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Abstract—Building large-scale smart environments is one of the 
long-term goals of ubiquitous computing. The widespread of 
context information in such environments necessitates an 
effective context retrieval mechanism. This paper proposes a 
novel context retrieval method based on applications’ query 
patterns. We propose high dimensional vector to model contexts 
from applications’ perspective, and apply the normalized inner 
product of high dimensional vectors to measure context distance. 
Contexts with similar query patterns are clustered into the same 
group. To improve the performance of context retrieval, we build 
distributed indices on each node to speed up a local search, and 
create shortcuts based on clustering results to facilitate query 
routing. We show how our proposed methods can be applied to 
existing context retrieval mechanisms. Our experimental results 
show that our method can significantly reduce retrieval cost. 

Keywords-context distance; clustering; ubiquitous computing; 
context retrieval 

I.  INTRODUCTION 

Ubiquitous computing creates an appealing view of a new 
computing paradigm, which decreases a user’s attention to 
computational devices and helps the user concentrate on the 
task through implicit collection of various contexts. According 
to Mark Weiser’s vision, ubiquitous computing provides users 
with adequate services anytime and anywhere [1]. This vision 
implies that a smart environment may expand to a very large 
area across multiple application domains. With the 
advancement of sensing techniques and embedded devices, 
large-scale smart environments become possible, such as 
emerging smart hospitals [2] and outdoor guiding systems [3]. 

In a large-scale smart environment, a vast amount of 
context-aware applications may be interested in searching and 
utilizing different types of context information which is 
widespread across multiple domains. As a result, an efficient 
context retrieval mechanism becomes a key issue in ubiquitous 
computing. One approach is to store or index all the contexts in 
a centralized node and resolve the search requests. Although it 
will provide fast responds to context queries, the deficiencies 
are obvious. Centralized context management suffers from 
processing bottleneck, limited scalability and single point of 
failure. For example, in a context-aware car navigation system, 
it is not realistic for a single server to manage traffic loads of 
all the roads, and information about all the spots in a large city. 
It is more natural and reasonable to store and update context 

information in a distributed fashion in such large-scale smart 
environment. 

This paper aims to propose efficient methods to improve 
context retrieval and reduce retrieval cost in a large-scale smart 
environment. Our proposed method is based on applications’ 
query patterns, and contexts are clustered according to context 
distance. The query pattern of a context refers to the set of 
applications that query it and the respective query frequencies. 
To the best of our knowledge, this is the first attempt to study 
the problem of context retrieval from applications’ perspective. 

We define context distance as logical distance measured 
from applications’ perspective. As we know, context 
information may be expected to serve multiple applications 
simultaneously. For example, an outdoor smart space equipped 
with sensors may assist in many applications such as ecosystem 
monitoring, weather reporting, precision agriculture, etc. If 
applications tend to access two contexts at the same time, i.e., 
these two contexts have high possibility to be queried 
simultaneously, then we say that they have a small context 
distance between each other. In the above example, the weather 
reporting application may be interested in humidity, 
temperature and light contexts, and the application for 
precision agriculture may need temperature, light and presence 
of chemicals. Hence, we know that temperature and light 
contexts are “close-by” to each other in context distance. 
However, the distance between two contexts may not be that 
intuitionistic when the number of applications increases and 
query frequencies are taken into account.  

In this paper, we model contexts using high dimensional 
vector. Different from traditional Euclidean distance, we 
propose the sine of high dimensional vectors for measuring 
context distance. Based on this distance measurement, contexts 
which are close-by in context distance are grouped into the 
same cluster using a k-means based algorithm. Then we build 
distributed indices on each node to speed up a local search, and 
create shortcuts to facilitate inter-cluster routing. Our proposed 
methods can be applied to existing context retrieval 
mechanisms to enhance their performance. Our simulation 
results show that our method can significantly reduce query 
costs. 

