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Human activity recognition is an important task which has many potential applications. In
recent years, researchers from pervasive computing are interested in deploying on-body
sensors to collect observations and applying machine learning techniques to model and
recognize activities. Supervised machine learning techniques typically require an appropri-
ate training process in which training data need to be labeled manually. In this paper, we
propose an unsupervised approach based on object-use fingerprints to recognize activities
without human labeling. We show how to build our activity models based on object-use
fingerprints, which are sets of contrast patterns describing significant differences of object
use between any two activity classes. We then propose a fingerprint-based algorithm to
recognize activities. We also propose two heuristic algorithms based on object relevance
to segment a trace and detect the boundary of any two adjacent activities. We develop a
wearable RFID system and conduct a real-world trace collection done by seven volunteers
in a smart home over a period of 2 weeks. We conduct comprehensive experimental eval-
uations and comparison study. The results show that our recognition algorithm achieves a
precision of 91.4% and a recall 92.8%, and the segmentation algorithm achieves an accuracy
of 93.1% on the dataset we collected.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, human activity recognition, which aims to recognize the actions and goals of one or more agents from a
series of observations, has become an important research direction in pervasive computing. In this paradigm, various sensors
are typically deployed to collect a sequence of observations (i.e., time-series data), and these observations are used to train
an appropriate activity model. The trained model can then be used to assign new observations with activity labels. There are
many useful healthcare and context-aware applications. A typical healthcare application is monitoring activities of daily
living (ADLs) [1] for the elderly and cognitively impaired people and providing them with proactive assistance. Other appli-
cation can be activity-based adaptation such as lowering TV volume when a user answers a phone call or providing instruc-
tions when a user operates unfamiliar appliances.

Recognizing activities based on sensor readings is challenging because sensor data are inherently noisy and human activ-
ities are usually performed in a non-deterministic fashion. In addition, we argue that we need to address more challenges
before deploying any activity recognition system for real-life use. These challenges can be, for example, scalability – scale
to a large number of activities, applicability – work efficiently in real-life situations, andadaptability – adapt to different users
. All rights reserved.
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since different individuals may perform the same activity in different ways. A key issue is to develop appropriate activity
models that map low-level sensor features to high-level concepts. To obtain activity models, a straightforward method is
to learn from a set of training data. Most existing approaches [2–11,22–29,31–33] leverage on supervised learning tech-
niques to construct their activity models; however, learning from training data typically requires human labeling. Applica-
tion developers are required to label both the underlying sensor system and the activities associated with a set of training
data. Considering a large number of activities to be recognized in our daily lives, manual labeling of training data may place a
significant burden to any individual involved in data collection. Hence, supervised learning approaches may have limitations
in real-life deployment where scalability, applicability and adaptability are highly concerned.

In this paper, we aim to propose a simple, unsupervised approach based on RFID-tagged objects to recognize human
activities without manual labeling, making our effort towards scalability, applicability and adaptability for real-life deploy-
ment. We build our activity model based on fingerprints, which are sets of object-use based contrast patterns describing sig-
nificant differences of object-use between any two activity classes. This is done by first mining a set of object terms for each
activity class from the web, and then mining contrast patterns among object terms based on emerging patterns [35] to con-
trast any two activity classes. We then propose a fingerprint-based algorithm to recognize activities. We also propose two
heuristic algorithms to segment an activity trace and detect the boundary of any two adjacent activities. We evaluate the
effectiveness of our proposed techniques using a real-world dataset collected by seven subjects performing 17 activities
involving 132 objects in a smart home environment. The experimental and comparison results show both efficiency and
robustness of our proposed system.

In summary, this paper makes the following contributions:

� We propose an activity model based on object-use fingerprints which are obtained by combining mining object-use from
the web and mining contrast patterns, and a fingerprint-based algorithm to recognize activities.

� We dissociate the recognition process from the trace segmentation process, and propose two algorithms based on object-
use relevance to segment an activity trace.

� We validate our algorithms using a real-world dataset collected in a smart home environment, and analyze their effective-
ness and limitations through comprehensive experimental and comparison studies.

