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ABSTRACT
Hand gesture is becoming an increasingly popular means of
interacting with consumer electronic devices, such as mobile
phones, tablets and laptops. In this paper, we present Au-
dioGest, a device-free gesture recognition system that can
accurately sense the hand in-air movement around user’s de-
vices. Compared to the state-of-the-art, AudioGest is superior
in using only one pair of built-in speaker and microphone,
without any extra hardware or infrastructure support and with
no training, to achieve fine-grained hand detection. Our system
is able to accurately recognize various hand gestures, estimate
the hand in-air time, as well as average moving speed and
waving range. We achieve this by transforming the device
into an active sonar system that transmits inaudible audio sig-
nal and decodes the echoes of hand at its microphone. We
address various challenges including cleaning the noisy re-
flected sound signal, interpreting the echo spectrogram into
hand gestures, decoding the Doppler frequency shifts into the
hand waving speed and range, as well as being robust to the
environmental motion and signal drifting. We implement the
proof-of-concept prototype in three different electronic de-
vices and extensively evaluate the system in four real-world
scenarios using 3,900 hand gestures that collected by five users
for more than two weeks. Our results show that AudioGest
can detect six hand gestures with an accuracy up to 96%, and
by distinguishing the gesture attributions, it can provide up to
162 control commands for various applications.
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INTRODUCTION
The booming of consumer electronic devices has greatly stim-
ulated the research on novel human-computer interactions.
Hand gestures are a natural form of human communication
with devices that has aroused enormous attentions from both
industry [2, 3] and academia [4, 21]. Hence many companies
and researchers intend to integrate the hand-gesture recogni-
tion into our daily devices, including laptops [13], tablets [15],
smart phones [7], and gaming consoles [3, 1]. However, a
crucial prerequisite of such applications is that the device can
accurately and robustly detect gestures at anytime (e.g., poor
light condition at night), at anywhere (e.g., in rural area with-
out wireless connection) in a device-free manner (e.g., no need
to wear an extra device/sensor) [8, 15, 26].

To tackle such challenging requirements, many state-of-the-art
gesture approaches have been developed over last decades
such as computer vision [31], inertial sensors [17], ultrasonic
sensors [13], infrared sensors [1], depth sensors[3], etc. While
promising, most of these systems, however, can only partially
satisfy aforementioned requirements [4], such as sensitivity to
the light condition (e.g., vision-based methods), being limited
for specific applications (e.g.,. Leap Motion), high installation
and instrumentation overhead (e.g., Kinect), or needing user to
wear additional devices/sensors (e.g., wearable sensor based
techniques).

As a result, many WiFi-based attempts have recently been
proposed to help overcome the above limitations. For exam-
ple, WiGest [4] exploits the influence of in-air hand move-
ment on the wireless signal strength received by the device
from an access point (AP) to recognize the performed ges-
tures. Melgarejo et al. [18] leverage a directional antenna
and WARP board to access various wireless features such as
Received Signal Strength (RSS), signal phase differences and
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CSI (channel state information), then through matching the
features from users’ gestures with a standard set of pre-trained
templates to recognize user’s hand gestures. WiSee [25] ex-
ploits the doppler shift in narrow bands extracted from wide-
band OFDM transmissions to recognize nine different human
gestures. Although WiFi-based systems can work under any
lighting conditions, and do not require dedicated hardware
modification, such systems, however, require the mobile de-
vice to be always connected to a wireless transmitter/receiver,
which is impractical for some circumstances such as on a
tram/bus or traveling in a rural area.

To tackle these limitations, we hence introduce AudioGest, a
device-free system that can transform the consumer device
into an active sonar system by utilizing the microphone and
speaker that are already embedded in the device. Compared to
other audio-based systems, AudioGest is able to only use one
pair of built-in speaker and microphone, with no modification,
and no training to achieve fine-grained hand gesture detection.
More importantly, our system can also accurately estimate
the hand in-air time, average waving speed as well as hand
moving range.

Implementing such a practical system, however, requires ad-
dressing a number of challenges. First, the ambient noise
(e.g., human conversation, electronic noise etc.) dominates
the recorded audio signal (see the experiments in Sec. Weak
Echo Signal). It is hence difficult for us to perceive the weak
Doppler frequency shifts, let alone decoding the hand waving
directions, speed and range. Another challenge is the signal
drifting brought by the device diversity and time elapse (see
the experiments in Sec. Audio Signal Drift). Since we emit
a high-frequency audio signal (> 18kHz, making it inaudible
to human), the Operational Amplifier (OA) in microphone
and speaker both experience severe attenuation, making the
magnitude of recorded echoes extremely unstable. Moreover,
different microphones/speakers have various OA attenuations,
also resulting in signal drifting.

