
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/4318550

Application Based Distance Measurement for Context Retrieval in Ubiquitous

Computing

Conference Paper · September 2007

DOI: 10.1109/MOBIQ.2007.4450999 · Source: IEEE Xplore

CITATIONS

4
READS

121

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Human Activity Recognition View project

Sensor-based Motion Recognition View project

Shaxun Chen

Facebook

21 PUBLICATIONS 524 CITATIONS

SEE PROFILE

Tao Gu

RMIT University

154 PUBLICATIONS 6,028 CITATIONS

SEE PROFILE

Xianping Tao

Nanjing University

101 PUBLICATIONS 1,843 CITATIONS

SEE PROFILE

All content following this page was uploaded by Xianping Tao on 04 July 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/4318550_Application_Based_Distance_Measurement_for_Context_Retrieval_in_Ubiquitous_Computing?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/4318550_Application_Based_Distance_Measurement_for_Context_Retrieval_in_Ubiquitous_Computing?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Human-Activity-Recognition-19?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Sensor-based-Motion-Recognition?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shaxun_Chen?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shaxun_Chen?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Facebook?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shaxun_Chen?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao_Gu6?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao_Gu6?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/RMIT-University?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tao_Gu6?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xianping_Tao?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xianping_Tao?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanjing_University?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xianping_Tao?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xianping_Tao?enrichId=rgreq-22afa36d789a445989ecf10a0b3b222d-XXX&enrichSource=Y292ZXJQYWdlOzQzMTg1NTA7QVM6MTE1MDI3MjY4ODcwMTUwQDE0MDQ0MzYwNDY5Njc%3D&el=1_x_10&_esc=publicationCoverPdf

Application Based Distance Measurement for Context
Retrieval in Ubiquitous Computing

Shaxun Chen1, Tao Gu2, Xianping Tao1, Jian Lu1
1State Key Laboratory for Novel Software Technology, Nanjing University, P.R.China

2Institute for Infocomm Research, Singapore
csx@ics.nju.edu.cn; tgu@i2r.a-star.edu.sg; txp@ics.nju.edu.cn; lj@nju.edu.cn

Abstract—Building large-scale smart environments is one of the
long-term goals of ubiquitous computing. The widespread of
context information in such environments necessitates an
effective context retrieval mechanism. This paper proposes a
novel context retrieval method based on applications’ query
patterns. We propose high dimensional vector to model contexts
from applications’ perspective, and apply the normalized inner
product of high dimensional vectors to measure context distance.
Contexts with similar query patterns are clustered into the same
group. To improve the performance of context retrieval, we build
distributed indices on each node to speed up a local search, and
create shortcuts based on clustering results to facilitate query
routing. We show how our proposed methods can be applied to
existing context retrieval mechanisms. Our experimental results
show that our method can significantly reduce retrieval cost.

Keywords-context distance; clustering; ubiquitous computing;
context retrieval

I. INTRODUCTION

Ubiquitous computing creates an appealing view of a new
computing paradigm, which decreases a user’s attention to
computational devices and helps the user concentrate on the
task through implicit collection of various contexts. According
to Mark Weiser’s vision, ubiquitous computing provides users
with adequate services anytime and anywhere [1]. This vision
implies that a smart environment may expand to a very large
area across multiple application domains. With the
advancement of sensing techniques and embedded devices,
large-scale smart environments become possible, such as
emerging smart hospitals [2] and outdoor guiding systems [3].

In a large-scale smart environment, a vast amount of
context-aware applications may be interested in searching and
utilizing different types of context information which is
widespread across multiple domains. As a result, an efficient
context retrieval mechanism becomes a key issue in ubiquitous
computing. One approach is to store or index all the contexts in
a centralized node and resolve the search requests. Although it
will provide fast responds to context queries, the deficiencies
are obvious. Centralized context management suffers from
processing bottleneck, limited scalability and single point of
failure. For example, in a context-aware car navigation system,
it is not realistic for a single server to manage traffic loads of
all the roads, and information about all the spots in a large city.
It is more natural and reasonable to store and update context

information in a distributed fashion in such large-scale smart
environment.