The rest of this paper is organized as follows. We discuss related work in Section 2. We describe our activity model in
Section 3. We then propose our activity recognition and segmentation algorithms in Section 4, and evaluate them in Section
5. Finally, we conclude the work in Section 6.
2. Related work

Much early work in human activity recognition [25–28] has been done in the computer vision community. They leverage
on video cameras, and explore various tracking methods and spatio-temporal analysis to track moving objects and recognize
people’s actions from video sequences.

Researchers in pervasive computing are interested in recognizing activities using on-body sensors that directly measure
human, the environment and human–object interaction. Most existing work focuses on applying supervised machine
learning techniques to this task where manual labeling of training data is typically required. There are two major models
for recognizing human activities from artificial intelligence: logic-based approach and probabilistic approach. Early ap-
proaches such as [36] were based on logic. In this model, activities are described as a logical inference process of circum-
scription, and represented by a set of first-order statements called event hierarchy. However, logic-based approaches have
limitations in distinguishing among consistent plans and have problems to handle uncertainty and noise in sensor data.
Probabilistic models gain more popularity as sensor readings are usually noisy and human activities are typically per-
formed in a non-deterministic fashion. Probabilistic models can be generally categorized into static classification or tem-
poral classification. In static classification, a variety of features is first extracted from sensor readings, and then a static
classifier is applied to classify different activities. Typical static classifiers include naïve Bayes used in [2,3,11], decision
tree used in [2,11], k-nearest neighbor (k-NN) used in [2,8,11], and support vector machine (SVM) used in [8]. In temporal
classification, state-space models are typically used to enable the inference of hidden states (e.g., activity labels) given the
observations (i.e., sensor readings). We name a few examples here: hidden Markov models (HMMs) used in
[9,10,13,14,30,31], dynamic Bayesian networks (DBNs) used in [4] and conditional random fields (CRFs) used in [31–
33]. Specifically, Bao et al. [2] proposed to use multiple accelerometers placed in multiple locations of the human body
to detect activities. The authors applied pre-trained classifiers such as decision tree and Naïve Bayes to recognize activities.
Ward et al. [10] proposed to use microphones and 3-axis accelerometers to recognize continuous activities to assemble
tasks in a ‘‘wood workshop”. They applied linear discriminant analysis (LDA) on the sound segments and HMM on the
acceleration data. Tapia et al. [3] proposed an activity recognition system based on a set of small and simple sensors.
The Naïve Bayesian classifier was chosen to predict the activity labels. Philipose et al. [4] proposed to use RFID tags at-
tached on objects of interest and represented activities as a probabilistic object sequence. These activity models were then
converted into DBNs to compute the probabilities of the activities. Lester et al. [29] used the multi-modal sensor board
and applied both static classifier and HMM classifier to recognize activities. A variant of CRF (i.e., skip chain CRF [33])
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and a variant of HMM (i.e., interleaved mixture of HMMs [37]) can be used to recognize interleaving activities, and an-
other variant of CRF (i.e., factorial CRF [32]) can be used to recognize concurrent activities. However, supervised learning
models typically require labeled training data for an appropriate training process.

Recent work shows an interesting direction towards an unsupervised approach to activity recognition. Perkowitz et al.
[12] formulated activity models by translating labeled activities into probabilistic collections of terms, and mined the def-
initions of activities from the web. They represented the activities as HMM-based on the object sequence used with proba-
bilistic distributions. However, activity traces were manually segmented and input to their HMM models, and hand
segmentation still requires involvement of human effort. In addition, it may cause the data belonging to the same activity
being segmented into different slices or the data two adjacent activities falls in the same slice. Wyatt et al. [13] built their
activity models by mining the web in a wider scope. They presented a bootstrap method that can produce labeled segmen-
tations automatically. Their model abstraction uses a large number of labeled web pages as the training set in which human
efforts are involved. The segmentation in this work was based on the duration of an activity that may vary greatly from one
user to another. Therefore, the accuracy may drop obviously when their activity models were applied to real-world scenar-
ios. Furthermore, although they used the generic mined models to segment the trace into labeled instances of activities, their
segmentation process is sequential in nature such that any error in one segment may affect the segmentations of the sub-
sequent traces. Pentney et al. [14] demonstrated the use of a large number of hand-entered common sense database to inter-
pret activity traces. Wang et al. [30] combined a generative common sense model of activity with a discriminative model of
actions to automate feature selection. Pentney et al. [21] proposed chain graphs to represent objects used and activities per-
formed. The approach is based on combining relational databases of large common sense created by the user with techniques
for information retrieval on web. Hamid et al. modeled activity as a sequence of discrete events [34], recognition is done by
discovering and matching the Motif which is defined as the subsequences with similar behavior appeared frequently in time-
series data. They also proposed to represent activities as bags of n-grams to extract global structure information of activities
and presented a computational framework for unsupervised activity discovery and classification [24].

