cell size in cellular network,
which is a method to reduce the uncertainty of MR data because
non-line-of-sight signal propagation rarely happens.

Figure 10 shows the performance of CCR on MR data with dif-
ferent number of missing values. Generally, less missing values
lead to higher localization accuracy. In (a) and (b), MR data with
3 associated BSs produce the median error 71m and the mean er-
ror 101m, while MR data with 1 associated BS get the median
error 80m and the mean error 113m. We find that more associated
BSs will not provide higher localization accuracy. For example,
MR data with 4 associated BSs have the median error 72m and the
mean error 101m, almost the same with those for MR data with
3 associated BSs. The same phenomenon occurs in (c) and (d)
for missing sectors. Note that MR data with RSSI values from 6
sectors do not produce higher localization accuracy than those with
values from 5 sectors. This is because some RSSI values are from
different sectors in the same BS. Therefore, MR data with 3 as-
sociated BSs are enough to give satisfactory localization accuracy.
However, Figure 6 shows that more than 50% MR data have RSSI
values from less than 3 BSs. This result suggests us design specific
missing value imputation algorithms or use more contextual infor-
mation of sequential trajectory point to rectify localization errors
of MR data with 1 or 2 associated BSs.
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4.3 CCR Comparisons and Error Analysis
Figure 11 compares CDF of CCR with those of the state-of-the-

art localization methods: 1) the range-based method [24], 2) the
fingerprinting method [14], and 3) Cell∗ [16]. We use the same
training and test sets to evaluate different models. We see that
the range-based method performs the worst because of the com-
plex radio signal propagation patterns in urban areas. The range-
based method has AUC100m = 0.082, a median error 202m and
a mean error 308m, which is consistent with the results in [24].
Cell∗ works better than the range-based method since some con-
textual knowledge are used through map-matching with the sector
switching sequence. However, Cell∗ does not use RSSI features
so that it has slightly lower localization accuracy than the finger-
printing method. Cell∗ has AUC100m = 0.1496, a median error
157m and a mean error 263m. The fingerprinting method performs
much better than Cell∗ with AUC100m = 0.2618, a median error
95.7m and a mean error 135.3m. The proposed CCR performs
the best because it designs a context-aware and coarse-to-fine fea-
tures, which can capture much more signal and context knowledge
than previous methods. Using AUC100m metric, CCR outperforms
{264%, 99.5%, 14%} when compared with the range-based, Cell∗

and fingerprinting methods.
Figure 12 shows some typical localization errors of CCR, where

the blue bubbles are the predicted locations and the other end of
the red line is the ground-truth GPS location. Figure 12 (a) shows
that the predicted locations have small errors on the same road.
These are the expected results by using knowledge of road net-
works and fine-grained contextual features. Figure 12 (b) shows
location points correctly predicted on the same road but with for-
ward or backward errors along the road. This type of error happens
in most cases because training data are insufficient to cover fine-
grained location. The locations close to the ground truth position
of the test data are missing in the training data. So, the predicted
position is approximated by nearby locations in the training data
with large errors. The solution is to collect more fine-grained train-
ing data for CCR learning. Figure 12 (c) shows some predicted
locations along the close and parallel road of the ground truth road.
This type of error is often caused by the low temporal stability and
spatial sensitivity of MR data, which cannot be also rectified by
the road network knowledge or contextual features because of the
parallel structure. This indicates that in the future we should col-
lect denser training data and design special algorithm in the areas
with close parallel roads than other areas. Finally, Figure 12 (d)
shows that large errors occur in dense road networks. This also in-
dicates that we should collect more training data on the areas with

dense road networks than normal areas to distinguish subtle details
among dense roads. Alternatively, we should also consider using
larger time window to capture long-term contextual knowledge.

5. RELATED WORK
Localization techniques in telco network can be broadly divided

into two categories: 1) range-based methods and 2) fingerprinting
methods. The range-based methods are defined by protocols that
use absolute point-to-point distance estimates or angle estimates
for calculating location [4]. Usually, they extensively use physi-
cal models of radio signal propagation and combinations of MR
features such as RSSI, TOA/TDOA, and AOA for range estima-
tion [9, 21, 6, 10, 11]. The solutions in range-based localization
in telco networks generally have two main weaknesses. First, the
signal measurements are often noisy and influenced by multipath
propagation, non-line-of-sight propagation and multiple access in-
terference [4]. Second, some MR data are unavailable in real-world
telco networks due to efficiency problems.