This paper aims to propose efficient methods to improve
context retrieval and reduce retrieval cost in a large-scale smart
environment. Our proposed method is based on applications’
query patterns, and contexts are clustered according to context
distance. The query pattern of a context refers to the set of
applications that query it and the respective query frequencies.
To the best of our knowledge, this is the first attempt to study
the problem of context retrieval from applications’ perspective.

We define context distance as logical distance measured
from applications’ perspective. As we know, context
information may be expected to serve multiple applications
simultaneously. For example, an outdoor smart space equipped
with sensors may assist in many applications such as ecosystem
monitoring, weather reporting, precision agriculture, etc. If
applications tend to access two contexts at the same time, i.e.,
these two contexts have high possibility to be queried
simultaneously, then we say that they have a small context
distance between each other. In the above example, the weather
reporting application may be interested in humidity,
temperature and light contexts, and the application for
precision agriculture may need temperature, light and presence
of chemicals. Hence, we know that temperature and light
contexts are “close-by” to each other in context distance.
However, the distance between two contexts may not be that
intuitionistic when the number of applications increases and
query frequencies are taken into account.

In this paper, we model contexts using high dimensional
vector. Different from traditional Euclidean distance, we
propose the sine of high dimensional vectors for measuring
context distance. Based on this distance measurement, contexts
which are close-by in context distance are grouped into the
same cluster using a k-means based algorithm. Then we build
distributed indices on each node to speed up a local search, and
create shortcuts to facilitate inter-cluster routing. Our proposed
methods can be applied to existing context retrieval
mechanisms to enhance their performance. Our simulation
results show that our method can significantly reduce query
costs.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 presents our approach for
context clustering. Section 4 describes how to improve query

Funded by 973 Program of China (2002CB312002) and 863 Program of China
(2006AA01Z159), NSFC (60403014, 60603034), JSFC (BK2006712).

performance using clustering results. We evaluate our method
in Section 5, and finally conclude the paper in Section 6.

II. RELATED WORK

Most of the existing work is built upon centralized context
information repositories, such as CoBrA [4] and Jena [5].
These approaches are easy to design and provide fast responds
in small or moderate applications, but they have limitations in a
large-scale smart environment.

Some researchers proposed distributed context retrieval
approaches leveraging existing Peer-to-Peer (P2P) architectures.
Edutella [6] is a combination of unstructured P2P network and
the Semantic Web. It is schema-based and queries are routed
through the peers organized in hypercubes. Gu et al. [7]
proposed a two-tired P2P network for context lookup. The
upper tier is Chord-like [8] while the lower tier is unstructured.
These work made efforts to improve query performance by
grouping or indexing contexts in distributed environments.
However, these clusters or indices are based on context
semantics, which requires a set of pre-defined ontologies. The
lack of standard in context ontology becomes a bottleneck. Our
approach intends to cluster contexts based on query patterns,
which differs from existing work.

Biswas et al. [9] studied correlations between attributes by
calculating applications’ query probabilities in the context of
wireless sensor networks. Attributes are allocated in GHT
(Geographic Hash Table) based networks conforming to the
following principle: frequently used attributes are put more
closely to the center of the net and tightly correlated attributes
are neighbored each other in the net. However, the algorithm
described in this paper is heuristic. Since they use a greedy
policy, the results obtained is not globally optimized. Further
more, the research in wireless sensor networks is different from
context retrieval in a way that the former focuses more on
energy saving instead of responding time.

Most of the traditional clustering algorithms adopt
Minkowski distance (i.e., generalized Euclidean distance) as
the mathematic model. But this model is sensitive to the vector
elements with large values. Although weights can be used to
balance the effect, the choosing of weight values is somewhat
arbitrary [10]. We propose an inner product based distance
measurement, which is able to describe the correlation of
contexts more appropriately. As compared to [9], this
measurement method considers the globe conditions rather than
a heuristic and greedy manner.

