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ABSTRACT

Smoking behavior detection has attracted much research in-
terest for its significant impact on smokers’ physical and
mental health. Existing research has shown the potential
of using wearable devices for fine-grained smoking puff and
session detection by detecting a smoker’s content of breath-
ing, lighter usage, breathing, and gesture patterns. However,
the existing systems are complex, and they are usually vul-
nerable to confounding activities and diversity of smoking
behavior. To address these limitations, this paper proposes
the design and implementation of a simple and compact s-
mart neckband device for smoking detection. The device is
equipped with both passive and active acoustic sensors to
detect smoking sessions and puffs. We propose a hierarchi-
cal processing framework in which the lower-layer detects
the sub-movements, i.e., lighter usage, hand-to-mouth ges-
ture and deep breathing, from perceived audio data; and
the higher-layer, based on the lower-layerafs detection re-
sults, detects smoking puffs and sessions using temporal se-
quence analysis techniques. Real-world experiments suggest
our system can accurately detect smoking puffs and sessions
with F} score of respectively 93.59% and 92.96% in com-
plex environments with the presence of confounding activi-
ties and diverse ways of smoking.
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1. INTRODUCTION

According to the National Center for Chronic Disease Pre-
vention and Health Promotion (US) Office on Smoking and
Health, cigarette smoking causes more than 480,000 deaths
each year in the United States [7]. This is nearly one in five
deaths. Besides its significant impact on human physical
health, cigarette smoking has also known to be correlated
to the smoker’s mental state. Regular smokers report nega-
tive moods when they have not recently smoked [14]. It has
also been discovered that people with difficulty to regulate
their mood are more vulnerable to drugs like nicotine [8].
As a result, monitoring a smoker’s smoking behavior gives
us an opportunity to understand the smoker’s physical and
mental health. And we can further develop applications that
keep smokers aware of their amount of intake, motivate them
to quit smoking, or detect depression by detecting tobacco
abusement.

In this paper, we focus on the problem of detecting de-
tailed daily smoking behavior using wearable sensors. More
specifically, we aim at detecting not only the number of
cigarettes smoked but also the number of smoking puffs tak-
en during each smoking session. Existing smoking behavior
detection approaches mainly fall into two categories—self-
reporting and automatic detection. The self-reporting ap-
proach asks users to fill in questionnaires regarding their
daily smoking behavior [21]. By relying on human memory,
this approach is not affected by confounding events and be-
havior diversity, and can collect data such as the smoker’s
mental state [8]. However, self-reporting requires extensive
human effort and is potentially unreliable for high-risk popu-
lations [6]. As a result, there is a growing research interest in
automatic smoking behavior detection using wearable sen-
sors. Some work explores lighter usage as a signature for
smoking [20]. However, they rely on a customized lighter
and cannot track the smoking puffs within a smoking ses-
sion. Deep breathing is explored by some researchers as a
key indicator to identify smoking puffs [4, 13]. However,
there are many other activities that involve deep breath-
ing, such as exercising and yawning. Other work explores
the unique gesture patterns of the smoking behavior for fine-
grained smoking detection [19, 16]. However, similar to deep
breathing-based approaches, gesture-based approaches are
also vulnerable to confounding events with similar gestures
like eating and drinking. Some existing medical studies [9,
22] have used specialized devices such as a CO monitor to
record and analyze the smoking topography for smokers un-



der designed experimental settings. However, their approach
is not applicable to unconstrained daily scenarios for requir-
ing specialized medical devices and human participation.

Despite the above efforts, smoking detection in uncon-
strained daily life scenarios remains a challenging issue main-
ly due to the following reasons. 1) System Complexity—
the simple smoking behavior involves a series of movements
including lighting the cigarette, taking the cigarette to the
mouth and puff. Detecting these movements may require
different devices attached to different body parts or object-
s [20, 4, 13, 19, 16], resulting a complex system difficult
to wear and obtrusive; 2) Confounding activities—in an
unconstrained daily life scenario, the smoking behavior is
often similar to other behaviors like drinking, eating, yawn-
ing, etc; 3) Behavior diversity—the smoking behavior can
be carried out in diverse ways: the smoker may hold the
cigarette using the dominant or non-dominant hand; smok-
ing may also be concurrent with other behaviors like talk-
ing, walking, eating, etc. The major limitation of existing
approaches lies in that they require different devices to cap-
ture different movements, and only explore a single aspect
of the smoking behavior—Ilighter usage [20], deep breathing
[4, 13], or gesture [19, 16], which can easily be confused with
other confounding activities and vulnerable to the diversity
of smoking behavior.