As we discussed, existing unsupervised approaches [12,13] mine both object and object sequence using web mining to ob-
tain activity models. However, different users usually perform their activities in their own ways, and even the same user may
perform the same activity in several different ways. Under a real-world situation, it is difficult to obtain complete HMM-
based models. Most likely, this has to be complemented by hand specification. Our work in this paper is motivated by
the recent advancement of unsupervised approaches. We build a simply activity model based on object-use fingerprints.
Compared to [12,13], we only mine object terms from the web. Mining sequential data has been well studied in the data
mining literature [38–41]. In this paper, we apply contrast pattern mining to sensor-based human activity recognition
and mine contrast patterns (i.e., fingerprints) from object terms for each activity to maximize the discriminating power of
fingerprints. Furthermore, our trace segmentation algorithms operate independently such that the segmentation process
for one segment does not affect that for subsequent segments. This approach is in contrast to sequential segmentation com-
monly employed in previous research where an error in a segmentation process affects the subsequent ones.
3. Mining object-use contrast patterns for fingerprints

This section describes our fingerprint-based activity models. The problem of activity recognition based on object-use can
be formulated as follows. Given an activity trace consisting of a sequence of observations (i.e., object-use) and assume there
are p activities, our objective is to build a model that can assign each observation with the correct activity label and segment
the trace. To obtain a set of fingerprints for each activity class, we first mine a set of object terms for each activity class from
the web. We then mine a set of contrast patterns for each class which will be used as fingerprints for the subsequent rec-
ognition process.
3.1. Mining object terms and relevance weights from the web

In the first step, given a set of activities A ¼ fa1; a2; . . . ; amg, we mine a set of object terms T ¼ ft1; t2; . . . ; tpg involved in
each activity a 2 A, together with their associated weights W from the web. First, we obtain a set of object terms
T ¼ ft1; t2; . . . ; tpg used for defining each activity from a set of instructions on the web. Similar to [12,13], we extract relevant
instructions for an activity on two websites: www.wikihow.com and www.ehow.com. Both websites provide comprehensive
instructions for many day-to-day activities such as make tea, brush teeth and take pills.

Fig. 1 shows a brief description of the processes involved in extracting object terms for an activity. Firstly, a collection of
html documents is transformed into plain text and stemmed using Porter’s stemming algorithm [15]. In stemming, morpho-
logical variants of terms (e.g., singular vs. plural) which have similar semantic interpretations are considered equivalent and
reduced to their stemmed or root forms. Secondly, the number of relevant object terms is further reduced by removing object
terms appearing in the stoplist [15–19] (e.g., verbs, adjectives, pronouns, adverbs, false nouns, etc.). Finally, only object terms
with a mapping in the physical space are retained. The database of these objects can be easily built by extracting information
from a server that stored the entire object IDs.

Next, we identify the relevance weight for each object term. Apparently, there are many object terms appearing in an
activity. By observing that the occurrence frequency of an object in a particular instruction closely parallels the weight of

http://www.wikihow.com
http://www.ehow.com


Fig. 1. Mining object terms from the web.
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the object in real usage, we determine the weight W of each object term t 2 a by computing its term frequency – inverse
document frequency (tf–idf) [20,21], shown as follows:
Table 1
A partia

Mak

Obje

tea
wate
cup
suga
teap
pot
bow
lemo
kettl
micr

Note: A
tf—idf
a
i :¼ jta

i j � log
jDaj

jda
: ta

i 2 daj
ð1Þ
where tf —idf a
i is the tf–idf of ith object term in a; jta

i j is the term frequency of the ith object term in a; jDaj is the total number
of documents in a; jda

: ta
i 2 daj is the number of documents where the ith object term appears ðjta

i j– 0Þ.
Eq. (1) implies that if an object term is too common, it occurs in almost all documents and will have a very low tf–idf

score. The simple factor, log jDj
jd:ti2dj, denotes words if they occur in almost all documents (too general terms) and promotes

words that occur in a limited number of documents (specific terms).
Since weight computation varies significantly from one activity to another because of heterogeneous sources, to establish

a common basis of comparison among relative object term weights in different activities, we define our normalization tech-
nique as follows:
Wa
i :¼ logðtf � idf a

i Þ

max
na

j¼1
log tf � idf a

j

� �n o ð2Þ
where Wa
i is the ith object term’s normalized weight in a; tf —idf a

i is the tf–idf of ith object term in a; na is the total number of
object terms in a.