III. CONTEXT CLUSTERING USING QUERY PATTERNS

In this section, we introduce a mathematic model to
measure context distance, and then describe how to cluster
contexts which are close-by in distance into a cluster based on
the measurement.

A. Formalization of Contexts
Assuming that there are m types of contexts {C1, C2, …, Cm}

and a set of q context-aware applications {A1, A2, …, Aq} in a

large-scale smart environment. Ci (1≤i≤m) is defined as a q-
dimensional vector:

 Ci = (p1, p2, …, pq) (1)

where pj (1≤j≤q) is the number of times Aj accesses Ci per
unit time. Obviously, pj ≥ 0 for all j. This vector provides a
formal definition of the query pattern of Ci.

B. Context Distance Measurement: Sine
Given two types of contexts S and T (e.g., S is light context

and T is temperature), let S = (s1, s2, …, sq) and T = (t1, t2, …,
tq), firstly we calculate the normalized inner product of S and T.

∑∑

∑

==

==
q

j
j

q

j
j

q

j
jj

ts

ts
TS

1

2

1

2

1),cos(
 (2)

Defined in this way, cos(S, T) will vary between 0 (when
two vectors are orthogonal) and 1 (when two vectors are
identical or proportional). More generally, cos(S, T) will
increase as S and T share more non-zero components sj and tj.
Shared components mean that S and T have associations with
the same applications. Actually, Formula (2) calculates cosine
of the included angle of two vectors and is an accuracy
description of correlations between two types of contexts in the
sense of applications’ queries.

To explain it more clearly, we will show the special case of
Formula (2) when both S and T are 2D (or 3D) vectors, that is,
there are only two or three context-aware applications in this
smart environment (q = 2 or 3). First, we let q = 2, S = (s1, s2)
and T = (t1, t2), angles α, β, γ are shown in Figure 1. We have

Figure 1. Cosine of 2D vectors

2
2

2
1

2
2

2
1

2211

2
2

2
1

2

2
2

2
1

2

2
2

2
1

1

2
2

2
1

1 **

sinsincoscos
)cos(cos),cos(

ttss

tsts
tt

t

ss

s

tt

t

ss

s

TS

++

+
=

++
+

++
=

+=
−==

βγβγ
βγα

boolean exchange = true;
while (exchange){
 exchange = false;
 for (int i = 0; i < numOfObjects; i++){
 tempClu = object[i].getItsCluster();
 tempDis = D(mean[tempClu], object[i]);
 for (int j = 0; j < numOfCluster; j++){
 dis = D(mean[j], object[i])
 if (tempClu != j && tempDis > dis){

tempDis = dis;
object[i].setItsCluster(j);
exchange = true;

}
 }
 }
 If (exchange) calculateMeans();
}

We know that the above result conforms to the Formula (2)
when q = 2. The more closer the proportions of frequencies
where each applications query two contexts are, the more
smaller the included angle of two vectors is, and more larger
the cosine of this angle will be, given an acute angle.
Intuitively, cosine gives similarity of two contexts in the aspect
of its correlations with applications. Similarly, cosine of
included angle of two 3D vectors is shown as follows.

2
3

2
2

2
1

2
3

2
2

2
1

332211
321321)),,(),,,cos((

tttsss
tstststttsss

++++

++
=

If we generalize the cosine expression to high dimensional
vectors, we will have Formula (2). Next, we give the definition
of the context distance between S and T.

),(cos1),sin(),(2 TSTSTSD −== (3)

where cos(S, T) is defined in Formula (2). Formula (3)
calculates sine of two vectors and we use this value to define
context distance.

A well-defined distance measurement should conform to
following four conditions.

1) Nonnegative. distance(S, T)≥0;
2) Distance from an object to itself is 0. distance(S, S) = 0;
3) Symmetric. distance(S, T) = distance(T, S);
4) Triangular inequality. distance(S, T) ≤ distance(S,

R)+distance(R, T).

Now we prove D(S, T) is a well-defined distance
measurement.