The rest of the paper is organized as follows. Section 2 
reviews related work. Section 3 presents our approach for 
context clustering. Section 4 describes how to improve query 
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performance using clustering results. We evaluate our method 
in Section 5, and finally conclude the paper in Section 6. 

II. RELATED WORK 

Most of the existing work is built upon centralized context 
information repositories, such as CoBrA [4] and Jena [5]. 
These approaches are easy to design and provide fast responds 
in small or moderate applications, but they have limitations in a 
large-scale smart environment. 

Some researchers proposed distributed context retrieval 
approaches leveraging existing Peer-to-Peer (P2P) architectures. 
Edutella [6] is a combination of unstructured P2P network and 
the Semantic Web. It is schema-based and queries are routed 
through the peers organized in hypercubes. Gu et al. [7] 
proposed a two-tired P2P network for context lookup. The 
upper tier is Chord-like [8] while the lower tier is unstructured. 
These work made efforts to improve query performance by 
grouping or indexing contexts in distributed environments. 
However, these clusters or indices are based on context 
semantics, which requires a set of pre-defined ontologies. The 
lack of standard in context ontology becomes a bottleneck. Our 
approach intends to cluster contexts based on query patterns, 
which differs from existing work. 

Biswas et al. [9] studied correlations between attributes by 
calculating applications’ query probabilities in the context of 
wireless sensor networks. Attributes are allocated in GHT 
(Geographic Hash Table) based networks conforming to the 
following principle: frequently used attributes are put more 
closely to the center of the net and tightly correlated attributes 
are neighbored each other in the net. However, the algorithm 
described in this paper is heuristic. Since they use a greedy 
policy, the results obtained is not globally optimized. Further 
more, the research in wireless sensor networks is different from 
context retrieval in a way that the former focuses more on 
energy saving instead of responding time. 

Most of the traditional clustering algorithms adopt 
Minkowski distance (i.e., generalized Euclidean distance) as 
the mathematic model. But this model is sensitive to the vector 
elements with large values. Although weights can be used to 
balance the effect, the choosing of weight values is somewhat 
arbitrary [10]. We propose an inner product based distance 
measurement, which is able to describe the correlation of 
contexts more appropriately. As compared to [9], this 
measurement method considers the globe conditions rather than 
a heuristic and greedy manner. 

III. CONTEXT CLUSTERING USING QUERY PATTERNS 

In this section, we introduce a mathematic model to 
measure context distance, and then describe how to cluster 
contexts which are close-by in distance into a cluster based on 
the measurement. 

A. Formalization of Contexts 
Assuming that there are m types of contexts {C1, C2, …, Cm} 

and a set of q context-aware applications {A1, A2, …, Aq} in a 

large-scale smart environment. Ci (1≤i≤m) is defined as a q- 
dimensional vector:  

 Ci = (p1, p2, …, pq) (1) 

where pj (1≤j≤q) is the number of times Aj accesses Ci per 
unit time. Obviously, pj ≥ 0 for all j. This vector provides a 
formal definition of the query pattern of Ci. 

B. Context Distance Measurement: Sine 
Given two types of contexts S and T (e.g., S is light context 

and T is temperature), let S = (s1, s2, …, sq) and T = (t1, t2, …, 
tq), firstly we calculate the normalized inner product of S and T. 
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Defined in this way, cos(S, T) will vary between 0 (when 
two vectors are orthogonal) and 1 (when two vectors are 
identical or proportional). More generally, cos(S, T) will 
increase as S and T share more non-zero components sj and tj. 
Shared components mean that S and T have associations with 
the same applications. Actually, Formula (2) calculates cosine 
of the included angle of two vectors and is an accuracy 
description of correlations between two types of contexts in the 
sense of applications’ queries.  