To address such issues, in AudioGest, we propose three main
techniques to tackle the aforementioned challenges. First, we
introduce a FFT-based normalization that substantially adjusts
the magnitude of FFT frequency bin in different timestamps
to a same level, removing the influence of OA attenuation in
high-frequency part (see details in Sec. FFT Normalization).
Then, we conduct a Squared Continuous Frame Subtraction,
in which we first subtract the spectrum of current audio frame
by previous frame and then square the magnitudes of fre-
quency bins, further eliminating the nearby human motion
influence (see details in Sec. Squared Continuous Frame
Subtraction). Furthermore, we utilize a Gaussian smoothing
filter [11] to transfer the discrete shifted frequency bins into
a contouring area. Then we decode it into the real-time hand
moving velocity curve based on the Doppler frequency shift
(see details in Sec. Transforming Frequency Shift Area into
Velocity). Finally, according to such velocity curve, we esti-
mate the hand gesture, moving speed as well as the waving
range (see details in Sec. Gesture Recognition). In a nutshell,
our main contributions are summarized as follows:

• We introduce an approach that utilizes one pair of COTS
microphone and speaker to accurately detect the hand move-
ment and to estimate fine-grained hand waving attributes.
Our in-suit experiments with five users for more than two
weeks demonstrate the feasibility and accuracy of Audio-
Gest in various living environments.

• We propose a denoising pipeline that can not only abstract
the Doppler frequency shifts from weak echo signals, but
also deal with the signal drifting issue caused by hardware
diversity and time elapse.

• AudioGest is a training-free system that accurately recog-
nizes 6 hand gestures with average 95.1% accuracy, as well
as precisely distinguish the magnitude differences of vari-
ous hand speed and moving range, being able to provide up
to 162 control commands.

RELATED WORK
Prior gesture-recognition system can be categorized into two
general types: wearable sensor/device based gesture recogni-
tion and device-free gesture recognition.

Wearable Devices based Gesture Recognition: Wearable sen-
sor/device based systems utilize various sensors (e.g., 3-axis
accelerometer [33, 2], inertial sensor [9], gyroscope [7] or
other smart devices [8, 24]) to sense the movement of hand or
arm. For example, some researchers infer the hand movement
by wearing a shaped magnet [16]. Humantenna [9] requires
the user to wear a small Wireless Data Acquisition Unit en-
abling the human body as an antenna for sensing whole-body
gestures. With the advanced build-in sensors in mobile de-
vice, the system in [7] transfer the acceleration recorded by
smartphone into a real-time hand moving trajectory. All these
systems, however, require the tracked subjects to carry a de-
vice/sensor, which might be impractical for some applications
(e.g., old people with dementia).

Device-free Gesture Recognition: This category can be further
classified into vision-based, environmental sensor based and
RF-based as well as sonar-based approaches. Video-based
hand-gesture recognition systems often do the hand-region
segmentation using color and/or depth information, and se-
quences of features for dynamic gestures are used to train
classifiers, such as Hidden Markov Models (HMM) [29], con-
ditional random fields [32], SVM [10], DNN [19]. However,
vision-based techniques are usually regarded as being privacy-
invasive. They also require users within the LOS (line of sight)
of cameras, and fail to work in dimmed environments, and
incur high computational cost. Also, some commercialized
hand recognition systems have been emerged lately, such as
Leap Motion [1] that explores multiple channels of reflected
infrared signals to identify hand gestures, and Kinect [3] that
uses depth sensor to enable in-air 3D skeleton tracking.

Recently, RF-based gesture recognition systems are also very
popular due to its low-cost and being less intrusive [12, 4, 28].
For example, WiVi [6, 5] uses ISAR technique to track the
RF beam, enabling a through-wall gesture recognition. RF-
Care [34, 35, 27] proposes to recognize human gestures and
activities in a device-free manner based on a passive RFID
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(Radio-frequency identification) array. WiSee [25] can exploit
the doppler shift in narrow bands in wide-band OFDM (Or-
thogonal Frequency Division Multiplexing) transmissions to
recognize 9 different human gestures. WiGest [4] explores the
effect of the in-air hand motion on the RSSI in WiFi to infer the
hand moving directions as well as speeds. Melgarejo et al. [18]
leverage the directional antenna and short-range wireless prop-
agation properties to recognize 25 standard American Sign
Language gestures. AllSee [15] designs a very power-efficient
hardware that extracts gesture information from existing wire-
less signals.

SonarGest [14] is one of the pioneering audio-based hand
recognition systems (HRG), which uses three ultrasonic re-
ceivers and one transmitter to recognize 8 hand gestures. The
technique utilized is a supervised Gaussian Mixture Model
that can capture the distribution of the feature vectors ob-
tained from the Doppler signal of gestures. However, it
needs to collect training data (potentially labour-intensive and
time-consuming) and requires extra sonic hardware. Sound-
Wave [13] is another pioneering HRG system by exploiting
audio Doppler effect as well. It only utilizes the built-in speak-
ers and microphones in computers and require no training.
SoundWave designs a threshold-based dynamic peak track-
ing technique to effectively capture the Doppler shifts, thus
can distinguish five different hand gestures. Most recently,
researchers are trying to transform the COTS speaker and mi-
crophone into a sonar system to detect human breath [22],
track a finger movement [23], sense user’s presence [30], etc.
Most of these systems adopt similar ideas from RF-based ap-
proaches, either decoding the echo of FMCW sound-wave to
measure the human body, or utilizing the OFDM to achieve
real-time finger tracking, or exploring the Doppler effect when
human approaching or away from microphone. However, such
systems either need two microphones or require design spe-
cialized sound-wave that is power-intensive. Motivated by, but
different to, the previous works, this paper only utilizes one
speaker and one microphone by emitting single-tone audio to
achieve a multi-level gesture recognition. It can also decode
the echo’s spectrogram into real-time hand waving velocity by
thoroughly exploring the relations between hand motion and
observed frequency shifts of the echo signal.