Prove. 1) Trivial; 2) sin(S, S) = sin0 = 0; 3) Trivial; 4) Let the
included angle of S and T is γ, that of S and R is α, and that of
R and T is β, then γ = α+β or γ = |α-β|. When γ = |α-β|, the
proof is straightforward. When γ = α+β, sinγ = sin(α+β) =
sinαcosβ+cosαsinβ. Since all vector components are
nonnegative, so 0≤cosα≤1, 0≤cosβ≤1. Then sinγ≤
sinα+sinβ. □

While cosine depicts correlations between two contexts
from applications’ queries, sine is defined as a distance
measurement of them in the same sense. D(S, T) will decrease
when two types of contexts S and T share more common points
in their query patterns. In the example mentioned in Section 1,
we may guess that D(light, temperature) is smaller than D(light,
humidity) as the former pair appears in two applications. Of
course, it depends on the queries of other applications in the
same environment and the query frequencies as well. We will
compare the measurement of D(S, T) with that of traditional
Euclidean distance in Section 5.

C. Context Clustering
Based on our distance measurement represented in the

Formula (3), we can cluster “close-by” contexts into a group.
Generally speaking, contexts that belong to the same group
exhibit more similarity in their query patterns.

We apply D(S, T) to obtain context distance, where S and T
are q-dimensional vectors as defined before. Our clustering

algorithm is based on k-means, and the steps are presented as
follows.

1) Randomly select k contexts as the centers of the
clusters;

2) For each remaining context, assign it to the cluster
whose center is the nearest to the context. The distance
between a context and the center is calculated by D function;

3) Compute the means of the new clusters and assign them
with the new centers;

4) If there is no change, exit. Otherwise go to step 2).

This algorithm is convergent. The value of k (number of
clusters) should be decided before clustering. Here follows a
segment of the algorithm.

Figure 2. A segment of the clustering algorithm

To illustrate the clustering algorithm, we take an example
of 2D space, i.e., there are only two context-aware applications
in a smart environment, say, A1 and A2. In practice, the
dimension of a smart space could be very high. We assume
there are five types of contexts, i.e., C1, C2, C3, C4, and C5. The
frequency that A1 queries C1 is 30 and that of A2 is 0. Other
frequencies are shown in Figure 3.

Let k = 2, after executing the clustering algorithm, five
contexts are clustered into two groups, i.e., Custer_1 = {C1, C2,
C3}, Cluster_2 = {C4, C5}. The result is expected since the
included angles of intra-cluster vectors are smaller than those
of inter-cluster vectors. Cluster_1 can be regarded as the set of
contexts which application A1 queries much more often than
application A2 dose. Similarly, Cluster_2 is the set of contexts
which A2 queries more often than A1 does. If we substitute
Euclidean distance for our sine distance measurement and
execute the algorithm again (still let k = 2), five contexts will
be re-clustered. C1 and C5 are in the same group, while C2, C3,
C4 in the other (marked with dashed cycles in Figure 3),
because the physical distance between end-points of those
intra-group vectors are smaller.

Figure 3. Clustering by two measurements

From the above comparison, we can see that clusters
produced by our sine distance measurement are more accurate
to the extent of query patterns and have more readable
meanings. In Figure 3, it seems that clusters grouped by
Euclidean distance reflect the difference of total query
frequency. Actually, it may not the case for more complex
examples. We will compare these two distance measurements
in our experiments.

The clustering results can be used to improve context
retrieval performance. In addition, it can be applied for
measuring the semantics between two contexts. For example, if
we execute our algorithm based on a large amount of queries
which are collected from real-world context-aware applications,
we can study semantic relations among contexts in the same
cluster without any ontology interference. Since two words
appeared frequently in the same web pages are proved to have
some degree of semantic relations [11], it is conceivable that
two kinds of contexts often queried together are also correlated
in semantics. However, in this paper, we only focus on
performance improvement of context retrieval as an illustration
example of context clustering.