To explain it more clearly, we will show the special case of 
Formula (2) when both S and T are 2D (or 3D) vectors, that is, 
there are only two or three context-aware applications in this 
smart environment (q = 2 or 3). First, we let q = 2, S = (s1, s2) 
and T = (t1, t2), angles α, β, γ are shown in Figure 1. We have 

 
Figure 1.  Cosine of 2D vectors 
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_______________________________________________
boolean exchange = true; 
while (exchange){ 
 exchange = false; 
 for (int i = 0; i < numOfObjects; i++){ 
  tempClu = object[i].getItsCluster(); 
  tempDis = D(mean[tempClu], object[i]); 
  for (int j = 0; j < numOfCluster; j++){ 
   dis = D(mean[j], object[i]) 
   if (tempClu != j && tempDis > dis){ 

tempDis = dis; 
object[i].setItsCluster(j); 
exchange = true; 

} 
  } 
 } 
 If (exchange) calculateMeans(); 
} 
_______________________________________________ 

We know that the above result conforms to the Formula (2) 
when q = 2. The more closer the proportions of frequencies 
where each applications query two contexts are, the more 
smaller the included angle of two vectors is, and more larger 
the cosine of this angle will be, given an acute angle. 
Intuitively, cosine gives similarity of two contexts in the aspect 
of its correlations with applications. Similarly, cosine of 
included angle of two 3D vectors is shown as follows. 
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If we generalize the cosine expression to high dimensional 
vectors, we will have Formula (2). Next, we give the definition 
of the context distance between S and T. 

 ),(cos1),sin(),( 2 TSTSTSD −==  (3) 

where cos(S, T) is defined in Formula (2). Formula (3) 
calculates sine of two vectors and we use this value to define 
context distance. 

A well-defined distance measurement should conform to 
following four conditions. 

1) Nonnegative. distance(S, T)≥0; 
2) Distance from an object to itself is 0. distance(S, S) = 0; 
3) Symmetric. distance(S, T) = distance(T, S); 
4) Triangular inequality. distance(S, T) ≤ distance(S, 

R)+distance(R, T). 

Now we prove D(S, T) is a well-defined distance 
measurement. 

Prove. 1) Trivial; 2) sin(S, S) = sin0 = 0; 3) Trivial; 4) Let the 
included angle of S and T is γ, that of S and R is α, and that of 
R and T is β, then γ = α+β or γ = |α-β|. When γ = |α-β|, the 
proof is straightforward. When γ = α+β, sinγ = sin(α+β) = 
sinαcosβ+cosαsinβ. Since all vector components are 
nonnegative, so 0≤cosα≤1, 0≤cosβ≤1. Then sinγ≤
sinα+sinβ.                                                                                 □ 

While cosine depicts correlations between two contexts 
from applications’ queries, sine is defined as a distance 
measurement of them in the same sense. D(S, T) will decrease 
when two types of contexts S and T share more common points 
in their query patterns. In the example mentioned in Section 1, 
we may guess that D(light, temperature) is smaller than D(light, 
humidity) as the former pair appears in two applications. Of 
course, it depends on the queries of other applications in the 
same environment and the query frequencies as well. We will 
compare the measurement of D(S, T) with that of traditional 
Euclidean distance in Section 5. 

C. Context Clustering 
Based on our distance measurement represented in the 

Formula (3), we can cluster “close-by” contexts into a group. 
Generally speaking, contexts that belong to the same group 
exhibit more similarity in their query patterns. 

We apply D(S, T) to obtain context distance, where S and T 
are q-dimensional vectors as defined before. Our clustering 

algorithm is based on k-means, and the steps are presented as 
follows. 

1) Randomly select k contexts as the centers of the 
clusters; 

2) For each remaining context, assign it to the cluster 
whose center is the nearest to the context. The distance 
between a context and the center is calculated by D function; 

3) Compute the means of the new clusters and assign them 
with the new centers; 

4) If there is no change, exit. Otherwise go to step 2). 

This algorithm is convergent. The value of k (number of 
clusters) should be decided before clustering. Here follows a 
segment of the algorithm. 

