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Abstract—Traditional fingerprint based localization tech-
niques mainly rely on infrastructure support such as GSM and
Wi-Fi. They require war-driving which is both time-consuming
and labor-intensive. With recent advances of smartphone sensors,
sensor-assisted localization techniques are emerging. However,
they often need user-specific training and more power intensive
sensing, resulting in infeasible solutions for real deployment. In
this paper, we present B-Loc, a novel floor localization system to
identify the floor level in a multi-floor building on which a mobile
user is located. It makes use of the barometer on smartphone only.
B-Loc does not rely on any Wi-Fi infrastructure and requires nei-
ther war-driving nor prior knowledge of the buildings. Leveraging
on crowdsourcing, B-Loc builds the barometer fingerprint map
which contains the barometric pressure value for each floor level
to locate users’ floor levels. We conduct both simulation and field
studies to demonstrate the accuracy, scalability, and robustness
of B-Loc. Our field study in a 10-floor building shows that B-Loc
achieves an accuracy of over 98%.

Keywords—Mobile Phone Localization, Floor Localization,
Barometer, Crowdsourcing.

I. INTRODUCTION

With the increasing pervasiveness of mobile phones, we
have experienced an explosive growth of location based ap-
plications (LBAs), in which the location of a mobile user has
to be known. In a multi-floor building environment, knowing
the floor level of a mobile user is particularly useful for a
variety of LBAs. For example, in a fire emergency, locating
the floor level of a user quickly and accurately is critical to
life saving. In a shopping mall or an airport environment, a
navigation service such as Google maps can prompt a mobile
user with the floor map by knowing her/his current floor level.
This is known as the floor localization problem, which we aim
to determine the floor level in a multi-floor building on which
a mobile user is located.

Indoor localization [6], [17], [18] has been well studied
in the literature, and they can be used for floor localization.
The fingerprint-based approach leveraging on Wi-Fi or GSM
appears most. SkyLoc [15] appears the first for floor local-
ization using GSM fingerprints, however, the accuracy is far
from perfect (i.e., three floor levels). RADAR [5] uses Wi-Fi
signal. The idea is to war-drive the entire building to create a
radio map between a physical location and its Wi-Fi fingerprint
measured from nearby access points and base stations. Users
can then pinpoint their locations by comparing their measured
signal strength in the map. However, the main drawback is
that war-driving is both time-consuming and labor-intensive
for large indoor areas. Some recent approaches such as LiFS

[18] use crowdsourcing to reduce the war-driving cost to some
extent, but it involves a complicated training process. In reality,
many mobile users may not turn on Wi-Fi all the time for
energy saving, limiting the effectiveness of crowdsourcing. In
addition, in developing countries, many buildings have no or
sparse Wi-Fi which is not dense enough for localization. Even
in developed countries, study [3] shows Wi-Fi may not be fully
available in many buildings. Therefore, a cheap and scalable
solution which does not need any infrastructure support is
desirable.

The advancement of embedded sensors in smartphones
has motivated a sensor-assisted localization approach [6], [7].
The accelerometer and compass have been used to measure
the walking distance and direction of a mobile user. The
user’s location can be easily obtained by comparing the user
moving trace and the map. However, these sensors are highly
noisy [11]. The computed trajectory will increasingly diverge
from the actual one. Hence, careful calibration is needed, for
example, through fixed beacons [6], or landmarks [17]. Crowd-
sourcing has been also used to reduce the war-driving effort
[4], [17]. These works rely on detecting user activities using
sensors such as accelerometer. However, to ensure reliable
detection, they typically require user-specific training which
is costly, and the high sampling frequency which may drain
the battery power quickly. In addition, the detection may be
often interrupted by users making or receiving phone calls.

The increasing availability of barometer embedded in s-
martphones (e.g., Galaxy Nexus and Nexus 4) has motivated
us to go beyond the existing work by building a simple, sensor-
based, battery efficient solution for floor localization. Muralid-
haran’s most recent paper [13] studies on the properties of
mobile-embedded barometers across a number of buildings. He
concludes that it is difficult to use the barometer to determine
the actual floor that a user is on. In this paper, we overcome
the challenges and did it with the help of crowdsourcing. We
propose a novel Barometer based floor Localization system
(B-Loc). B-Loc does not rely on any Wi-Fi infrastructure; it
requires neither war-driving nor any prior knowledge of the
buildings. In addition, it is more energy efficient as compared
to other sensor-assisted approaches [17], [18]. B-Loc leverages
on barometer sensing and crowdsourcing to build barometer
fingerprints which contain the barometric pressure value for
each floor level, and locate users’ floor levels by looking up
the map.