IV. APPLY CLUSTERING RESULT TO CONTEXT RETRIEVAL

In this section, we introduce how to improve the
performance of context retrieval by using our clustering results.
We first describe the network structure, and then explain the
indices and the shortcuts constructing according to the context
clusters.

A. Network Structure
We choose the unstructured P2P network as the underlying

network substrate. In this network, a peer can be context
providers which store contexts and handle the query requests,
context consumers (i.e., context-aware applications), or both.
There is no centralized controller or any form of DHT
(Distributed Hash Table) applied.

Centralized repositories and query management may not be
suitable for large-scale smart environments because of single
point of failure, processing bottleneck and poor scalability, as
we discussed in Section 1. DHT-based structured P2P networks
like Chord [8], CAN [12], or Pastry [13] may account
performance lost when peers join or leave the network

frequently. In the ubiquitous computing environment, many
nodes are wireless and handheld devices. As these nodes may
be moving from place to place, the network topology changes
dramatically and maintenance costs of DHT become very high.
Unstructured P2P network is much easier to build and maintain,
which is suitable for context-aware environments.

We assume that contexts are stored near where they are
generated. Since the generating rates of some contexts are very
high, such as noise level or the location of a person, local
repository will have least costs.

B. Context Indexing
To speed up a local context search within a peer, we

propose an indexing mechanism to summarize local contexts,
and therefore reduce the local retrieval costs.

We use RDF [15] to present contexts, which are composed
of <subject, property, object> triples, such as <Tom, locateIn,
Room11> and <Room06, temperature, 21>. For simplicity,
namespaces are omitted. We add the generating time for each
context. The indices are built on the local node where contexts
are stored, and the structure of indices is shown in Table 1.

To build indices, we divide local contexts into two
categories. One is those whose objects are consecutive
numerical values, such as the temperature of Room506; the
other is those whose objects are enumerated values, such as the
place Tom locates in.

TABLE I. CONETXT INDICES IN PEER_1

TypeID Subject Property Object TimeFrom TimeTo

0x10af Room506 tempera 12 23 020145723 021378107

0x2045 Jan locateIn 020137589 024589341

0x20c7 Tom locateIn 020137589 023337582

0x2123 locateIn Room506 020137589 023337582

0x219a locateIn Room507 020334325 024589341
 Shows three kinds of indices

For the former category, all the contexts (in the same peer)
with identical subject and property are summarized into one
record in the index table. For instance, assuming the set of
contexts (stored in peer_1) with consecutive numerical-value
objects is the first three lines in Table 2, the summarized index
of them is just as the first line of table 1 shows. In this case,
Object field describes the min and max value of objects of the
contexts summarized by this record. TimeFrom and TimeTo
fields give the generating time of the first and the last contexts
of this type.

For the latter category, contexts are summarized according
to both <subject, property> and <property, objects> pairs
respectively. For instance, assuming the set of contexts (stored
in peer_1) with enumerated value objects is the last six lines of
table 2. First, we build indices of these contexts according to
<subject, property> pairs. The result is shown as the second
and third lines of Table 1. The Object field is vacant.
TimeFrom and TimeTo fields refer to the same meaning as the
former category. Then we build indices according to <property,

objects>. The result is the fourth and fifth lines of Table 1.
Similarly, Subject field is vacant.

In the above example, there are nine contexts in peer_1 (see
Table 2), and only five records in the index (see Table 1). In
real-life applications, the number of index records may be
much fewer than the number of contexts. When a new context
about temperature in Room506 generates, what we need to do
is merely changing the TimeTo field (and possibly the Object
field) of the fist line in Table 1. We do not need to add a line to
the index. When a query arrives, the index table will be
checked first. Only when a record in the indices matches the
query will local contexts be scanned. By this way the search
cost can be greatly reduced using our index method.

TABLE II. CONTEXTS IN PEER_1

Subject Property Object Timestamp

Room506 tempera 12 020145723

Room506 tempera 16 020145856

Room506 tempera 23 021378107

Tom locateIn Room506 020137589

Jan locateIn Room506 020137589

Tom locateIn Room506 023337582

Jan locateIn Room507 024589341

Tom locateIn Room507 020334325

Jan locateIn Room507 022335628
 Actually, contexts are stored in the order of their timestamps. This table is just for illustration.