Figure 2.  A segment of the clustering algorithm 

To illustrate the clustering algorithm, we take an example 
of 2D space, i.e., there are only two context-aware applications 
in a smart environment, say, A1 and A2. In practice, the 
dimension of a smart space could be very high. We assume 
there are five types of contexts, i.e., C1, C2, C3, C4, and C5. The 
frequency that A1 queries C1 is 30 and that of A2 is 0. Other 
frequencies are shown in Figure 3. 

Let k = 2, after executing the clustering algorithm, five 
contexts are clustered into two groups, i.e., Custer_1 = {C1, C2, 
C3}, Cluster_2 = {C4, C5}. The result is expected since the 
included angles of intra-cluster vectors are smaller than those 
of inter-cluster vectors. Cluster_1 can be regarded as the set of 
contexts which application A1 queries much more often than 
application A2 dose. Similarly, Cluster_2 is the set of contexts 
which A2 queries more often than A1 does. If we substitute 
Euclidean distance for our sine distance measurement and 
execute the algorithm again (still let k = 2), five contexts will 
be re-clustered. C1 and C5 are in the same group, while C2, C3, 
C4 in the other (marked with dashed cycles in Figure 3), 
because the physical distance between end-points of those 
intra-group vectors are smaller. 



 
Figure 3.  Clustering by two measurements 

From the above comparison, we can see that clusters 
produced by our sine distance measurement are more accurate 
to the extent of query patterns and have more readable 
meanings. In Figure 3, it seems that clusters grouped by 
Euclidean distance reflect the difference of total query 
frequency. Actually, it may not the case for more complex 
examples. We will compare these two distance measurements 
in our experiments. 

The clustering results can be used to improve context 
retrieval performance. In addition, it can be applied for 
measuring the semantics between two contexts. For example, if 
we execute our algorithm based on a large amount of queries 
which are collected from real-world context-aware applications, 
we can study semantic relations among contexts in the same 
cluster without any ontology interference. Since two words 
appeared frequently in the same web pages are proved to have 
some degree of semantic relations [11], it is conceivable that 
two kinds of contexts often queried together are also correlated 
in semantics. However, in this paper, we only focus on 
performance improvement of context retrieval as an illustration 
example of context clustering. 

IV. APPLY CLUSTERING RESULT TO CONTEXT RETRIEVAL 

In this section, we introduce how to improve the 
performance of context retrieval by using our clustering results. 
We first describe the network structure, and then explain the 
indices and the shortcuts constructing according to the context 
clusters. 

A. Network Structure 
We choose the unstructured P2P network as the underlying 

network substrate. In this network, a peer can be context 
providers which store contexts and handle the query requests, 
context consumers (i.e., context-aware applications), or both.  
There is no centralized controller or any form of DHT 
(Distributed Hash Table) applied.  

Centralized repositories and query management may not be 
suitable for large-scale smart environments because of single 
point of failure, processing bottleneck and poor scalability, as 
we discussed in Section 1. DHT-based structured P2P networks 
like Chord [8], CAN [12], or Pastry [13] may account 
performance lost when peers join or leave the network 

frequently. In the ubiquitous computing environment, many 
nodes are wireless and handheld devices. As these nodes may 
be moving from place to place, the network topology changes 
dramatically and maintenance costs of DHT become very high. 
Unstructured P2P network is much easier to build and maintain, 
which is suitable for context-aware environments. 

We assume that contexts are stored near where they are 
generated. Since the generating rates of some contexts are very 
high, such as noise level or the location of a person, local 
repository will have least costs. 

B. Context Indexing 
To speed up a local context search within a peer, we 

propose an indexing mechanism to summarize local contexts, 
and therefore reduce the local retrieval costs. 

We use RDF [15] to present contexts, which are composed 
of <subject, property, object> triples, such as <Tom, locateIn, 
Room11> and <Room06, temperature, 21>. For simplicity, 
namespaces are omitted. We add the generating time for each 
context. The indices are built on the local node where contexts 
are stored, and the structure of indices is shown in Table 1. 