An intuitive solution may work as follows. Let’s assume
that the barometric pressure (a.k.a. atmospheric pressure) at
the ground floor of a building is p0. Given the barometric
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pressure decreases by 0.12 hPa for going up every 1 meter
in the vertical direction, we can easily calculate the altitude
of a smartphone user by h = (p0 − p)/0.12 where p is the
barometer reading. If each floor has the same height of h0, we
then know the floor level is �h/h0�. Unfortunately, in reality,
it does not work in this way. First, p0 is usually not accessible
and h0 varies for different buildings. Second, the barometer
reading p from smartphone is not accurate due to sensor drift.
Such as a drift for the same floor level can vary from one to
three levels, which is about 2hPa (16.7 meters). In addition, the
most critical issue is that the barometric pressure at the same
floor of a building keeps changing in a day due to different
weather conditions and time [2], [13].

In another typical solution proposed by Wang in [16]. They
track the user using barometer readings. First, they assume the
user’s initial floor level is f0. When the user changes floor
levels, the barometer reading change Δp can be detected, and
the user’s new floor level is computed as f0+Δp/(0.12∗h0). In
reality, h0 varies from building to building, and each floor may
have different height, so the floor height of each floor of every
building is needed, limiting the scalability of this approach.
More important, the initial floor f0 is difficult to know, because
users may not always enter into a building from the ground
floor and they may start using the localization service at any
floor level. Furthermore, a miss or wrong detection of Δp will
cause serious errors in the latter localization.

In B-Loc, we propose several novel solutions to address
these issues. First, we design a scalable, transitive calibration
algorithm to automatically calibrate different smartphone user-
s’ barometers. The calibration makes use of user encounters
and crowdsourcing, and it is done in a transitive way with more
users involved. Second, to solve the issue that the barometer
reading at the same floor changes over time, we propose time-
based projection to project the barometer readings collected
from different floors at different time to a common timestamp.
It is based on the observation that although the barometer
reading at the same floor may change over time, the difference
of the barometer readings between any two floors keeps
constant. If we obtain the barometer reading of a floor at a
timestamp, the readings of any other floor can be estimated by
computing the difference. Third, leveraging on crowdsourcing,
we cluster the barometer readings for each floor to generate
a barometer fingerprint map which contains the barometer
readings of every floor at any time.

In summary, we make the following contributions:

1) We propose a novel barometer based approach for floor
localization. B-Loc makes use of barometer on smart-
phone only, and does not require any infrastructure and
the prior knowledge of buildings.

2) We design several novel techniques to calibrate barom-
eters for different smartphone users in a scalable way,
project barometer readings to a common timestamp, and
cluster crowdsourced barometer readings to generate real-
time barometer fingerprints.

3) We conduct both extensive simulations and field studies to
analyze the performance of B-Loc. We deploy B-Loc in a
real situation to demonstrate its superiority over existing
solutions.

The rest of this paper is organized as follows. Section II

Fig. 1. Overview of B-Loc

gives an overview, followed by the detailed design of B-Loc.
Our evaluation is reported in Section III. Section IV discusses
the related work, and finally, Section V concludes the paper.

II. SYSTEM DESIGN

We give an overview of B-Loc in this section, as shown in
Fig. 1. The system operates in two phases. In the first phase,
B-Loc builds the barometer fingerprint map automatically.
When a user travels up and down in the building (e.g., taking
elevators/escalators and climbing stairs), as illustrated by the
solid line arrows in Fig. 1, the mobile client software running
on the phone collects barometer readings in real-time. The
activities of changing floors are detected and captured by our
activity recognition algorithm. We design a robust technique
to recognize such activities using barometer on smartphone.
The recognized activities, together with real-time barometer
readings, will be uploaded to the cloud server as a user
trace. Different traces may contain the barometer readings
of different floor levels, these readings have to be calibrated
before we make use of them. We calibrate barometers on
different smartphones based on user encounter, which can be
detected when two users enter in an elevator. The calibration
is done in a transitive way with more users involved, and
eventually propagated to all possible users in a scalable way.
After calibration, barometer readings in each trace will be
projected to a timestamp t0, making the readings from different
users comparable. In the end, we cluster the barometer readings
using a clustering algorithm based on CURE [9] to generate
the barometer fingerprint map which contains the barometer
readings of each floor at t0. By projecting the readings in the
map from time t0 to the current time tnow, we obtain the real-
time barometer fingerprints.