In our approach, contexts whose objects are consecutive
numerical values are only indexed by <subject, property>
combination, while others whose objects are enumerated values
are indexed by both <subjects, property> and <property,
object> combinations. However, as we know, 32

3 =C . i.e., for
a triple, there are three cases when looking up one item as other
two items are known. Actually, RDFpeers [16] indexes every
context by all three combinations: <subject, property>,
<property, object> and <subject, object>. Each context has
three copies in the whole network. Nevertheless, we do not
build all these indices because some of them are unnecessary as
explained as follows.

For a query like “which students are located in Room507”
(requires contexts with enumerated-value objects), we build the
index based on <property, object> pair for the related contexts.
However, a query such as “which rooms have the temperature
of 21.5” (requires contexts with consecutive numerical value
objects) is seldom used in applications, because it wiser to
query consecutive numerical item by a range instead of a
particular value. Further more, indexing consecutive numerical
values may greatly increase the storage cost of indices. Hence,
we handle two categories of contexts differently. In addition,
we do not index <subject, object> pair for both categories. In
reality, applications never query “what is the relationship
between Room507 and 21.5”. Hence, <subject, object> pair
will not be used. One may argue that the query “what is the
relationship between Tom and Room507” can exist. However,
since the answer can only be “locate in” or “not locate in”,

users can query “who are in the Room507” or simply “where
Tom locates”.

In summary, the design of our indexing method aims to
improve the efficiency of local contexts retrieval and minimize
the index volume.

C. Shortcuts Based on Context Clusters
In an unstructured P2P network such as Gnutella [14],

queries usually are flooded to all the nodes in the network,
which results in a large amount of unnecessary messages. In
this paper, we propose to create shortcuts to facilitate query
routing .

First, we define what is a type of context. We define a
record in the index table (see Table 1) as a type of context. For
example, <*, temperature, *> or <*, locateIn, *> is not a type
of context (* is wildcard), but <Room507, temperature, *> or
<*, locateIn, Room506> or <Tom, locateIn, *> is a valid type
of context. Each type of context is assigned with a globe unique
typeID, as shown in the first column of Table 1. Contexts in
different peers with the same records in subject, property,
object fields in their index tables are treated as the same type
(the min and max value of object can be neglect). For instance,
a record <Tom, locateIn, *> that exists in both peer_1’s index
table and peer_2’s index table will be treated as the same type
of contexts (Note: the namespaces of Tom should be the same).

After gathering enough query information from various
applications, we model each type of context with a
q-dimensional vector (assuming there are q context-aware
applications in such smart environment), and use them as the
input of our clustering algorithm presented in Section 3.

Figure 4. Overview of network and data structure of peer_1

The results of clustering will broadcast to every node in the
network. Peers with contexts that belong to the same cluster
will cache each other. For example, peer_1 has three types of
contexts C1, C2, and C3. The clusters these contexts are
respectively located in are {C1, C15, C23}, {C2, C3, C7, C16, C32}
(C2 and C3 are in the same cluster). Then peer_1 should cache
the ID and IP address of all the peers that store C15, C23, C7, C16
and C32. In this way, most queries can find their way to
destination by cached shortcuts instead of using blind flooding.
Figure 4 shows the overview of the network and the data
structure of peer_1. Solid lines stand for physical connection
while dashed lines with arrows indicate the shortcuts.

When parameter k (i.e., the number of clusters) is smaller, a
cluster may contain more types of contexts and a node may
cache more peers, resulting in greater performance
improvement of context retrieval. On the other hand, we should
notice a larger k may result in higher cost of memory and more
risk of cache invalidation in case of topology change.

V. EVALUATION

Now we move on to evaluate our proposed methods
through simulation studies. First, we evaluate the effects of
shortcuts based on our context clusters. We then present the
performance improvement of our context indices. Next, we
compare the sine distance measurement with Euclidean
distance. Finally, we study the scalability of our clustering
method.