This normalization ensures that the topmost object term has 1.0 weight and the relative distances of succeeding object
terms based on their weights do not have high variability due to the smoothing effect of the log transformation. Moreover,
this transformation lessens the strong bias in weights of the topmost object terms.

We have mined 45 activity models, and Table 1 lists a partial set of object terms and relevance weights for four activities.

3.2. Mining contrast patterns from object terms

Based on object terms and their relevance weights we mined, we can build a simple model which leverages a set of top n
object terms as fingerprints for each activity. However, in real-life, activities may share common objects. To maximize the
discriminative power of fingerprints for each activity class, we mine a set of contrast patterns from object terms and their
l view of object terms and their relevance weights.

e tea Make coffee Make pasta Fry egg

ct Weight Object Weight Object Weight Object Weight

1.00 coffee 1.00 pasta 1.00 egg 1.00
r 0.85 water 0.86 flour 0.88 pan 0.99

0.83 cup 0.85 pepper 0.85 oil 0.78
r 0.75 pot 0.82 water 0.84 burner 0.76
ot 0.75 grinder 0.80 sauce 0.83 spatula 0.69

0.74 filter 0.79 tomato 0.81 lid 0.66
l 0.72 sugar 0.76 cheese 0.80 water 0.65
n 0.70 coffeemaker 0.73 garlic 0.80 bowl 0.60
e 0.70 creamer 0.72 oil 0.80 butter 0.60
owave 0.67 tablespoon 0.72 pot 0.79 dish 0.60

ll weights are normalized using the log smoothing function.



Table 2
A subset of CPs for the make tea activity.

CPs Support (%) Growth rate

tea, teapot 95.0 1
tea, water, cup 70.6 341.2
water, kettle, pot, cup, 36.5 130.5
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relevance weights for each class, which describe the significant differences of object terms between any two activity classes.
The mining results will be used as fingerprints for activity recognition.

The definition of our contrast pattern is motivated by the concept of emerging pattern which was first introduced in [35].
An emerging pattern is a set of items whose frequency changes significantly from one dataset to another; it describes sig-
nificant changes (differences or trends) between two classes of data. Unlike an emerging pattern where each item has the
same weight, in our context, items have different weights and each item is associated with a weight value (i.e., a probability).
While other forms of contrast pattern exist, e.g., minimal distinguishing subsequence patterns [42], we leverage the basis
form. We define our contrast pattern as follows. Suppose that a dataset D associated with a class C. D consists of many in-
stances, and an instance contains a set of items (i.e., an itemset X), where an item is an attribute-value pair and each item x is
associated with a weight WC

x . We denote the set of all items in D as T.

Definition 1. The support of an itemset X, where X ¼ fx1; x2; . . . ; xmg and X # T , is defined as
suppDðXÞ :¼ countDðXÞ
jDj �WC

X ð3Þ
where countDðXÞ is the number of instances in D containing X, and WC
X is the aggregated weight of X in C, which is defined asQm

x¼1WC
x .

Definition 2. Given two different classes C1 and C2, the growth rate of an itemset X from C1 to C2 is defined as GrowthRate(X)
:¼
0 if supp1ðXÞ ¼ 0 and supp2ðXÞ ¼ 0
1 if supp1ðXÞ ¼ 0 and supp2ðXÞ > 0
supp2ðXÞ
supp1ðXÞ

otherwise

8><
>:
Definition 3. Given a growth rate threshold q > 1, an itemset X is said to be a contrast pattern from a background class C1 to
a target class C2 if GrowthRateðXÞP q.

Definitions 2 and 3 are similar to the definitions in emerging patterns. Contrast patterns are those itemsets with large
growth rates from C1 to C2. A contrast pattern with high support in its target class and low support in the contrasting class
can be seen as a strong signal indicating the class of a test instance containing it.