PRELIMINARIES
In this paper, we aim to turn the COTS speakers and mi-
crophones into an active sonar system to detect fine-grained
hand gestures without annoying normal human audition. Such
system, however, needs the support of high-definition audio ca-
pabilities. Fortunately, mobile device hardware is increasingly
supporting high-definition audio capabilities, which can sup-
port up to 22kHz response frequency and typical 44.1kHz or
48kHz sampling rate, enabling the possibility of fine-grained
hand detection.

Our system is motivated by a prevalent law in the physical
world, namely Doppler Effect. Doppler effect illustrates and
quantifies the wavelength changes when wave energy of sound
or radio waves travels between two objects if one or both of
them are moving. The Doppler effect causes the received
frequency of a source to differ from the sent frequency if

Figure 1: Illustration of Doppler Frequency Shift

there is motion that is increasing or decreasing the distance
between the source and the receiver. In our case, the wave
source (i.e., speaker) and the receiver (i.e., microphone) are
both motionless but the reflector (i.e., human hand) moves in
the air. Hence, though most of sound waves stay unchanged,
part of acoustic waves that are reflected by a moving hand will
experience a Doppler frequency shift as measured by Eqn. 1.

freceived =
1+ vrad/vsound

1− vrad/vsound
fsound (1)

where vrad means the radical speed of hand to microphone. As
Fig. 1 shows, when a hand moving in different directions or at
different speeds, it will cause different doppler frequency shifts
(e.g., different shapes, different intensities and durations). Our
AudioGest targets to decode such doppler frequency shifts,
to recognize the gestures, as well as to estimate the moving
speed and duration of a hand in air.

EMPIRICAL STUDIES AND CHALLENGES
In this section, we will conduct some empirical studies and
identify the challenges that we need to deal with.

Weak Echo Signal
As Fig. 1 shows, we transmit a 19kHz sine acoustic wave
(for 3s) from the right channel of the speaker in a laptop
(i.e., MacBook Air). Simultaneously, we record the ambient
sound signal using microphones in the laptop. At the same
time, a participant waves his hand in different directions and at
different speeds. Then we conduct a FFT to see the frequency
shift of the received audio signal.

Figure 2: The Doppler frequency shifts caused by different
hand gestures and waving speeds

476

SESSION: SOUND AND AUDIO



From Fig. 2, we observe that the waving hand from down to
up results in an observable magnitude increase in the lower
frequency bins, but moving hand from left-to-right/right-to-
left is less obvious and the echo signal is weak. Thus, how to
abstract such weak, vulnerable frequency-bin changes from
wide-band1 audio signals is a big challenge. Moreover, we
intend to decode the fine-grained hand moving speed, in-air du-
ration and motion range from such weak echoes. At the same
time, the ambient noises (such as human conversation, elec-
tronic noise) further increase its difficulty. We will illustrate
our solution in Sec. Audio Signal Segmentation.

Audio Signal Drift
Another challenge we need to tackle is the audio signal drifts
caused by the time elapse and device diversity.

Figure 3: The sound signal drifts for different mobile devices
at different time slots

Shown in Fig. 3, we transmit a 19kHz audio signal and record
it using three different mobile devices.

Obviously, the recorded audio signal shows fluctuated inten-
sities for the same frequency (especially, the mobile phone
exhibits a stronger signal drift). Such signal excursion will
greatly hinder the system’s scalability, which means a method
that works well in one device may be incapable for other de-
vices or after several days. We will deal with this challenge in
Sec. FFT Normalization.

SYSTEM CONCEPTUAL OVERVIEW
Fig. 4 shows the system architecture of AudioGest, including
three conceptual layers, namely the gesture detection layer,
the gesture categorization layer and the application layer. The
gesture detection layer is the key part of the whole system,
which outputs four kinds of gesture contexts - waving di-
rection, hand’s average speed and in-air duration, as well as
waving range. The gesture categorization layer categorizes
different basic gesture characteristics from previous layer into
different semantics. We define overall six gesture directions
and three intensity levels for the moving speed, in-air dura-
tion and waving range. Unlike previous systems that only
detect one or two hand gesture contexts [4, 15], AudioGest
provides four types of hand gesture-contexts. By combination,
it can theoretically provide up to 6×3×3×3 = 162 control

1Normally, a microphone can resolve 0∼22.05kHz sound signal for
a 44.1kHz sampling rate.

commands, which we thus called fine-grained hand gesture
recognition. It is noted that AudioGest can support a smaller
categorization (e.g., classify the in-air duration into four or
five levels) however it may deteriorate the detection accuracy.
Vice-versa, we can use a coarse-grained categorization to in-
crease the estimation accuracy. For example, for an e-book
App, which only needs 4 commands, next page, previous page,
full screen, normal screen), we can choose four types of hand
waving directions (regardless of waving speed, in-air dura-
tion and range) to control these command buttons. This layer
provides more flexibility to the application layer. Finally, the
application layer maps different gestures to control commands
for various applications.

THE AUDIOGEST SYSTEM
We first introduce how to design the transmitted audio sig-
nal. Human normal audible scope is 20Hz∼18kHz. To avoid
annoying human audibility, under no circumstance, should
AudioGest produce the sound signal below 18kHz (to be more
safe, we make it 18.5kHz). Assuming that the fastest hand
moving speed is 4m/s [13], then the largest Doppler frequency

shift2 Δ fdoppler = (2vhand/vsound) ftransmit = 470.6Hz. Hence,
if the mobile device transmits a 19kHz sound, then the received
audio signal is 18,529.4Hz∼19,470.6Hz, satisfying the re-
quirement. Also, we save a bandwidth (2Δ fdoppler = 941.2Hz)

for another possible audio channel3. Although microphones in
some devices can support a 48kHz or even 192kHz sampling
rate, we adopt a more general 44.1kHz sampling rate.