In the next phase, a mobile user first downloads the
barometer fingerprint map of the building and the calibrate
information from the cloud server, and then scan the barometer
reading around. B-Loc calibrates the readings, and compares
the reading with the barometer fingerprints. The nearest barom-
eter reading in the map will conclude the right floor level for
the user.
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(e) Smoothed barometer readings

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 30 61 89 121 152 183 211 242

F
ir

st
 d

er
iv

at
iv

e 
va

lu
e 

t(s) 

area ↓1  
  

area ↓2  

area ↑3  

area ↓1  area ↓2  

area ↑3  area ↑1  

taking elevators   climb stairs escalator 

(f) First derivative value of the readings

Fig. 2. The properties of smartphone’s barometer and Floor-change activity detection by barometer readings

TABLE I. BAROMETER SENSOR PARAMETERS

Property BMP180/182 LPS331AP

Absolute accuracy -4.0 ... +2.0 hPa (-33...+17m) - 3.2...+2.6hPa (-27...+22m)

Relative accuracy ± 0.12 hPa (± 1m) ± 0.2 hPa (± 1.7m)

Noise 0.06 hPa (0.5m) 0.06hPa (0.5m)

Used in smartphone
Galaxy Note 2/3, Xaiomi M2,

Sony Ericsson Active, Nexus 3/4
Galaxy S3,S4

A. Barometer on Smartphone

We now move to study the barometer sensor on smart-
phones. Barometer sensor has become increasingly popular on
smartphones today. Most commonly used barometer sensors
are BMP180/182 and LPS331AP. Table I gives their technical
specifications. From the table, we observe that while the
absolute accuracy1 is about ± 20 meters (which is low), the
relative accuracy2 is high. This implies that the barometer
sensor has a high level of sensitivity, and it is good enough
to detect the change of the barometric pressure when users go
up or down in a building. Motivated by this observation, we
use barometer to detect the activities when users change their
floor levels.

We used a professional digital pressure gauge to measure
the barometric pressure at a fix location in an office building
over a period of half an hour. Figure 2(a) plots the result. From
the figure we observe the barometric pressure measurements
change with a variation of 1.2hPa which is equivalent to
about 10 meters in altitude. This variation may result in a
detection error ranging up to three floor levels. Hence, directly
applying the barometric formula to calculate the floor level
is not feasible. In another study, we sampled the barometer
readings of two smartphones of the same type at the same
indoor location. Figure 2(b) shows that a constant drift of

1The accuracy of a sensor reading compares to the real barometric pressure.
2The accuracy of the change of a sensor reading compares to the change

of real barometric pressure.

sensor readings which may result in an error ranging up to
three floor levels. It is clear that appropriate calibration needs
to be done.

B. Floor-change Activity Detection

We first present a novel technique to recognize the activities
of changing floors using barometer. We represent a barometer
sample P by B = {t, Baro}, where t is the time for sampling,
and Baro is the barometer reading at time t. The barometer
samples arriving in time order form a barometer trace, which is
represented by BTrace = {ID,B1, B2, ..}, where ID is the
identity of the user. Users typically change their floor levels by
taking elevators/escalators and walking up or down the stairs.
The barometer sensor is inherently noisy. Figure 2(d) shows
the raw barometer readings which apparently contain many
spike noise. In B-Loc, we first filter these noise, and then
smooth the values with a reasonable window size of 1000 ms
(i.e., the value at time t is the average value from t− 500 to
t+ 500 ms), as shown in Fig. 2(e). In our previous study, we
observe that barometer readings on smartphones don’t change
much in a short period of time unless users change their
floor levels. Hence, the change of barometer readings can be
used to recognize the floor-change activities. To do this, we
extract the first derivative of the barometer readings and the
resulting curve is shown in Fig. 2(f). We can see from the
figure that the change of barometer readings is transformed
to crest when going up and trough when going down. The
crest and trough are sharp when taking elevators and smooth
when taking escalators and stairs. The start and end time of
the activity is the time of the left and right edge of each crest
or trough.

To detect these activities, we calculate the area size of
each crest or trough. If it meets certain conditions, a change-
floor activity is detected. In detail, each area is defined as a
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continuous and closed region formed by the x axis and the
curve. The region is located below or upon the x axis, which
should meet the following conditions: 1) Lasted time between
3 and 120 seconds, 2) Area size bigger than 1.0. Figure 2(f)
shows the areas of different ways of floor changing. In B-Loc,
we do not impose any constraint on the ways users carry or use
their smartphones. A smartphone can be held on hand, placed
into a pocket or bag, or used to make/receive a phone call, etc.
This certainly offers a great advantage over the accelerator
based activity recognition [4]. We define an floor-change
activity as A = {STime,ET ime, SBaro,EBaro}, where
STime is the start time of an activity, ETime is the stop time
of an activity, SBaro and EBaro is the barometer reading at
STime and ETime, respectively. The user’s moving trace
can be then defined as MTrace = 〈ID,A1, A2, . . .〉, where
ID is the identity of the user. The detection is done in the
smartphone and the resulting MTrace will be uploaded to
the cloud server. We conducted experiments with two users
using three different smartphones under real-life situations in
three different buildings. Figure 2(c) shows the accuracy of
detecting floor changes. The results show the average accuracy
using barometer is about 98.3%.

It is worth knowing that barometer readings at this stage
are used for real-time activity detection on smartphone. We
will show at a later stage how barometer readings are used for
generating the barometer fingerprint map in the cloud server.