In this work, we address the above challenges by propos-
ing a simple and effective solution to the smoking behavior
detection problem. First, to reduce system complexity, we
propose a simple and compact smart neckband hardware
platform equipped with both passive and active acoustic de-
tection devices to capture physical data from smoking be-
haviors. Second, to discriminate smoking against other con-
founding activities, we propose a hierarchical data process-
ing framework that first detects three key smoking-related
sub-movements, i.e., lighter usage, hand-to-mouth gesture,
and deep-breathing. Smoking puff and session detection is
then performed based on the unique patterns of these sub-
movements which are discriminative against other activities.
We adopt Allen’s interval algebra [5] to describe the subtle
temporal structure of these key sub-movements composing
each smoking puff, which has shown to be promising. Based
on the accurate detection of smoking puffs, smoking session
is done by applying temporal clustering over the detected
smoking puffs. Finally, the proposed system handles the di-
versity of smoking behavior by two means: 1) the above hi-
erarchical data processing framework can accurately detect
smoking behavior even with other activities performed con-
currently because it is based on a sophisticated model that
takes multiple smoking-related sub-movements into account;
2) the smart neckband is so designed that it can accurately
capture the smoking-related sub-movements, especially for
the hand-to-mouth gesture, regardless the hand used or the
posture of the smoker.

The proposed system is evaluated through extensive ex-
periments using both short- and long-term data collected
in various environments by several smokers. Experimen-
t results suggest our system can detect smoking puffs and
sessions accurately with Fi score of 93.59% and 92.96%,
respectively, in various environments with the presence of
multiple confounding and concurrent activities.

In general, this paper makes the following contributions:

e We propose a sophisticated hierarchical approach that
detects smoking puffs and sessions based on a subtle
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temporal model of the key sub-movements involved in
smoking behaviors.

o We design and implement a simple and compact smart
neckband equipped with passive and active acoustic
detection abilities that can detect the diverse smoking-
related sub-movements accurately.

e We conduct extensive experiments using data collect-
ed from multiple smokers in unconstrained real-life s-
cenarios.

The rest of the paper is organized as follows. Sec. 2
summaries the related work. Sec. 3 presents an overview of
the system. Detailed system design is presented in Sec. 4.
Sec. 5 introduces the data collection and system evaluation
results. Finally, Sec. 6 concludes the paper.

2. RELATED WORK

Existing medical studies [12, 9, 22] have used specialized
medical devices such as CO monitors such as CReSS Pocket
[1] or Micro+ [3] to record and analyze details of smoking
behaviors. By smoking through a mouthpiece attached to
the device, it records the user’s smoking behavior (including
puffs and timestamps) as well as the CO levels in a single
breath. However, the specialized medical devices are expen-
sive and complex, which are not feasible for unconstrained
daily scenarios.

Detecting smoking-related movements is another possibil-
ity for smoking detection, such as detecting lighter usage,
gesture of smoke and respiration of smoke. UbiLighter [20]
tracks the time-of-day and number of consumed cigarettes
of users using an instrumented rechargeable USB lighter.
Though it is possible to count the number of lighter usage
using UbiLighter, this approach does not provide informa-
tion about detailed smoking puffs and its duration, which is
particularly useful for determining the degree of nicotine in-
take across subjects [9, 10]. In [13], Sazonov et.al. presents a
hand gesture tracking device using a miniature RF transmit-
ter worn on the wrist and an antenna worn on the chest to
detect the hand-to-mouth gesture performed during smok-
ing. However, their system is difficult to wear and can easily
confuse smoking with other gestures like eating and drink-
ing. RisQ [16] proposes to use a wrist-worn inertial sensor to
identify smoking-related gestures. However, their approach
is still vulnerable to confounding events and can only track
the movement of a single hand (dominant or non-dominant)
while the smoker can typically use either hand to hold the
cigarette. mPuff [4] is proposed to perform smoking detec-
tion by measuring smoker’s respiration, and shows that a
SVM classifier can identify smoking episodes on per-subject
basis. Their approach requires the user to wear a respira-
tory inductive plethysmograph chest band which is cumber-
some and uncomfortable. Also, tracking respiration along
can make the system vulnerable to other confounding events
such as taking a deep-breath or yawning. Smokey [24] pro-
vides a device-free smoking detection approach using com-
mercial WiFi infrastructures. However, this approach is in-
frastructure dependent and also suffers from the limitations
of gesture-based smoking detection methods. The proposed
system in this paper differs from the above work in two ma-
jor aspects: 1) the smart neckband we designed is compact
and can reliably detect smoker’s gesture regardless the hand
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Figure 1: System Overview.

used; 2) the hierarchical framework proposed for data pro-
cessing fuses the different smoking-related sub-movements
which forms unique patterns for smoking and is resistant to
confounding events and behaviors.