We then mine contrast patterns for each of our activity classes. For each activity, denoted as ai, we mine a set of contrast
patterns to contrast its instances,Dai

, against all other activity instances D0ai
, where D0ai

¼ D� Dai
and D is the entire dataset

which is the entire object terms mined from the web in our previous step. We refer CPai
as the contrast patterns of ai:.

We develop an algorithm to discover contrast patterns based on an emerging patterns mining algorithm described in [20],
which mines closed patterns and generators simultaneously under one depth-first search scheme. After computation, we get
m sets of CPs, one set per activity class, named fingerprints for this class. Table 2 presents an example of the CPs of the make
tea activity. Column 1 shows the CPs. For example, the CP {tea, teapot} has a support of 95% and a growth rate of 1.

4. Activity recognition and segmentation algorithms

We can now apply fingerprints we obtained to recognize activities.

4.1. Recognizing activities using fingerprints

To recognize activities using fingerprints, given a sequence of observations (i.e., S0�TÞ, we first segment its sequence using a
sliding window (i.e., Lai

Þ to obtain a test instance (i.e., St�tþLai
Þ, and then test this instance against a score function for each pos-

sible activity. The score function basically combines the strength of each CP subset. In such combination, CP subsets are aggre-
gated in a single function to maximize their discriminative power to achieve good performance. The sliding window Lai

is the
average length of all the instances of activity ai. The activity yielding the higher score wins out and its class label will be assigned
to the test instance. The above recognition process will be performed recursively. Since each of these sequence segments cor-
responds to an activity label, for each pair of consecutive sequence segments, we design an algorithm to detect and adjust the
boundary. This algorithm serves as a feedback loop in the recognition process aiming to label sequence segments accurately and
overcome the drawback of a sliding window based our segmentation method. The score function is defined as follows.
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Definition 4. Given a test instance St�tþLai
, the score function f ðai; St�tþLai

Þ for activity ai is defined as
f ðai; St�tþLai
Þ :¼

X
X # St�tþLai

;X2CPai

growth rateðXÞ
growth rateðXÞ þ 1

� suppai
ðXÞ ð4Þ
where suppai
ðXÞ is the support of X in ai, and growth rateðXÞ is suppai

ðXÞ divided by the X’s support in non-ai classes.

Using contrast patterns as fingerprints, we are able to discriminate activities since contrast patterns represent the differ-
ences between activity classes. In real-life, some activities may share similar objects, however, the weight of each object
appeared in each activity will unlikely be the same. Hence, by mining contrast patterns, we are able to obtain different CP
subsets with different supports and growth rates for each of these activities, and aggregate each CP subsets for
classification.

Algorithm 1 describes the steps involved in the activity recognition algorithm.

Algorithm 1. Fingerprint-based activity recognition algorithm
Input: A sequence of objects from
t ¼ 0 � T : O ¼ fo1; o2; o3; . . . ; oTg; Activities:
A ¼ fa1; a2; a3; . . . ; amg; Prediction starts at time t,

Output: the activity label starts from time t
1: foreach activity ai; i ¼ 1;2; . . . ;m do

2: get instance St�tþLai
¼
StþLai

j¼t oj;

3: compute f ðai; St�tþLai
Þ;

4: endfor
5: return ai with the highest f;
4.2. Activity trace segmentation

In Algorithm 1, we use a sliding window to get a test instance for each possible activity. Since the sliding window
length of each activity is an approximation of the actual length, the segmentation may not be accurate. Moreover, any
error in one segment may affect the recognition of the subsequent trace. This error may accumulate and affect the
recognition accuracy seriously. This problem is referred to as the activity boundary detection problem or trace segmen-
tation problem.

To address this problem, we propose two heuristic algorithms leveraging on object relevance weight. We have two obser-
vations. First, an object will have a higher weight value in an activity if it is important to this activity, and the same object
will have a lower weight value in an activity if it has less or no relevance to this activity. Second, the weights of adjacent
objects in the same activity do not vary significantly compared to the weights of two adjacent objects belonging to two dif-
ferent activities.