C. Transitive Calibration Algorithm

The objective of barometer calibration is not to calibrate
each smartphone’s barometer to the real barometric pressure,
but use any smartphone’s barometer as a reference point and
find the drift between each of other user’s barometer and the
reference. Before we introduce our calibration algorithm, we
first introduce the property of the drift between sensors. We
define driftAB as the drift between barometer A and B, and
driftAB = BaroA − BaroB , where BaroA and BaroB
is the reading from barometer A and B, respectively, under
the same barometric pressure. The barometer drift holds the
following properties: 1) driftAB = −driftBA, 2) driftAB+
driftBC = driftAC . These properties clearly demonstrate
the transitive relationship. We define barometer calibration as
follows: 1) For two smartphones, they are calibrated when the
drift of the two barometers is known by the cloud server. 2) For
more than two smartphones, they are calibrated when the drift
between every two barometers is directly known by encounter
in elevator or indirectly known by the transitive relationship.

1) Calibration for Two Barometers: Calibration is done
by analyzing barometer traces. The idea is to calibrate users’
barometers when they encounter each other. Elevator is very
common in buildings now and users often encounter each other
in elevators. We observe that if users encounter each other in an
elevator, the time and value of their barometer change are the
same. In another word, if we detect two floor-change activities
from both users’ barometer traces, these activities start and end
at the same time, and the barometer readings change is the
same, we conclude that the two users encounter in the same
elevator, Fig. 2(b) is an example. This is formalized as follows.

1) I1: Ai.ST ime = Aj .ST ime; 2) I2: Ai.ET ime =
Aj .ET ime; 3) I3: Ai.SBaro − Ai.EBaro = Aj .SBaro −

Aj .EBaro; and 4) I4: Ai = Aj ; where Ai and Aj is the
floor-change activity for user i and j, respectively. The rule is
then formulated as follows.

R1 : I1 ∧ I2 ∧ I3 → I4.

If we have Ai = Aj , the drift is then calculated by the
following formula.

driftij =

∑Ai.ETime
t=Ai.ST ime(Bi(t)−Bj(t))

n
(1)

where Bi(t) and Bj(t) is the barometer reading of user i and
j, respectively, at time t, n is the total sample size.

We analyze a case that when two users enter into different
elevators at different floors and experience a floor-change
activity with the same barometer change at the same time.
The above rules will conclude they are in the same elevator. To
handle this case, we first observe that when users encounter in
an elevator, they often experience more than one floor-change
activity together. For example, user i and j encounter each
other at the ground floor and go up to the 8th and 10th floor,
respectively. Before arriving at level 8, the elevator stops at
levels 3 and 5. In this scenario, user i and j experience 3
floor-change activities (i.e., from 1 to 3, 3 to 5 and 5 to 8).
Based on this observation, we detect consecutive floor-change
activities between two users to minimize the probability of this
fault case. We formalize it as follows.

1) I5: ∃A1, A2, .., Ak ∈ MTracei; 2) I6: ∃A1, A2, .., Ak ∈
MTracej ; 3) I7: Am+1.ST ime − Am.ET ime < 30 hold-
s in MTracei and MTracej ; 4) I8: MTracei.Am =
MTracej .Am; 5) I9: user i and j are in the same elevator and
the confidence is k. The rule is then formulated as follows.

R2 : I5 ∧ I6 ∧ I7 ∧ I8 → I9.

where MTracei and MTracej is the trace of user i and j,
respectively, and k is the confidence that user i and j is in the
same elevator.

2) Calibration for All Barometers: In the previous section,
we present barometer calibration for two smartphones. To
calibrate all smartphones’ barometers, while the same principle
will be applied, the calibration propagates from phone to phone
in a transitive way. We model this process using a graph shown
in Fig. 3(a). In this graph, each barometer is represented by
a node. If two barometers are calibrated by an encounter in
elevator, we draw an edge between the two nodes, and the
weight of the edge represents the confidence value of the
calibration. Since there may be more than one calibration done
between two users (e.g., two users may encounter each other
multiple times), we choose the calibration with the highest
confidence value. Since barometer calibration is transitive, in
theory, any two barometers can be calibrated if this graph is
connected. To select a root barometer, a trivial approach is to
randomly choose a node as root and find a spanning tree from
the graph as shown in Fig.3(b). Any node in the spanning tree
can be calibrated following the path from the node to the root.
For example, to get the drift of barometer j, we find a path
between node f and j, f − k − j, and obtain the drift by
driftfj = driftfk + driftkj .