Fingerprinting methods are more accurate than range-based lo-
calization strategies [22, 14, 16]. A fingerprint database stores the
mapping function from RSSI feature vector to the corresponding
ground truth GPS coordinates. This is often constructed once in
an offline phase. Online localization prediction is performed by
querying the mapping coordinates given RSSI feature vector with-
out location labels. Fingerprinting methods often require lots of
training data (i.e., RSSI features with GPS labels) to learn the ac-
curate fingerprint. As the sate-of-the-art fingerprinting benchmark
in this paper, CellSense [14] divides the area of interest into small
grids, and constructs the RSSI vector histogram as the probabilis-
tic fingerprint for each grid. When locating an MD given the RSSI
vector, CellSense searches its K nearest neighbors in the finger-
print database, and returns the weighted average position of the
neighbors. The grid size is an adjustable parameter to balance the
scalability and accuracy of the fingerprint. If the training data are
sufficiently large by dense GPS labels, the fingerprint can find fine-
grained GPS coordinates given RSSI vectors. The average error of
fingerprinting methods is around 100 ∼ 200m. One challenge
is that the time cost of building a city-scale fingerprint is often
high [14]. Note that some fingerprinting methods [22, 16] do not
use RSSI vectors. Instead, they use only the GPS-associated BS or
sector switching sequence to learn a sequential fingerprint. As the
state-of-the-art benchmark called Cell∗ [16], a BS or sector switch-
ing sequence (trajectory) of an MD is mapped to a sequence of
grids with GPS coordinates according to road network constraints.
Cell∗ achieves a median error of 230m for the stationary location
estimation and a median error of 70m for mobility path estimation.

However, most of fingerprinting methods suffer from insufficient
training data to build the fingerprint database. Normally, there are
two main methods to obtain the big GPS-associated MR data. First,
cars drive [22, 14] or people walk [16] in road networks with GPS
equipments to collect GPS-associated MR data. Obviously, this
method is cost-consuming by hiring cars and people for the city-
scale area coverage. Moreover, updating fingerprint database re-
quires to collect new coming training data periodically, which in-
creases the overall costs. Second, turning on AGPS (assisted global
positioning system) from telco networks can obtain GPS-associated
MR data of most MDs. However, AGPS will cause serious extra en-
ergy consuming of MDs for bad user experiences. In practice, it is
impossible to build and maintain the city-scale fingerprint database
without new coming training data.

Different from the above solutions, we deploy a cost-efficient re-
gression model called CCR in telco big data platform: 1) Training
data are obtained by integrating MR data with LBS OTT GPS data
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Figure 12: Localization error analysis (blue bubble is the predicted location and the other end of the red line is the ground-truth GPS location): (a)

small errors on the same road. (b) large errors on the same road. (c) large errors on the parallel road. (d) large errors on dense road networks.

from telco big data platform. 2) Training random forest-based CCR
is time-efficient on distributed Hadoop/Spark systems. 3) Map-
matching and interpolation are used to capture contextual infor-
mation of road networks. 4) CCR has a cascaded architecture to
encode coarse-to-fine contextual features.

6. CONCLUSIONS
In this paper, we describe a novel city-scale localization model

with telco big data called CCR, which has been deployed in Spark
and Hadoop-based telco big data platform to provide location in-
sights of customer movement behaviors. Through automatic train-
ing data acquisition, CCR uses the map-matching and interpolation
algorithms to obtain big GPS-associated MR data, which encodes
contextual information of road networks. Also, CCR adopts a two-
layer RF-based regression model to capture coarse-to-fine contex-
tual location features. The performance of CCR is superior to the
state-of-the-art range-based and fingerprinting methods. Extensive
measurements and experiments are carried out to obtain practical
implications and guidelines for improving localization accuracy in
telco networks: 1) Collecting more fine-grained training data. 2)
Update models frequently to capture the variance of MR data. 3)
Encoding more structural information of dense road networks. 4)
Building more BSs to reduce cell size of cellular networks. 5) En-
hancing temporal stability and spatial sensitivity. 6) Reducing un-
certainty and missing values in MR data.
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