To build indices, we divide local contexts into two 
categories. One is those whose objects are consecutive 
numerical values, such as the temperature of Room506; the 
other is those whose objects are enumerated values, such as the 
place Tom locates in. 

TABLE I.  CONETXT INDICES IN PEER_1 

TypeID Subject Property Object TimeFrom TimeTo 

0x10af Room506 tempera 12 23 020145723 021378107

0x2045 Jan locateIn  020137589 024589341

0x20c7 Tom locateIn  020137589 023337582

0x2123  locateIn Room506 020137589 023337582

0x219a  locateIn Room507 020334325 024589341
          Shows three kinds of indices 

For the former category, all the contexts (in the same peer) 
with identical subject and property are summarized into one 
record in the index table. For instance, assuming the set of 
contexts (stored in peer_1) with consecutive numerical-value 
objects is the first three lines in Table 2, the summarized index 
of them is just as the first line of table 1 shows. In this case, 
Object field describes the min and max value of objects of the 
contexts summarized by this record. TimeFrom and TimeTo 
fields give the generating time of the first and the last contexts 
of this type.  

For the latter category, contexts are summarized according 
to both <subject, property> and <property, objects> pairs 
respectively. For instance, assuming the set of contexts (stored 
in peer_1) with enumerated value objects is the last six lines of 
table 2. First, we build indices of these contexts according to 
<subject, property> pairs. The result is shown as the second 
and third lines of Table 1. The Object field is vacant. 
TimeFrom and TimeTo fields refer to the same meaning as the 
former category. Then we build indices according to <property, 



objects>. The result is the fourth and fifth lines of Table 1. 
Similarly, Subject field is vacant. 

In the above example, there are nine contexts in peer_1 (see 
Table 2), and only five records in the index (see Table 1). In 
real-life applications, the number of index records may be 
much fewer than the number of contexts. When a new context 
about temperature in Room506 generates, what we need to do 
is merely changing the TimeTo field (and possibly the Object 
field) of the fist line in Table 1. We do not need to add a line to 
the index. When a query arrives, the index table will be 
checked first. Only when a record in the indices matches the 
query will local contexts be scanned. By this way the search 
cost can be greatly reduced using our index method. 

TABLE II.  CONTEXTS IN PEER_1 

Subject Property Object Timestamp 

Room506 tempera 12 020145723 

Room506 tempera 16 020145856 

Room506 tempera 23 021378107 

Tom locateIn Room506 020137589 

Jan locateIn Room506 020137589 

Tom locateIn Room506 023337582 

Jan locateIn Room507 024589341 

Tom locateIn Room507 020334325 

Jan locateIn Room507 022335628 
   Actually, contexts are stored in the order of their timestamps. This table is just for illustration. 

In our approach, contexts whose objects are consecutive 
numerical values are only indexed by <subject, property> 
combination, while others whose objects are enumerated values 
are indexed by both <subjects, property> and <property, 
object> combinations. However, as we know, 32

3 =C . i.e., for 
a triple, there are three cases when looking up one item as other 
two items are known. Actually, RDFpeers [16] indexes every 
context by all three combinations: <subject, property>, 
<property, object> and <subject, object>. Each context has 
three copies in the whole network. Nevertheless, we do not 
build all these indices because some of them are unnecessary as 
explained as follows. 

For a query like “which students are located in Room507” 
(requires contexts with enumerated-value objects), we build the 
index based on <property, object> pair for the related contexts. 
However, a query such as “which rooms have the temperature 
of 21.5” (requires contexts with consecutive numerical value 
objects) is seldom used in applications, because it wiser to 
query consecutive numerical item by a range instead of a 
particular value. Further more, indexing consecutive numerical 
values may greatly increase the storage cost of indices. Hence, 
we handle two categories of contexts differently. In addition, 
we do not index <subject, object> pair for both categories. In 
reality, applications never query “what is the relationship 
between Room507 and 21.5”. Hence, <subject, object> pair 
will not be used. One may argue that the query “what is the 
relationship between Tom and Room507” can exist. However, 
since the answer can only be “locate in” or “not locate in”, 

users can query “who are in the Room507” or simply “where 
Tom locates”. 