There are two factors affecting the accuracy of our cal-
ibration algorithm. The first one is the confidence values of
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Fig. 3. Calibration and projection

the edges in the path. The other one is the length of the
path. The confidence determines the probability of correct
calibration. The length of the path determines the calibration
accuracy because errors may be accumulated along the path.
This turns out to be an optimization problem—find a spanning
tree, choose a root to minimize the sum of nodes’ depths, and
maximize the weight of the edges in the path. It has been
proven to be a NP-complete problem [8], hence, finding this
spanning tree is not realistic. In B-Loc, we propose a heuristic
solution based on the observations that the confidences of
edges in the path are important and the calibration errors
accumulate slowly. We first find a maximum spanning tree
which maximizing the edge confidences in the tree, we then
choose a node as the root which minimizes the average depth
of all other nodes. As an example, we run the algorithm on
the graph shown in Fig. 3(a) and the resulting graph is shown
in Fig. 3(c). The complexity of the algorithm is O(NlogN).

It is also important to notice that the calibration graph is not
limited to only one building. When a user appears in different
buildings, the calibration graphs are merged. So, ideally all
users using B-Loc can be calibrated in a huge graph, the
structure is similar to a social network. More important, the
calibration process is once for all, once a user’s barometer is
calibrated, the calibration information is recorded and can be
used when the user is in any other buildings.

D. Time Based Projection

After calibration, we update all the barometer readings in
MTrace by adding their drifts. The barometer readings in
MTrace are collected by different users at different time,
and each trace may only contain a partial view of barometer
fingerprints of the building. To have a complete view, we have
to combine them. To do so, we first project MTrace to a
timestamp. We define a new data structure called FTrace.
A FTrace contains the barometer reading distance between

some floors and a reference barometer reading point extracted
from a MTrace. As shown in the left-hand side of Fig. 3(d),
in the MTrace, there are floor-change activities of going up
and down. Since the barometer reading distance between every
two floor levels is constant, we can extract the barometer
distance between floors from MTrace as shown in the right-
hand side of Fig. 3(d). For example, if we know b4 and b5
are the barometer reading at the same floor (we assume no
miss detection), and b4 − b3 = b5 − b6 + d3, we can then
infer that b6 is scanned on a higher floor than b3 and d3
is the barometer reading distance of the two floors. In this
way, we extract all the barometer reading distance between
floors from MTrace. The structure of FTrace is defined as
{〈d1, d2, ..dk−1〉, 〈t, b〉}, where di is the barometer distance
of two floors ( which floors still unknown at this stage). b is
the barometer reading at timestamp t in the lowest floor of
FTrace, and 〈t, b〉 is called the reference point of FTrace.

Next, we project two FTrace to the same timestamp,
making them comparable. Consider two FTrace FTi and FTj

from user i and j, respectively, bi and bj is not comparable
because ti! = tj . As shown in Fig. 3(e), we first choose a
reference time t0 in the overlap time zone of the two BTrace
from user i and user j, and get sample 〈t0, bm〉 in BTi and
sample 〈t0, bn〉 in BTj . For every sample, we get the barometer
reading distance between the floor level of the sample and the
floor level of the reference point, e.g., 〈t0, bm〉 is sampled at
a higher floor level than t1, b1 and the distance is d2+ d1, we
can then infer that, at time t0, the barometer reading at the
floor of the reference point is bm−d2−d1, and the barometer
reading of the reference point of FTj at t0 is bn − d6 − d5.
Therefore, both the references of FTi and FTj are projected
into the same timestamp t0.

We present Algorithm 1 to project all FTrace into the
same timestamp, as illustrated in Fig. 3(f).
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Algorithm 1 Project all FTrace into the same timestamp.

Input:
The set of all FTrace, C; An empty set, C ′;

Output:
The set of all projected FTrace, C ′;

1: Find a biggest subset C1 of C, where the intersection of
their time intervals is not empty. Remove C1 from C, and
put C1 to set C ′;

2: Choose a timestamp t from the intersection time interval
of C1, project all FTrace to timestamp t;

3: Repeat 1 and 2 until C is empty;
4: Choose two biggest set C ′1 and C ′2 from C ′, choose a

FTrace from C ′1 and C ′2 respectively, project them to
timestamp t1, and project all FTrace in C ′1 and C ′2 to t1,
union set C ′1 and C ′2;

5: Repeat 4 until C ′ become an one element set;
6: return C ′.

E. Barometer Reading Clustering

After calibration and projection, we are now able to
compare barometer readings in FTrace, and relay them to
each floor level in the building. As shown in Fig. 4, we
first transform FTrace from {〈d1, d2, d3, ..dk−1〉, 〈t, b〉} to
barometer reading points {b, b + d1, .., b + d1 + .. + dk−1},
where each element represents the barometer reading of a
floor level. Each FTrace contains some barometer readings
at different floors of the building at the same timestamp t.
Ideally, for a n-floor building, we should have n different
barometer readings. However, errors may be introduced during
calibration. To eliminate errors, we use clustering. We apply
the hierarchical clustering algorithm named CURE [9]. Initial-
ly, each barometer reading is a cluster. The CURE algorithm
merges two closest clusters in each step until a certain number
of clusters are formed. CURE fits well in this situation because
it is less sensitive to outliers. However, we cannot apply
CURE directly because the resulting number of clusters f
(should be the same to the floor numbers n) is unknown.
In B-Loc, we adapt the CURE algorithm by designing the
distance function and determining when to stop clustering. We
use the Euclidean distance as distance function to calculate
the distance between two clusters of samples. In each cluster,
we choose m median samples to calculate the distance. The
distance function between cluster Ci and Cj is computed as
follows.