FFT Normalization
As aforementioned, the raw data recorded by microphones not
only contain audible noise but also introduce the signal drifts
due to temporal changes and diverse hardwares. This section
introduces a FFT-based normalization to deal with such issues.

Since our targeted sound frequency band is 18.5kHz∼19.5kHz,
we will only do analysis to audio signals within this nar-
row bandwidth in the following processing. Such processing
will naturally filter out the influence of audible noise without
adding an extra band-pass filter. Then, we adopt a 2048-point
hamming window to segment the filtered signal into audio
frames4, apply a 2048-point FFT 5 to each frame get the sound
spectrogram, showing as the left graph in Fig. 5. We can see
the signal drift severely interferes the audio spectrogram, dis-
playing an unstable magnitude (e.g., the part marked by the
red ellipses).

To deal with this challenge, we collect overall 3,600 sec-
onds 19kHz sound signal using three different mobile devices
(i.e., MacBook Air laptop, Sumsung Galaxy S4 smartphone

2Since we do not know the transmitted sound frequency before-
hand, we use a larger possible transmitted frequency 20kHz, vsound =
340m/s under 15 ◦C.
3It means we can use another speaker channel to transmit a 20kHz
sound, and the received signal is 19,529.4Hz∼20,470.6Hz, which
lies in the recording capability of a microphone but without inference
with another speaker channel.
4Each frame represents 2,048/44,100 = 0.0464s audio signal.
5With a 44.1kHz sampling rate, the velocity detection resolution
vres = ( fs/FFTpoints)(vsound/ fsource = 0.39m/s.
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Figure 4: Overview of the system for hand gesture detection
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Figure 5: Left: raw audio spectrogram; Right: audio spectro-
gram after FFT normalization

and Sumsung Tab-2 tablet) and then segment the signal into
frames of 2,048-point length. We can observe that, although
the magnitude of the frequency bins for different frames show
unpredictable signal excursions (e.g., the magnitude in 19kHz
bin spans from -83dB∼-24dB), the relative magnitudes for
every single sound frame exhibit stable and robust to the time-
elapse and device diversity (i.e., each spectrum shows a similar
shape). It is noted that we intend to perceive the Doppler fre-
quency shifts to infer hand gestures. Hence we are more
concerned about how the peak frequency bin changes along
the time instead of absolute magnitude of each frequency bin.
Based on this intuition, we normalize the magnitudes of fre-
quency bins for each audio frame. Shown as the right graph
in Fig. 5, after a simple FFT-based normalization, the audio
spectrograms produced by waving hand from Down to Up
show a stable and interpretable Doppler frequency shift and
the signal drift is removed.

Audio Signal Segmentation
Squared Continuous Frame Subtraction
To perceive the magnitude changes of frequency bins, we
further conduct a Squared Continuous Frame Subtraction, in
which we first subtract the normalized spectrum of current au-
dio frame by previous frames and then square the magnitudes
of frequency bins. The continuous subtraction essentially
eliminates the static frequency bins and save the changed bins,
shown as the left graph in Fig. 6 (i.e., remove the unchanged
19kHz bin in Fig. 5 and highlight the changed frequency bins).
The square calculation will further enhance the frequency-bin
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Figure 6: Left: the spectrogram after continuous frame sub-
traction; Right: the spectrogram after the square calculation

changes caused by hand’s movement but weaken the bins due
to the noise (see the right graph in Fig. 6, the noise marked by
the red dot oval is further eliminated). In the next, we need
to accurately segment the frequency shift area based on those
discrete frequency bins.

Gaussian Smoothing
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Figure 7: Left: the spectrogram after Gaussian Smooth Filter;
Right: the segmented area where Doppler Frequency shift
happens

Revisit the right graph in Fig. 6, intuitively, we can view such
spectrogram graph as an image, then what we are interested
is to connect those pixels and augment it into a zone. Hence,
to do so, we introduce a Gaussian Smoothing method to blur
the whole image. The Gaussian smoothing is a type of image-
blurring filter that uses a Gaussian function for calculating the
transformation to apply to each pixel in a image.
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For our two-dimension image, the following function is used
for smoothing:

G(x,y) =
1

2πσ2
exp(−x2 + y2

2σ2
) (2)

where x is the distance from the origin in the horizontal axis, y
is the distance from the origin in the vertical axis, and σ is the
standard deviation of the Gaussian distribution.

As the left graph in Fig. 7 shows, after Gaussian smoothing,
those peak pixels are well augmented into a zone. Furthermore,
we set a threshold ω to conduct the image binarization, i.e.,
set the pixel value to zero if its value is less than ω , set the
pixel value to one otherwise. As shown in the right graph of
Fig. 7, we can successfully segment the frequency zone that
Doppler shift happens.

Fig. 8 depicts the spectrograms after denoising and our seg-
mentation results for various hand gestures waving with differ-
ent speeds. In the next, we need to accurately interpret such
segmented frequency shifts into different hand gestures, as
well as estimate the gesture in-air duration, hand waving speed
and range.