In summary, the design of our indexing method aims to 
improve the efficiency of local contexts retrieval and minimize 
the index volume. 

C. Shortcuts Based on Context Clusters 
In an unstructured P2P network such as Gnutella [14], 

queries usually are flooded to all the nodes in the network, 
which results in a large amount of unnecessary messages. In 
this paper, we propose to create shortcuts to facilitate query 
routing . 

First, we define what is a type of context. We define a 
record in the index table (see Table 1) as a type of context. For 
example, <*, temperature, *> or <*, locateIn, *> is not a type 
of context (* is wildcard), but <Room507, temperature, *> or 
<*, locateIn, Room506> or <Tom, locateIn, *> is a valid type 
of context. Each type of context is assigned with a globe unique 
typeID, as shown in the first column of Table 1. Contexts in 
different peers with the same records in subject, property, 
object fields in their index tables are treated as the same type 
(the min and max value of object can be neglect). For instance, 
a record <Tom, locateIn, *> that exists in both peer_1’s index 
table and peer_2’s index table will be treated as the same type 
of contexts (Note: the namespaces of Tom should be the same). 

After gathering enough query information from various 
applications, we model each type of context with a 
q-dimensional vector (assuming there are q context-aware 
applications in such smart environment), and use them as the 
input of our clustering algorithm presented in Section 3. 

 
Figure 4.  Overview of network and data structure of peer_1 

The results of clustering will broadcast to every node in the 
network. Peers with contexts that belong to the same cluster 
will cache each other. For example, peer_1 has three types of 
contexts C1, C2, and C3. The clusters these contexts are 
respectively located in are {C1, C15, C23}, {C2, C3, C7, C16, C32} 
(C2 and C3 are in the same cluster). Then peer_1 should cache 
the ID and IP address of all the peers that store C15, C23, C7, C16 
and C32. In this way, most queries can find their way to 
destination by cached shortcuts instead of using blind flooding. 
Figure 4 shows the overview of the network and the data 
structure of peer_1. Solid lines stand for physical connection 
while dashed lines with arrows indicate the shortcuts. 



When parameter k (i.e., the number of clusters) is smaller, a 
cluster may contain more types of contexts and a node may 
cache more peers, resulting in greater performance 
improvement of context retrieval. On the other hand, we should 
notice a larger k may result in higher cost of memory and more 
risk of cache invalidation in case of topology change. 

V. EVALUATION 

Now we move on to evaluate our proposed methods 
through simulation studies. First, we evaluate the effects of 
shortcuts based on our context clusters. We then present the 
performance improvement of our context indices. Next, we 
compare the sine distance measurement with Euclidean 
distance. Finally, we study the scalability of our clustering 
method. 

We use the Autonomous System model to generate network 
topologies as previous studies have shown that the P2P overlay 
topology follows both small world and power law properties 
[17]. During our experiments, peers join and leave the network 
at the same rate to simulate dynamic characters of the P2P 
overlay. We assume that there are 30 applications and 128 
types of contexts in an unstructured P2P network for the first 
three experiments. Query patterns are randomly assigned to 
each type of context. 

A. Effect of Cluster-based Shortcuts 
We compare our proposed methods presented in Section 3 

and 4 with Gnutella in this experiment. In our methods, 
contexts are clustered according to our algorithm with sine 
distance measurement, and shortcuts between peers are cached 
based on the results of clustering. In a Gnutella-like network, 
the results of a query are cached along the query path and no 
shortcuts are built. Both methods have the same cache size. The 
average number of hops traversed by a query request to the 
destination is used as a metric. 