Distance(Ci, Cj) =

√√√√
m∑

k=1

(Bik.b−Bjk.b)2 (2)

where Bik.b is the barometer value of the kth middle value
sample of cluster Ci.

The clustering algorithm stops when the distance of the
nearest two clusters is smaller than a threshold. We set the
threshold to the two-third (0.3hPa) of the minimum barometer
distance between floor levels in FTrace (the one-third 0.15hPa
is for tolerating the error of the barometer reading). After
clustering, we obtain a set of clusters. For each cluster, we
compute the average of their m median samples as the value
of this cluster. We then order all the clusters by this value from
high to low. The ordered sequence has an one-to-one mapping
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Fig. 4. Clustering barometer readings

to floor levels. The highest value maps to the ground floor, and
the lowest value maps to the top floor level. In the end, we
obtain the barometer reading of each floor at timestamp t, and
also the barometer reading distance of every pair of floor levels.
A barometer map with a reference point 〈t, b〉is generated, and
it is defined as: Map = {〈d1, d2, d3, ..dn−1〉, 〈t, b〉}, where
di represents the barometer distance of floor i and i + 1,
n represents the floor number, b represents the barometer
reading at the ground floor at timestamp t. Using the barometer
fingerprint map, we can know the barometer readings at each
floor. For example, the barometer reading at floor level 3 is
(b+ d1 + d2).

F. Real-time Barometer Fingerprint Map

After obtaining the barometer fingerprint map at timestamp
t with the reference point 〈t, b1〉, we now convert the reference
point to the current time (i.e., tnow). In the first scenario, when
the users are still in the building. Our idea is to find a BTrace
which contains readings at both time t and tnow. We first get
the floor level f1 of user at time t by comparing the barometer
reading at time t with the barometer fingerprint map. We then
detect if the floor-change activities occurred between time t
and tnow, and obtain the floor change which isΔf . The current
floor level of the user is f2 = f1 + Δf , we then obtain the
barometer reading b2 at time tnow, and the reference point is
now 〈tnow, b2 − df2−1 − df2−2 − ... − d1〉. In this way, we
convert the barometer fingerprint map from time t to tnow.

In the second scenario, all users leave the building and
arrive the building in the next day, now we only need to update
the reference point 〈t, b〉 to now (tnow). Since users are all
calibrated, the approach is to get and cluster the barometer
readings of the users at tnow. Only if there is at least one
user in the ground floor, the cluster with the biggest barometer
reading value must be the reading of the ground floor. Hence,
the reference point gets updated.

G. Locating Users

Users can now download the barometer fingerprint map and
the calibration information from the cloud server. For each
barometer reading sampled from a smartphone, the reading
will be adjusted based on the calibration information, and look
up the map to find the floor level of the user.

The barometric pressure of the ground floor may change
by time, and B-Loc is able to dynamically update the reference
point of the map. The way we do is to append the barometric
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pressure change to the reference point (〈t, b〉). For example, the
barometric pressure changedΔb after 60 seconds, the reference
point will be updated to 〈t + 60, b + Δb〉. In this way, the
application does not need to download the map again if the
user stay in the building. At the same time, the application
will upload the reference point to the cloud server periodically,
where the barometer fingerprint map is updated.

III. EVALUATION

We now move to evaluate B-Loc using both simulation and
field studies.

A. Simulation Methodology

We design a simulator to evaluate the efficiency and
scalability of B-Loc. In the simulation, we aim to evaluate how
well B-Loc performs calibration and how fast the barometer
fingerprint map can be built. The simulator models the process
of user taking the elevator up and down in a multi-floor
building. It works as follows. The simulation process is divided
into cycles of elevator going up or down (which occurs with an
equal probability). For elevator going up, each cycle simulates
the process that the elevator goes up from the ground floor,
with people entering and leaving the elevator from or to any
levels, until the elevator is empty. We model the process of
people entering the elevator from the ground floor as the
Poisson distribution. The expected number of the Poisson
distribution is set to 1/4 of the maximum load of a typical
elevator (i.e., four persons). People on the ground floor may
go up to any floor with a probability of 1/(n− 1), where n is
the number of floors of the building. From any other floor fi,
some people may enter the elevator, and go to the rest (n− i)
floors with an equal probability 1/(n − i). Each cycle starts
from the ground floor, we first compute the number of people
entering the elevator and which floors they are going to, the
elevator goes up from the ground floor, and stops when people
exiting or entering, until there are no users in the elevator. For
elevator going down, every time the elevator starts from the
top floor, users in every floor may enter the elevator, and will
go to the rest n′ floors with an equal probability of 1/2(n′−1),
except to the ground floor which is 1/2. When people enter or
exit the elevator from a floor, the number of people on that floor
gets updated, and the trace of every user is recorded. Based
on our observation from real-life situations, in our simulation
model, we assume that when an elevator passing a floor, the
probability of a user in that floor entering the elevator is p (1%
in our setting).