We first introduce the MaxGap algorithm. To detect the boundary between two adjacent activities, ax and ay, the MaxGap
algorithm computes the difference between the weight of each object in activity ax and its weight in activity ay (RW: Relative
Weight). If the object is more relevant to ax than ay, then RW will be positive while the reverse will be negative. We then
compute the difference of each consecutive RW pairs (gap), and the maximumgap is the boundary for these two activities.
Algorithm 2 outlines the MaxGap algorithm. The input of the algorithm is a sequence of objects and two predicted activities.
The output of the algorithm is the timestamp of an object where we should segment the two activities. The complexity of
MaxGap is linear.

Algorithm 2. The MaxGap algorithm
Input: A sequence of objects from t ¼ 0 � T : O ¼ fo1; o2; o3; . . . ; oTg; Activities: A ¼ fa1; a2; a3; . . . ; amg; Predicted
activities ax and ay.

Output: the boundary between ax and ay.
1: foreach ðx; yÞ 2 ax; ay do
2: for ctr = x to y do
3: RWctr ¼WxðoctrÞ �WyðoctrÞ;
4: for ctr = x to y-1 do
5: GAPctr ¼ RWctr � RWctrþ1;
6: endfor
7: return the boundary GAPctr such that is maximum;



Fig. 2. (a) RFID tags, (b) RFID wristband readers, (c) RFID-tagged objects, and (d) A Linux-based server with a programming interface board and a Mica2Dot
wireless module.
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In cases where the two adjacent activities share common objects, boundary detection will be complicated if the common
objects are located nearby the boundary. This is because their RWs will be close to zero. The MaxGap algorithm may fail to
work in this case. To address this issue, we propose the MaxGain algorithm outlined in Algorithm 3. The input is the same as
that of the MaxGap algorithm.

Algorithm 3. The MaxGain algorithm
1: foreach ðx; yÞ 2 ax; ay do
2: for ctr = x to y do
3: RWctr ¼WxðoctrÞ �WyðoctrÞ;
4: for ctr = x to y do
5: upperSum = 0; lowerSum = 0;
6: for upper = x to ctr do
7: upperSum þ ¼ RWupper;
8: for lower = ctr + 1 to y do
9: lowerSum þ ¼ RWlower;
10: GAINctr ¼ upperSum� lowerSum;
11: endfor
12: return the boundary such that GAINctr is maximum;
We walk-through the MaxGain algorithm using an example shown in Fig. 2. The first column is a segment of objects ex-
tracted from an activity trace. For each possible object xi (a candidate boundary), we compute the upperSum and lowerSum as
shown in column 4 and 5, respectively. The upperSum is the sum of all RWs from coffee to xi, while the lowerSum is the sum of
all RWs from xiþ1 to tea. We then compute the Gain for each candidate boundary, where Gain is defined as:
Gaini ¼ upperSumi � lowerSumi for i 2 fcoffee; salt; . . . ; teag
The result is shown in the last column. The timestamp of the object with the maximum Gain value is the boundary. In the
example shown in Table 3, the creamer object yields the maximum Gain of 5.28 which also indicates the location of the
boundary in the ground truth.

Compared to MaxGap, MaxGain considers the interplay of the group of objects between two adjacent activities, while the
former algorithm only makes use of the relationship between two adjacent objects. Intuitively, MaxGain tends to be more
accurate and noise-tolerant, since it is ‘‘globally optimized”. When calculating the upperSum (or lowerSum) of each candidate
boundary xi, we can simply add (or subtract) the RW of xi�1. Therefore, we conclude the complexity of upperSum (or lower-
Sum) is O(n).

5. Experimental studies

We now move to evaluate our proposed algorithms. We develop a wearable RFID system as shown in Fig. 3. The RFID
wristband reader (Fig. 3b) incorporates a SkyeTek M1-mini RFID reader, a Crossbow Mica2Dot wireless sensor module,
and a rechargeable battery. It is able to detect the presence of a tag within the range of about 7 cm. The design of our RFID
wristband reader is similar to Intel’s iBracelet [4]. RFID tags are attached to day-to-day objects such as cup, teaspoon and
book in a smart home. We have three types of tags (Fig. 3a) and all operate on 13.56 MHz. In the case of metal objects,
e.g., kettle, we tagged on its plastic handle. In the case of liquid objects, e.g., water, we tagged on the faucet with a special
plastic handle to sense the use. Fig. 3c shows a screen shot of tagged objects in the kitchen. When the user handles a tagged
object, the RFID reader scans the tag ID and sends it wirelessly to a server (Fig. 3d) that maps the ID to an object name based
on a pre-defined table. The server runs on a Linux-based laptop PC with a programming interface board and a Mica2Dot



Table 3
A walk-through example for the MaxGain algorithm.