Doppler Effect Interpretation
In this section, we first choose two typical hand gestures to do
the Doppler effect interpretation, showing the relation between
audio spectrograms and hand gestures. From Eqn. 1, since
vsound � vrad , we have

Δ f =
2 fsoundvrad

vsound
(3)

where Δ f = freceived − fsound . As Fig. 9 shows, assuming that
hand moving path has θhand with the microphone and the hand
moving speed is vhand , we have

vrad = vhand cosθhand (4)

Furthermore, we can derive the relation based on Eqn. 3 and
Eqn. 4 as follows.

Δ f =
2 fsoundvhand cosθhand

vsound
∝ vhand cosθhand (5)

We take two examples6 to interpret Eqn. 5, showing how we
link real-time hand moving gesture with the audio spectro-
gram. As Fig. 9 depicts, when the hand moving from Right
to Left, θhand gradually increases (e.g., from π/6 to π/2 then
to 2π/3), hence cosθhand decreases7 to 0, then to a negative

value (e.g., from
√

3/2 to 0, then to -1/2). As a result, the
frequency shifts from high-frequency (i.e., higher than 19kHz)
to zero, then to low-frequency (i.e., lower than 19kHz). For
the most complicated case clockwise circle, the θhand first de-
creases from a certain angle to zero, then gradually increases
from zero to π , and then decreases from π to the previous
angle (e.g., θhand experiences π/3 → 0 → π/2 → π → π/3
the right graph of Fig. 9). Thus, the audio frequency shifts

6We choose two typical but more complicated gestures to do the
interpretation.
7cosθ is a monotony decrease function in [0,π].

towards high-frequency at first, then goes back to 19kHz, fur-
ther moves to the low-frequency, then it goes back to zero,
continuously moves to high-frequency8.

Transforming Frequency Shift Area into Hand Velocity
Based on Eqn. 5, we can model the frequency shift with real-
time hand radical velocity as

freceived(t)− fsound =
2 fsound

vsound
vhand(t)cosθhand(t)

=
2

λsound
vrad(t)

(6)

Furthermore, we can derive hand radical velocity vrad(t) =
0.5λsound( fshi f t(t)− fsound).

As the left graph of Fig. 10 shows, at each time-stamp, the
length of frequency interval marked by red color represents
( fshi f t − fsound). Therefore, we can estimate the real-time
radical velocity of hand as shown in the right top graph in
Fig. 10. Essentially, the sign of hand radical velocity indicates
the hand moving direction (i.e., hand gesture type), and the
time interval of non-zero velocity represents the hand in-air
duration. Also, we can measure the hand waving range based
on the area covered by the velocity curve.

Gesture Recognition
In this section, we introduce in details on how we estimate the
hand waving direction, speed and in-air duration as well as
moving range given the hand radical velocity curve.

Recognizing the Waving Direction
In Sec. Doppler Effect Interpretation, we show that how
we link the hand moving directions with its generated audio
spectrogram. Similarly, based on the direction changes of
radical velocity (i.e., whether its value is negative or positive,
which is determined by cosθhand), we hence can estimate the
angle ranges of the hand movement (i.e., in angle categories:
[0,π/2] or [π/2,π]), as well as its corresponding time dura-
tion in each angle category. Based on a sequence of angle
categories and its durations, we can further detect different
gesture types. Fig. 8 shows some examples, if the angle range
is only in [0,π/2], then the hand moves from up to down; if
the angle range is only in [π/2,π], then the hand moves from
down to up; if the angle is [0,π/2]→ [π/2,π] and the time
duration in [0,π/2] is longer than in [π/2,π], then the hand
moves from right to left; if the angle is [0,π/2] → [π/2,π]
but the time duration in [0,π/2] is shorter than in [π/2,π],
then the hand moves from left to right; if the angle is from
[π/2,π]→ [0,π/2]→ [π/2,π], then the hand moves in anti-
clockwise circle; if the angle is [0,π/2]→ [π/2,π]→ [0,π/2],
then the hand moves in clockwise circle. Worthing to mention,
unlike most of current hand-gestures recognition systems that
highly depend on semi-supervised/supervised machine learn-
ing methods [26], our proposed method is originated from
the interpretation of Doppler Effect, hence no need to collect

8Based on Eqn. 5, Δ f actually is determined by both vhand and
cosθhand . And vhand represents the hand speed (a nonnegative
scalar), being zero at starting and ending point of hand moving,
hence cosθhand (ranging between -1 to 1, and traversing 0 multiple
times) dominates the frequency shift.
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Figure 8: The denoised spectrograms of different hand gestures with various speeds and their segmentation results: from left to
right - waving hand (a) from Right to Left; (b) from Up to Down; (c) Anticlockwise circle; (d) clockwise circle; (e) clockwise
circle with fast speed; (f) clockwise circle with slow speed
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Figure 9: The hand moving path with its generated audio
spectrogram. Left: hand moving from Right to Left; Right:
hand moving along Clockwise Circle

Figure 10: The illustration of transforming frequency shifts
into hand velocity, in-air duration and waving range

labeled training data, nor requires to train a classifier. In the
next, we will further introduce how we evaluate the speed and
range of hand movement.