Given a number of floors n and a number of users u, we
simulate cycles of elevator going up and down until a certain
number of user-elevator trips m is reached (a user-elevator trip
is defined as the process of a user entering and leaving the
elevator). At the end of each simulation cycle, we combine
the ground truth from the floor-change activity detection to
get the MTrace of every user. We will evaluate how well the
barometer sensor of the users can be calibrated. We then build
the barometer fingerprint map using the calibrated MTrace,
and show how fast it can be built.The parameters of the
simulator are listed as follows.

1) floor number: the number of floors. 2) total trip number
: the number of user-elevator trips for all the users. 3) average
trip: the average number of user-elevator trips for each user.

The performance metrics used in the paper are summarized
as follows. 1) average weight: The average weight of all edges
in the calibration tree. 2) average hop: The average hop of
all nodes to the root in the calibration tree. 3) percentage
calibrated: The percentage of users who have been calibrated.

B. Simulation Results

Figures 5(a) - 5(f) show the simulation results when the
user number at each floor is 10 and the average number of users
in elevator is 4. Figure 5(a) shows the percentage calibrated
in three different buildings under different total trip number. It
shows that all users can be calibrated after about 150/300/1000
trips in a 5/10/40-floor building. When the total trip number
is changed to the average trip as shown in Fig. 5(b). We find
that in the three buildings, all users can be calibrated when
each user takes the elevator for about 2.5 times on average.
Figure 5(f) shows the percentage calibrated in the 10-floor
building with different average trip. The different colors in
each column represent the calibrated groups, from the largest
to the smallest. It shows that when average trip grows from 1
to 1.3, the size of the largest calibrated group grows fast and
almost 95 percent of users are calibrated when the average
trip is 1.5.

Figure 5(c) shows the number of floors found in the
barometer fingerprint map with different average trip. It shows
that B-Loc builds the map for the 5/10/40-floor buildings when
the average trips of users are less than 1.5. Compare to the
result in Figure 5(a) and Figure 5(f), it shows that B-Loc builds
the map before all users are calibrated, and locates most of
the users quickly (e.g., 95 percent of users when average trip
is 1.5). Figures 5(d) and 5(e) show the average weight and
average hop in the calibration tree, respectively. Figure 5(d)
shows that the average calibrate weight is about 2/3/5 in the
5/10/40-floor building. In Fig. 5(e), the hops is about 3/4.5/8
in the three buildings when all users are calibrated.

C. Field Study

To evaluate B-Loc under the real-world situations, we
implemented a prototype system and publish it on a website
[1]. We encourage users to download and try B-Loc in our 10-
floor computer science building. A total number of 67 users
downloaded our application to their mobile phones (e.g., Sam-
sung, Google Nexus, Sony Ericsson, etc). Out of 67 mobile
phones, only 28 have both barometer sensors and a mobile
network data connection (i.e., GPRS or 3G). We developed
a mobile application named ”Talking to Strangers (up/down
stairs)” which is built on top of B-Loc. The application finds
users from other floors of a building for message chatting.
This is similar to other chat applications such as find strangers
around, but we incorporate B-Loc into our application for floor
localization.

When the application runs, it continuously collects barom-
eter readings at a rate of 2 samples per second, and all the
samples will be logged in a data file which will be uploaded
to the cloud server every 2 hours. The floor-change activity
detection is done in real-time and the MTrace will also be
uploaded to the cloud server. The client also performs time
synchronization with the sever by computing the round-trip
delay time and the offset. If the barometer fingerprint map is
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Fig. 5. Simulation and Field study results

available in the cloud server, it will be downloaded to locate the
user. The indoor/outdoor detection is done by scanning GPS
signals. Before obtaining the map, the application uses a simple
tracking approach to locate the user. It has a low accuracy
because it assumes users enter the building from the ground
level (i.e., the initial floor is 1) and the height of each level is
fix (i.e., the barometer reading change of every floor is about
0.45), floor localization is then done by detecting user activities
of changing floors. We did not give special instructions to the
users during our study. Users ran the application as they like.
To get the ground truth, we first manually get the drift to
the real barometric pressure for all the 28 smartphones, then
placed a barometer logger at each floor to get the ground truth
by comparing their readings with the ground truth. The field
study ran for eight days. In each mobile client, the history
of floor location is logged. In the cloud server, all calibration
results and the barometer fingerprint map generated are logged.
We analyze the performance based on the logged data in both
the client and the cloud server.