Table 4
Activities performed in our trace collection.

1 make coffee 7 brush teeth 13 clean dining table
2 make tea 8 wash clothes 14 play PC games
3 make pasta 9 make orange juice 15 watch TV
4 make oatmeal 10 watch DVD 16 put on make-up
5 fry eggs 11 take pills 17 use toilet
6 make phone call 12 read books

Fig. 3. Detailed comparison results of our fingerprint-based recognition algorithm and HMM (Numbers in x-axis correspond to Table 3).
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wireless module connected through its serial port. The sever samples tag IDs at a frequency of 1 Hz and records them in a
text file.

We then conduct a real-world trace collect over a period of two weeks in a smart home environment. We had seven vol-
unteers (one female and six males) and each volunteer wore an RFID wristband reader on each of her/his hands. We tagged
132 day-to-day objects. We selected a total number of 17 activities as summarized in Table 4. These activities are commonly
used in other work [2–5,7–14]. Each day, each of them performed these activities in any order they like. Each subject was
requested to perform their activities consecutively in their own ways based on their daily practices. A trace (i.e., a sequence
of tag IDs) was logged each day in a server. There was only one subject performing activities at any given time to reduce
annotation efforts. One of the volunteers annotated the traces to establish the ground truth. All the traces collected were
annotated by hand.
5.1. Comparison results

To evaluate the performance of our activity recognition algorithm, we use the following metrics



Table 5
Comparison result.

Average precision (%) Average recall (%)

Fingerprint-based 91.4 92.8
HMM 93.5 92.5

Table 6
Compar

Max
Max
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precision ¼ TP
TP þ FP

and recall ¼ TP
TP þ FN
where TP (true positive) refers to the number of instances where an activity recognition algorithm correctly identifies an
activity; FP is (false positive) refers to the number of instances where the algorithm spuriously detects an activity that does
not actually occur; and FN is (false negative) denotes the number of times that an activity that actually occurred is not
detected.

We compare our fingerprint-based recognition algorithm with a supervised learning model – HMM, which is commonly
used in activity recognition. HMM is a generative probabilistic model consisting of a hidden variable and an observable var-
iable at each time step. To test the HMM model, we use leave-one-out cross validation. We build a HMM model where activ-
ity labels are represented as hidden states and objects are represented as observations. The model will be trained first, and
then we use the Viberbi algorithm to recover the hidden state sequence for testing.

The overall comparison result of the two models is shown in Table 5 and the detailed result is given in Fig. 3. While the
learned HMM model gets the highest precision, our algorithm achieves a comparable result in terms of precision and recall.
After analysis, two limitations are worth noting. First, when RFID readers failed to report tag IDs or received corrupted tag
IDs, missed detection occurred. This kind of errors is a common problem in sensor-based activity recognition. Efforts to im-
prove the reliability of sensor deployment and acquisition process require further investigation. Second, some cases of false
recognition occurred when the subject touched another objects unintentionally while an activity is being performed or be-
cause of the close proximity to nearby objects. The consequence in this case will cause the objects collected around the
neighborhood of these objects to carry relatively high weights in another activity. Section 5.2 evaluates this case further
and discusses our potential solution.

We now compare the performances of the MaxGap and MaxGain algorithms. The performance comparison is based on the
two metrics, namely: (1) Mean Absolute Error from the true Boundary (MAEB) and (2) Mean Percentage of the true Boun-
daries detected (MPB). MAEB is a continuous value that measures how many objects away is the algorithm’s boundary from
the true boundary. A good algorithm must have MAEB value near zero. MPB, on the other hand, is the ratio between the num-
ber of true boundaries detected by the algorithm and the total number of boundaries. A good algorithm has MPB value near
100%. MAEB and MPB are summarized in as follows:
MAEB ¼
PT

j¼1

PN
i¼1jtrBij � a lg Bijj

N � T
and MPB ¼

PT
j¼1

Dj

Bj
� 100

T

where trB is the true boundary; algB is the algorithm’s boundary; N is the total number of boundaries; T is the number of
traces; Dj is the number of correctly detected boundaries in a trace; Bj is the total number of true boundaries in a trace.