Estimating Waving Duration and Speed
For estimating the hand in-air duration, we can directly mea-
sure the time interval that hand radical velocity is not equal
to zero (e.g., the time length marked by dot-line in Fig. 10).
Then remaining problem is how we measure the average hand
moving speed. Please note that the velocity curve we estimate
is the hand radical speed (towards the microphone) instead
of the real hand moving speed that we interested in9. In this
paper, as aforementioned, we aim to first recognize different

9Theoretically, with a single microphone, we cannot estimate the
moving velocity of hand since we cannot accurately measure the

hand gestures, then to be able to distinguish different hand
speed, in-air duration and moving range to provide more con-
trol commands for serving various applications. Hence, for
the same gesture type, we want to evaluate if the hand moving
is in slow, medium or fast speed (see Fig. 4).

We first transfer the hand velocity (with moving direction)
into a speed (ignore the direction), the transformation shows
as the right-top graph to the right-bottom graph in Fig. 10.
We can observe that, for the same gesture with different
speeds, the θhand actually experiences a same angle range
(e.g., π/6 → ... → π/2 → ... → 2π/3: moving from right
to left as in the left graph of Fig. 9) but in different times-
tamps. As a result, according to Eqn. 4, we can infer
that E(V 1

hand) > E(V 2
hand) ⇐⇒ E(V 1

rad) > E(V 2
rad), where

V 1
rad = {v1

rad(t1),v
1
rad(t2), ...} represents the first sequence of

hand radical speed we estimated, V 2
rad indicates the second se-

quence of hand radical speed10. Hence we define a speed-ratio
to evaluate the relative magnitude for different hand speeds.
Assuming that the time interval between two adjacent times-
tamps is T (e.g., 0.0464 second using a 2048-point frame), the
hand waving duration is twaving = nT , then we can calculate
the speed-ration as

Sratio =
E(vrad(t))
E(v0

rad(t))
=

1

n
∑n

i=1 vrad(iT )

E(v0
rad(t))

(7)

where E(∗) means expectation or mean value; v0
rad(t) repre-

sents a baseline of the hand moving speeds and we assume
E(v0

rad(t)) = 1 for simplicity11. Hence, we have Sratio =
1

n
∑n

i=1 vrad(iT ), namely the mean value of our estimated

radical-speed. Intuitively, a bigger Sratio represents a faster
hand movement.

Estimating Waving Range
Similar to the waving speed, we cannot estimate exactly how
much distance the hand moves using one microphone. By
inheriting the idea in evaluating the waving speed, we also
define a range-ratio to measure the relative magnitude of hand

angle between hand and microphone. To do so, we at least need two
microphones which will leave to our future work.

10Essentially, V 1
rad and V 2

rad represent two different moving speeds for
a same certain hand-gesture type.

11We can definitely find a certain hand waving meets such require-
ment.
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waving range.

Rratio =
Rrad

R0
rad

=
∑n

i=1 T vrad(iT )
R0

rad
=

nT Sratio

R0
rad

(8)

where R0
rad represents the baseline of hand waving range that

we assume its value equals to 1. Hence we can compare the
hand waving ranges using Rratio = nT Sratio (i.e., the area of
the zone covered by red color in Fig. 10), where n and Sratio is
the hand in-air duration and speed-ratio we estimated.

EXPERIMENTAL SETUP
We have five participants to conduct the testing on three typical
mobile devices - laptop, tablet and mobile phone. Specifically,
we choose MacBook Air laptop (Intel i5-4250U 1.3GHz, 4GB
RAM, 128 SSD, MacOS X 10.11.3), GALAXY Tab-2 tablet
and GALAXY S4 smartphone to conduct the experiments
without adding any extra hardwares. We name the three de-
vices as D1, D2 and D3 respectively for simplicity.

Hardware: For the MacBook Air laptop, we run our Audio-
Gest system on the computer using Audio System Toolbox12

that enables real-time audio signal processing and analysis
in MATLAB2015b and Simulink. It also provides the low-
latency connectivity for streaming audio from and to sound
cards via the Core Audio13 standard. For the GALAXY tablet
and smart-phone, we design the AudioGest system in the
Simulink8.6 that provides a library of Simulink blocks for
accessing the devices speaker and microphone14.

Testing Participants: Overall five participants join the exper-
iments. AudioGest decodes the hand gesture via analyzing
the reflected audio signal from hand so the hand size influ-
ences the testing results. Intuitively, a bigger hand generates a
stronger echo signal. Thus we measure the hand size of each
participant, listed in Fig. 11. We also mark the five users as
U1, U2, U3, U4 and U5 respectively.

Ground Truth Collection: As Fig. 12 shows, we use the
3-axis MEMS accelerometer in a smart-watch for collecting
ground truth. Generally, the 3-axis accelerometer records ac-
celeration readings along three orthogonal axises. We set the
sampling rate 24Hz that is same to our AudioGest system. In
this paper, we decode two types of hand gestures: i) linear
movement, such as waving from up to down or left to right
etc.; ii) circle movement, such as waving in clockwise circle
or anticlockwise circle. For the first case, we measure the ac-
celeration of the corresponding direction (remove the gravity
if in z-axis, same goes the followings) to calculate the hand
in-air time, average hand speed (i.e., v̄ = 1/2at) and waving

range (i.e., r = 1/2at2), then we set a same baseline of waving
speed and range as AudioGest to calculate the speed-ratio and
range-ratio. For the second case, we keep the hand down-
ward and do the circling movement. Then we can estimate
the total acceleration based on the recorded 3 accelerations

12mathworks.com/hardware-support/audio-ast.html
13developer.apple.com/library/mac/documentation/MusicAudio/ Con-
ceptual/CoreAudioOverview/

14mathworks.com/hardware-support/android-programming-
simulink.html

(i.e., atotal =
√

a2
x +a2

y +a2
z ), and conduct the same calcula-

tion to get the ground truth.