We use the Autonomous System model to generate network
topologies as previous studies have shown that the P2P overlay
topology follows both small world and power law properties
[17]. During our experiments, peers join and leave the network
at the same rate to simulate dynamic characters of the P2P
overlay. We assume that there are 30 applications and 128
types of contexts in an unstructured P2P network for the first
three experiments. Query patterns are randomly assigned to
each type of context.

A. Effect of Cluster-based Shortcuts
We compare our proposed methods presented in Section 3

and 4 with Gnutella in this experiment. In our methods,
contexts are clustered according to our algorithm with sine
distance measurement, and shortcuts between peers are cached
based on the results of clustering. In a Gnutella-like network,
the results of a query are cached along the query path and no
shortcuts are built. Both methods have the same cache size. The
average number of hops traversed by a query request to the
destination is used as a metric.

As we know, query success rate (QSR) in an unstructured
P2P network can hardly reach 100%. We use QSRs = 85% for
both methods. We set parameter k (i.e., number of clusters) to
20, 10, and 5 respectively for our method. Figure 5 plots search
path length vs. number of nodes for both two methods.

 Number of Nodes

Se
ar

ch
 P

at
h

Le
ng

th

2

4

6

8

100 1000 10000

Gnutella-like

k=20

k=5
k=10

10

Figure 5. Average hops when QSR is 85%

From Figure 5, we can see that the average search hops of
our method are much less than a Gnutella-like overlay.
Moreover, the rising rate of our method is much less than that
of Gnutella. It demonstrates the use of shortcuts can greatly
improve system scalability. In addition, a smaller number of
clusters results in better performance. This result probably can
be explained as follows: When contexts within a cluster
increase and a node tends to cache more peers. However, when
k gets smaller and smaller, the performance improvement is
limited, but the memory costs rise quickly. Therefore, a better
tradeoff needs to be studied further.

B. Effect of Context Indices

Figure 6. Effect of context indices

In this experiment, we evaluate the impact of our context
indices presented in Section 4.B. As mentioned before, some
contexts generate rapidly and we reserve the historical data, so
data volume in a peer may be very large. Hence, local
processing time takes a considerable part in response time. The
comparison is performed between two cases. In the first case,
we use our approach, including indices and shortcuts. In the
other case, we shield the indices (shortcuts are reserved). We
let k=20 and QSR=85% for both cases. As the routing of two
cases are the same, the difference of their average response
time reflects the impact of the indices. As shown in Figure 6,
the case of using indices reduces the total response time
significantly.

C. Performance of Sine Distance Measurement
In this experiment, we compare the sine distance

measurement with Euclidean distance in the context of our
clustering algorithm. We let k = 20, and use Formula (3) to
calculate D function for the first case, and leverage Euclidean
distance for the second case. Other settings are identical and
QSR = 85%. The results of two cases are applied for building
shortcuts respectively. We use search path length as the metric.
The comparison result is shown in Figure 7.

The result reveals that the sine distance measurement
performs better than the Euclidean distance, especially when
the number of peers is large. In addition, context clusters based
on the sine distance have clearer meanings, to the query pattern
extent, compared to the Euclidean distance as we have
discussed in Section 3.

Figure 7. Sine distance vs. Euclidean distance

D. Scalability of Our Context Clustering Method
Finally, we test to evaluate the scalability of our approach.

In this experiment, we measure the cost when the number of
applications and types of contexts increase.

Figure 8 plots the cost for different numbers of applications
and different types of contexts. The increase of clustering time
costs (i.e., time cost for the program to execute the clustering
algorithm) is linear to that of the number of applications and
types of contexts, and the increase of response time is almost
neglectable. Above all, context clustering only need to run once,
while the response time is involved in every query and is the
key measurement. From the above results, we can see that our
sine distance measurement and clustering methods have good
scalability and they are capable to deal with high dimensional
vectors.