D. Field Study Results

The calibration error is shown in Fig. 5(g). The left vertical
axis shows the number of barometers in different error regions.

The right vertical axis shows the accuracy of the calibration in
each region. The accuracy is defined as the ratio between error
and the barometer reading distance of one floor. An accuracy
of higher than 50% is the necessary condition to locate the
user to the right floor. Figure 5(h) shows the real barometric
pressure of the ground floor and the reference point of the map
in 24 hours. The reference point is available from 8 AM to 11
PM when there are users in the building. The reference point
updates the same way as the barometric pressure change, which
shows that the map is accurate. The root of the calibration
tree is not calibrated by real barometric pressure and caused a
constant drift between the two curves.

We get the accuracy of floor localization by comparing
the ground truth with the barometer loggers and the floor
location history of B-Loc. It is shown on the left vertical axis
of Fig. 5(i), where the accuracy is more than 98% for every
user when they are calibrated and the barometer fingerprint
map is generated. When the users are not calibrated or at the
beginning of every day when the reference point of the map
is not found, using the simple tracking approach the accuracy
is about 70%, which appears in about 3% of all location cases
as shown in the right vertical axis of Fig. 5(i).
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IV. RELATED WORK

Many fingerprint based techniques for indoor localization
have been proposed such as [5], [12], [14], [15]. They mainly
rely on Wi-Fi signal strength, and they are capable of achieving
a high accuracy in an indoor environment. However, like
RADAR [5] has to war-drive the entire building in order to
obtain the radio map. War-driving is very time-consuming and
labor-intensive, and it may have to be done periodically since
the Wi-Fi signature at the same location may be changed over
time. Hence, this solution is not scalable. The fingerprint based
technique has been used in floor localization. SkyLoc [15] uses
GSM fingerprints to locate a user’s floor level in a multi-
floor building. They report an accuracy of 73% for locating
a user to the right floor, and 95% within 2 floors. But the
GSM signals vary significantly in indoor environments, and
the training process in SkyLoc is time-consuming. It has a
poor scalability since war-driving and training are required for
every building. Some recent approaches such as LiFS [18]
use crowdsourcing to reduce the war-driving cost to some
extent, but it involves a complicated training process. In reality,
many mobile users may not turn on Wi-Fi all the time for
energy saving, limiting the effectiveness of crowdsourcing.
Different from these systems, B-Loc makes use of the new
barometer sensor appears in recent smartphones. It does not
require war-driving to build the fingerprint database, B-Loc
relies on crowdsourcing and intelligently build the barometer
fingerprint map to locate users’ floor level.

Sensor-assisted localization methods [6], [7], [10] have
been proposed, making use of embedded sensors available
on smartphones. These systems typically use accelerometer
and electronic compass. However, careful calibration is needed
from time to time due to the limitations of the sensing
technology. For example, Escort [6] leverages on fixed beacons
for calibration. Crowdsourcing has been also used to reduce
the training effort [4], [17]. These works rely on detecting
user activities using sensors such as accelerometer. However,
to ensure reliable detection, they typically require user-specific
training which is costly, and the high sampling frequency
which may drain the battery power quickly. In addition, the
detection may be often interrupted by users making phone
calls. FTrack [10] using accelerometer for floor localization.
The main problem of this approach is that they cannot handle
some practical issues such as different user walking patterns
and a variety of ways to carry/use mobile phones, which may
affect the accuracy and limit the feasibility. Muralidharan’s
most recent paper [13] study on the properties of mobile-
embedded barometers across a number of buildings. But failed
to solve the problem of using the barometer to determine
the floor of a user. In another solution proposed by Wang in
[16] before the mobile-embedded barometers appear, using a
barometer sensor to track user’s floor level. As we discussed
in the introduction, this approach need the detail information
of the building and need to know a initial floor of every user,
which is hard to get. Furthermore, a miss or wrong detection
will cause serious errors in the latter localization. While B-Loc
is not a tracking system and it does not rely on the previous
location information. B-Loc detects user activities of changing
floor by a novel barometer based technique, and it has no
assumption of users walking pattern or the ways to carry/use
mobile phones.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel, scalable floor localization
scheme. Leveraging on mobile phone sensing and crowdsourc-
ing, B-Loc requires neither any infrastructure nor any prior
knowledge of the building. Different from similar approaches,
B-Loc does not require war-driving, and rely on barometer
only. B-Loc provides high accuracy of activity recognition and
minimum energy consumption, making it more realistic for
real-world deployment. Our simulation and prototype system
demonstrate the performance, scalability, and robustness of B-
Loc. For our future work, we will further improve B-Loc by
enhancing the calibration algorithm. We also plan to offer a
full version of B-Loc as a free service to the play store for
public use, and test B-Loc under real-life situations.
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