EVALUATION
We start with micro-benchmark experiments in a testbed en-
vironment at the lab, then we conduct the in-suit tests in four
real-world places - Living Room, Bus, Cafe and HDR Office.

Micro-Test Benchmark
We conduct some micro-benchmarks in a lab environment. We
ask the five participants to perform each hand gesture 30 times
for each device15, hence we test overall 2,700 hand gestures
by collecting around 4.52 minutes audio data.

Gesture Recognition: Fig. 13 shows the gesture classifica-
tion accuracies of five users for three devices. AudioGest
achieves 94.15% gesture type recognition accuracy. In particu-
lar, subject U5 can get average 95% accuracy, but U1 achieves
90.15% mean accuracy using the tablet. From its confusion
matrix (shown in Fig. 14), we can observe that most errors
happen in distinguishing Right-Left/Front-Behind and Left-
Right/Behind-Front. Detecting the hand gestures is done by
decoding the hand-microphone angle sequence and its corre-
sponding duration. For device D1 (i.e., MacBook Air laptop),
its microphone locates in the left side, which results in differ-
ent duration time of two angle categories for Right-Left and
Left-Right waving. But we cannot distinguish hand waving
from Front-Behind or Behind-Front due to the block of the
computer screen. However, for D2 and D3 (i.e., Galaxy tablet
and smartphone), their microphones locate in the bottom of
the device, which substantially enables Right-Left and Left-
Right hand movement generating the same angle category
sequence (i.e., [0,π/2] → [π/2,π]) and roughly same dura-
tions. Hence we cannot distinguish such two directions, but
we can recognize the Front-Behind or Behind-Front. Due to
the same reason, for recognizing Right-Left/Front-Behind and
Left-Right/Behind-Front, we can only depend on the difference
of angle durations, making it less reliable as other directions.

Waving Context Estimation: Fig. 15-17 shows the results of
estimation errors16 of the hand in-air duration, moving speed-
ratio and range-ratio respectively. The bar charts indicate
both average error and its standard derivation. Specifically,
AudioGest can estimate the three gesture context information
with average 0.255s in-air duration, 0.242 speed-ratio and
0.2138 range-ratio error respectively. It is worth to mention
that, among 5 subjects, U5 achieves a better result in both the
gesture classification and the context estimation, which mainly
lie in the fact that U5 has a slightly bigger hand size, which
enhances the audio signal reflection.

Parameters Chosen: Fig. 18-19 illustrates how three key pa-
rameters influence the performance of our system. The pa-
rameter H-size specifies the number of rows and columns we

15The participants can freely wave with any speed or range, but have
to be within the category of defined gesture types. The collection
time spans over two weeks based on their available time. We also
require the minimum time-interval of two hand gestures is > 1s.

16Namely, the distance between estimated value with the ground truth
(≥ 0).
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User ID Gender Age Hand Length Hand Width

User 1 (U1) Male 29 17.1 cm 9.2 cm

User 2 (U2) Female 29 16.4 cm 8.5 cm

User 3 (U3) Male 27 18.5 cm 10 cm

User 4 (U4) Female 13 14.7 cm 7.5 cm

User 5 (U5) Male 23 17.4 cm 9.5 cm

Figure 11: Participants’ information
Figure 12: The three-axis ac-
celerometer in smartwatch
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Figure 13: The average gesture
classification accuracy for dif-
ferent mobile devices and users

Figure 14: The Confusion Ma-
trix for the gesture classifica-
tion
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Figure 15: The hand in-air
duration estimation error for
different mobile devices and
users
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Figure 16: The average speed-
ratio estimation error of hand
moving for different mobile
devices and users
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Figure 17: The average range-
ratio estimation error of hand
moving for different users
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H size in Gaussian Smooth Filter

Figure 18: The gesture detec-
tion accuracy with parameter
H-size

use in the gaussian filter (i.e., Hsize = [x,y] in Eqn. 2). We
test overall 11 different H-size when [x = 3,y = 2] performs
better. The another parameter σ indicates the standard devia-
tion in Gaussian function, which achieves the best accuracy
at σ = 1.5. The last parameter Gesture-Signal Threshold de-
termines whether a shift happens in a frequency bin, which
plays an important role in AudioGest system. We can see that
the higher the value is, the more both true detection and false
detection rates decrease. Hence we choose Threshold = 0.16
to balance such two detection rates.

System Robustness: We evaluate our system robustness in four
ways: i) Orientation Angle: as Fig. 20 shows17, AudioGest per-
forms well when the orientation angle is less than π/4. Under
a π/2 circumstance, its accuracy greatly decreases to around
60%, which we will leave for further work. ii) Hand-Device
Distance: when hand waves, we test the system when the hand
waves in different categories of hand-device distance18. Our
system achieves satisfied accuracy when the distance is be-
low 10cm (which is the most popular using scenario for most
users). But we also observe its performance decreases when
the hand waving in a far distance from the device (the COTS
microphone cannot capture the echo-sound due to the its capa-
bility limitation). iii) Environmental Motion: as Fig. 22 shows,
we test system performance under five environmental motion
circumstances - Quiet (no audible noise and human motion),

17We mainly test D2 and D3 from 0 to π/2, since laptop normally lie
flat on the surface.