In the evaluation, we did not include detecting boundary in cases where two consecutive activities are of the same type
since it is trivial to detect such boundaries.

Table 6 shows the comparison result. As expected, MaxGain outperforms MaxGap since MaxGain takes the consideration
of Group RW (i.e., RWs of all the objects) in the neighbor of a boundary rather than the RW of two consecutive objects. From
the above result, we observe two limitations. First, by analyzing the ground truth, many cases of false segmentation are
caused by missed detection and false recognition in the activity recognition process as explained previously. However,
the detection of each boundary is done in an independent way that the false segmentation for one boundary does not affect
the segmentation for other boundaries. That is the reason we can still achieve relatively high accuracies in the presences of
missed detection and false recognition during the segmentation process.

5.2. Robustness and scalability

This section evaluates and discusses our concerns in the previous sections. The trace collection in this paper was per-
formed by a number of subjects in a smart home environment. These traces provided a variety of test cases in a close-to-
real-life, noisy environment to validate and evaluate the effectiveness of the proposed algorithms. However, it was done
ison of the segmentation algorithms.

MAEB MPB (%)

Gap 0.6 83.5
Gain 0.2 93.1



Fig. 4. Precision/recall of the recognition algorithms vs. different percentages of additional noise.

Fig. 5. MPBs of both the MaxGap and MaxGain algorithms vs. different percentages of additional noise.
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in a mock-up situation. In real-life situations, we may see increasing sensor noise in the traces we collected. To evaluate the
robustness of both the activity recognition and segmentation algorithms, we conducted a number of simulation studies by
manually adding additional noise to our traces. Noise was randomly selected from the entire tagged IDs. This simulation al-
lows us to test our algorithms in cases of a subject touching other tagged objects unintentionally in the activity being per-
formed or because of the close proximity of nearby objects. We generated a set of traces by adding different percentages of
noise randomly to each trace, and compared our fingerprint-based recognition algorithm with a HMM model. The compar-
ison result is shown in Fig. 4. As expected, both two models experience performance drop; however, both decrease linearly.
The precisions/recalls of our fingerprint-based algorithm and the HMM model decrease by 19.4%/18.8% and 48.5%/54.5%,
respectively, when 40% of additional noise was added. The result also demonstrates the fingerprint-based recognition algo-
rithm is more robust to sensor noise as compared to HMM since Fig. 4 shows that both the precision and recall of a HMM
model decrease rapidly.

Fig. 5 shows the comparison result of the MaxGap and MaxGain algorithms in the presence of additional noise. The MPBs
of MaxGap and MaxGain decrease by 35.5% and 12.1%, respectively, when 40% of additional noise was added. MaxGain out-
performs MaxGap since MaxGain decreases in a much lower gradient as compared to MaxGap. This is probably because
Group RW resists random noise much better than RW.

Supervised learning techniques such as HMM typically require a dataset for the training process in order to build various
activity models. For better scalability, we have to obtain a very large training dataset over a long period of time, resulting in
huge efforts on manual labeling. On the contrary, our fingerprint-based recognition algorithm is unsupervised, and we can
mine a comprehensive, large number of activity models on the web without manual labeling. Hence, our solution can
achieve better scalability than a HMM model.
6. Conclusion

In this paper, we propose to build our activity models based on object-use fingerprints by combining web mining and
data mining techniques. We mine a set of object terms form the web for each activity, and mine a set of contrast patterns
as fingerprints describing significant differences of object terms between any two activity classes. We then propose finger-
print-based algorithm to recognize activities. We also address the trace segmentation problem by proposing the two algo-
rithms, MaxGap and MaxGain, based on the comparison of the relative weights of all objects sandwiched in the two adjacent
activities. We conduct real-world trace collection in a smart home environment. The experimental results demonstrate both
effectiveness and robustness of our algorithms.
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Though RFID has been used in both research and commercially approved contexts, the long-term effects on humans re-
quire thorough investigation and further research towards human-centric RFID [43]. For our future work, we will further
develop our sensor platform to include more sensor features and seek a more nature data collection which should be con-
ducted in a real home under real-life situations. In addition, we will investigate complex issues in recognizing interleaved
and concurrent activities.
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