As we know, query success rate (QSR) in an unstructured 
P2P network can hardly reach 100%. We use QSRs = 85% for 
both methods. We set parameter k (i.e., number of clusters) to 
20, 10, and 5 respectively for our method. Figure 5 plots search 
path length vs. number of nodes for both two methods.  
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Figure 5.  Average hops when QSR is 85% 

From Figure 5, we can see that the average search hops of 
our method are much less than a Gnutella-like overlay. 
Moreover, the rising rate of our method is much less than that 
of Gnutella. It demonstrates the use of shortcuts can greatly 
improve system scalability. In addition, a smaller number of 
clusters results in better performance. This result probably can 
be explained as follows: When contexts within a cluster 
increase and a node tends to cache more peers. However, when 
k gets smaller and smaller, the performance improvement is 
limited, but the memory costs rise quickly. Therefore, a better 
tradeoff needs to be studied further. 

B. Effect of Context Indices 

  
Figure 6.  Effect of context indices 

In this experiment, we evaluate the impact of our context 
indices presented in Section 4.B. As mentioned before, some 
contexts generate rapidly and we reserve the historical data, so 
data volume in a peer may be very large. Hence, local 
processing time takes a considerable part in response time. The 
comparison is performed between two cases. In the first case, 
we use our approach, including indices and shortcuts. In the 
other case, we shield the indices (shortcuts are reserved). We 
let k=20 and QSR=85% for both cases. As the routing of two 
cases are the same, the difference of their average response 
time reflects the impact of the indices. As shown in Figure 6, 
the case of using indices reduces the total response time 
significantly. 

C. Performance of Sine Distance Measurement 
In this experiment, we compare the sine distance 

measurement with Euclidean distance in the context of our 
clustering algorithm. We let k = 20, and use Formula (3) to 
calculate D function for the first case, and leverage Euclidean 
distance for the second case. Other settings are identical and 
QSR = 85%. The results of two cases are applied for building 
shortcuts respectively. We use search path length as the metric. 
The comparison result is shown in Figure 7. 

The result reveals that the sine distance measurement 
performs better than the Euclidean distance, especially when 
the number of peers is large. In addition, context clusters based 
on the sine distance have clearer meanings, to the query pattern 
extent, compared to the Euclidean distance as we have 
discussed in Section 3. 



 
Figure 7.  Sine distance vs. Euclidean distance 

D. Scalability of Our Context Clustering Method  
Finally, we test to evaluate the scalability of our approach. 

In this experiment, we measure the cost when the number of 
applications and types of contexts increase. 

Figure 8 plots the cost for different numbers of applications 
and different types of contexts. The increase of clustering time 
costs (i.e., time cost for the program to execute the clustering 
algorithm) is linear to that of the number of applications and 
types of contexts, and the increase of response time is almost 
neglectable. Above all, context clustering only need to run once, 
while the response time is involved in every query and is the 
key measurement. From the above results, we can see that our 
sine distance measurement and clustering methods have good 
scalability and they are capable to deal with high dimensional 
vectors. 
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Figure 8.  Scalability measurement 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we propose a context clustering method from 
a novel perspective. Contexts with similar query patterns 
abstracted from the applications are grouped into the same 
cluster. We improve the context retrieval performance by 
constructing logic shortcuts between peers based on clusters, in 

order to illustrate the sense of context clustering. Moreover, we 
also propose a new distance measurement--sine for clustering 
algorithms, which performs better than Euclidean distance in 
our domain. 

In our future work, we will focus on two aspects. First, we 
will make efforts to collect query information, perform 
clustering and build shortcuts on the fly (including incremental 
clustering algorithms), in order to adapt to the dynamical 
characters (e.g., changes of context requirements and provision) 
in the real-life applications. Second, as discussed in Section 3, 
we will try to study the semantic clues provided by context 
clusters, which can be derived from our clustering algorithm, 
without any prior semantic knowledge. 
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