18It is difficult for us to accurately control/measure how hand close to
the device while waving, but control the lowest hand-device distance
into a range is possible.

Noise (playing music loudly), Dynamic1 (with human walking
back and forth in around 4 meters away the device), Dynamic2
(with human walking back and forth in around 2 meters away)
and Dynamic3 (with human walking back and forth nearby,
around 0.5 meters). As we can see, AudioGest works well
under first three cases (especially, it is nearly unaffected by
human noise). We also test its performance under different
elapsed time without tuning the parameters. Thanks to our
denoising operation, AudioGest can perfectly deals with the
signal drifting challenge. In summary, AudioGest performs
accurately under normal circumstance, especially robust to the
human noise and signal drifting issue.

In-suit Experiments
Fig. 23-25 illustrate the system performance in some typical
daily-living environments. Two subjects (U1 and U2) partici-
pate the test. We require the subjects use three mobile devices
in a living room (5m× 3.5m), on a bus (when have a seat),
Cafe and HDR (Higher Degree by Research) Office (around
15m×10m, contains > 20 students). We collect in total 1,200
hand gestures (Living Room: 360, Bus: 240, Cafe: 240, HRD
Office: 360). The in-suit testing spans around two weeks
upon participants’ time availability. Overall, under the living
room and HDR office, AudioGest performs similarly to our
micro-benchmark since such testing scenarios are usually with
less environmental motion inferences. When coming to the
bus (the most dynamical environment but also where people
usually use the mobile devices), the performance of AudieGest
is degraded to an average 89.67% in accuracy, and the segmen-
tation (i.e., hand in-air duration) and the speed-ratio accuracy
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Figure 20: The device orientation angle with its detection
accuracy
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Figure 21: The device-hand dis-
tance with its detection accuracy
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Figure 22: The average detection
accuracy for different scenarios
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Figure 23: The average gesture
classification accuracy for in-
suit test
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Figure 24: The average estima-
tion error of hand in-air dura-
tion for in-suit test
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Table 1: Comparison of typical device-free localization systems

Comparison Items WiGest[4] FineGesture[18] AllSee[15] SoundWave[13] SlideSwipe[36] RadarGesture[20] WiSee[25] AudioGest

Measured Signal RSSI RSS, Phase, CSI RF signal Audio GSM signal FMCW Rada OFDM radio Audio

Need extra hardware? No Yes Yes No Yes Yes Yes No

Test in dynamic
environment? (e.g., bus)

No Yes No No No No No Yes

Need training? No Yes (kNN) No No Yes (SVM) No No No

Sense gesture contexts?
(e.g., speed, range)

Yes (speed) No No No No Yes (speed, range) No
Yes (relative

speed & range)

Accuracy 96% 92% 97% 94.5% 87.2% N/A (hand track) 94% 95.1%

also decreases, which is mainly caused by the narrow space
and unpredictable motion influences on the bus.

Discussion & Comparison
This section will briefly review our work and discuss the limi-
tations that are left for future work.

Limited Hand Gesture Numbers: AudioGest can provide up to
162 control commands for applications by combining the hand-
gesture types, hand in-air duration, average speed and waving
range. It, however, can only distinguish eight hand gestures
accurately. The main reason lies in that we only utilize one
microphone and depend on the Doppler frequency shift to
interpret the echo audio signal. In the future, we can either
i) mine other features from the spectrogram of reflected signal
to facilitate our physical model for recognizing more hand
gestures (it may bring some burden of labeling training data);
and ii) adopt two or more microphones to enable a real-time
hand motion tracking.

Dealing with Environment Motion: As the system robust-
ness evaluation shows, AudioGest’s performance decreases

for some challenging scenarios such as the device orientation
greatly changes (> π/4) and human motions at the vicinity of
device (< 0.5m). However, such issues can be addressed by
two possible ways: i) exploring the built-in 3-axis accelerome-
ter to detect the orientation of the device, then real-time updat-
ing parameters and hand-gesture recognition rules accordingly;
ii) borrowing the idea from radar to transmit MFSK (multiple
frequency shift keying) audio signal, enabling multiple-target
range sensing, hence distinguishing the nearby environmental
motion and hand movement.

Comparing with the State-of-the-Art: Table 1 compares our
AudioGest with other state-of-the-art gesture recognition sys-
tems. AudioGest thoroughly exploits the Doppler frequency
shift from hand movement and further accurately interprets
the spectrogram of echo signal into the hand gesture, in-air
duration, hand average waving speed and moving range. Au-
dioGest only uses one pair of COTS speaker & microphone
without any extra hardware, and it is capable of sensing fine-
grained gesture-contexts, i.e., hand in-air duration, waving
speed and range. It is training-free, and can provide up to 162
gesture control commands for various applications.

483

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY



CONCLUSION
To summarize, this paper has shown how one single pair of
microphone and speaker can real-time track human hand’s
radical velocity, thus decode the hand moving direction, esti-
mate its waving speed and range. The real-world experiments
demonstrate the feasibility and effectiveness of our system,
which marks an important step toward enabling accurate and
ubiquitous gesture recognition.
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