Ti
m

e
C

os
t (

m
s)

100

200

400

600

30apps, 128 types of contexts

60apps, 256 types of contexts

180apps, 800 types of contexts

Average
response time
(8192 nodes)

Average
response time
(1024 nodes)

Time cost of
clustering
algorithm

Figure 8. Scalability measurement

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a context clustering method from
a novel perspective. Contexts with similar query patterns
abstracted from the applications are grouped into the same
cluster. We improve the context retrieval performance by
constructing logic shortcuts between peers based on clusters, in

order to illustrate the sense of context clustering. Moreover, we
also propose a new distance measurement--sine for clustering
algorithms, which performs better than Euclidean distance in
our domain.

In our future work, we will focus on two aspects. First, we
will make efforts to collect query information, perform
clustering and build shortcuts on the fly (including incremental
clustering algorithms), in order to adapt to the dynamical
characters (e.g., changes of context requirements and provision)
in the real-life applications. Second, as discussed in Section 3,
we will try to study the semantic clues provided by context
clusters, which can be derived from our clustering algorithm,
without any prior semantic knowledge.

REFERENCES
[1] Weiser M., “The Computer for the 21st Century,” Scientific American,

pp.94-100, September 1991.
[2] J Patrik Fuhrer, Dominique Guinard, “Building a Smart Hospital Using

RFID Technologies,” presented at the 1st European Conference on
eHealth (ECEH06), Fribourg, Switzerland, October 12 - 13, 2006.

[3] Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue Long,
Rob Kooper and Mike Pinkerton, “Cyberguide: A Mobile Context-aware
Tour Guide,” Wireless Network, Springer, 1997.

[4] Harry Chen, Tim Finin, Anupam Joshi, “Semantic Web in the Context
Broker Architecture”, In Proceedings of PerCom 2004, Orlando FL.,
March 2004.

[5] http://www.hpl.hp.com/semweb/jena2.htm.
[6] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I.

Brunkhorst, and A. Lser, “Super-peer-based Routing and Clustering
Strategies for RDF-based Peer-to-Peer Networks,” in Proceedings of the
12th World Wide Web Conference, May 2003.

[7] T. Gu, H. K. Pung, and D. Zhang, “A Peer-to-Peer Overlay for Context
Information Search,” in Proceedings of the 14th IEEE International
Conference on Computer Communications and Networks, San Diego,
California, October 2005.

[8] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” in Proceedings of ACM SIGCOMM, 2001

[9] Ratnabali Biswas, Kaushik Chowdhury, Dharma P. Agrawal, “Attribute
Allocation in Large Scale Sensor Networks,” in Proceedings of the 2nd
International Workshop on Data Management for Sensor Networks
(DMSN '05) August, 2005.

[10] Han JW, Kamber M, Data Mining: Concepts and Techniques. San
Francisco, CA: Morgan Kaufmann, 2000.

[11] F. Heylighen, “Mining associative meanings from the web: from word
disambiguation to the global brain,” in Proceedings of Trends in Special
Language and Language Technology, R. Temmerman (ed.), Standaard
Publishers, Brussels, 2001.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content Addressable Network,” in Proceedings of ACM
SIGCOMM, 2001.

[13] A. Rowstron and P. Druschel, “Pastry: Scalable Distributed Object
Location and Routing for Large-scale Peer-to-Peer Systems,” in
Proceedings of the 18th IFIP/ACM International Conference on
Distributed Systems Platforms and Open Distributed Processing,
November 2001.

[14] Gnutella. http://gnutella.wego.com.
[15] http://www.w3.org/RDF.
[16] Min Cai, Martin Frank, “RDFPeers: A Scalable Distributed RDF

Repository Based on a Structured Peer-to-Peer Network,” in
Proceedings of the 13th International World Wide Web Conference, New
York, May 2004.

[17] S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement Study of
Peer-to-Peer File Sharing Systems,” in Proceedings of Multimedia
Computing and Networking, 2002.

View publication statsView publication stats

https://www.researchgate.net/publication/4318550