3. OVERVIEW

We present an overview of the design of the proposed
smoking detection system in this section.

3.1 Design Considerations and Principles

As shown above, the three key sub-movements of smok-
ing behavior—lighter usage, deep breathing, and hand-to-
mouth gesture have been studied separately in previous work
[20, 4, 13, 19, 16] for smoking detection. While each sub-
movement may also be present in other confounding behav-
iors like eating and drinking, the combination of these sub-
movements forms a unique pattern of smoking behavior: the
smoker often uses the lighter to light the cigarette first, then
repetitively feeds the cigarette to the mouth, inhales the
smoke, removes the cigarette, and exhales the smoke until
the cigarette burns out. As a result, our first design princi-
ple is: model the smoking behavior as a temporal sequential
pattern of the subtle sub-movements involving lighter usage,
deep breathing, and hand-to-mouth gesture.

To detect the smoking-related sub-movements, existing
work has used different devices for different sub-movements
including customized lighter [20], chest/wrist bands [4, 16],
etc. However, the extensive use of specialized devices is
complex and difficult to wear. Moreover, due to the fact
that the user may only wear one wrist band on the dom-
inant hand, existing approach cannot capture the diverse
smoking-related gestures which may involve both the dom-
inant and non-dominant hand. As a result, our second de-
sign principle is: design a simple and compact detection
device that can accurately detect the smoking-related sub-
movements performed in diverse ways.

Following the above design principles, we introduce the
overview of our hierarchical smoking detection framework
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in the next section.

3.2 System Overview

To achieve simple and reliable smoking behavior detection
in daily life, the proposed system adopts a single smart neck-
band with passive and active acoustic detection abilities to
detect the sub-movements in the lower-layer. Smoking puff
detection and cigarette counting is then performed in the
higher-layer using temporal logic and clustering techniques,
respectively. Fig. 1 illustrates an overview of the system’s
hierarchical architecture.

A smart neckband is designed and implemented combining
a smartwatch and a bluetooth microphone. It is equipped
with one speaker and two microphones—one facing outside
to collect air conducted audio signal (MIC#1); the other,
augmented with a stethoscope, facing the throat to collect
inner body sound (MIC#2). Detailed hardware design is
presented in Sec. 4.1.

After initiation, the hierarchical smoking detection frame-
work works as follows. First, in the lower-layer, MIC#1
continuously collects environmental sound and the system
performs low-cost lighter usage detection by time-domain
analysis. After detecting a possible lighter usage event, the
system triggers the speaker to play a high frequency tone
and MIC#2 to record the inner body sound. The speak-
er and MIC#1 forms the active acoustic detection system
for the hand-to-mouth gesture based on the Doppler ef-
fect, while MIC#2 detects deep-breathing passively using
frequency-domain analysis. In general, the system’s lower-
layer processes audio data from both microphones to detect
the smoking-related sub-movements. Details of the lower-
layer system design is introduced in Sec. 4.2.

In the higher-layer, the system processes the temporal se-
quence of detected sub-movements and detects smoking puff-
s and smoking sessions. Smoking puff detection is achieved
by checking the sequence of sub-movements using a smoking
puff model built using Allen’s interval algebra [5]. Smoking
session detection is then completed by applying temporal
clustering over the smoking puffs. Sec. 4.3 presents the
details of the higher-layer system.

The system design meets our design principles in the fol-
lowing ways: 1) the smart neckband is simple, compact and
easy to wear; 2) the system is fully automated and does not
require any user participation before, during, or after smok-
ing; 3) the system well adapts to behavior diversity for the
active acoustic detection system can capture the hand-to-
mouth gesture regardless the hand used; 4) the hierarchical
system is reliable against behavior diversity and confounding
events for it fuses different sub-movements that form unique
patterns for the smoking behavior.

4. DETAILED SYSTEM DESIGN

We present the details of the hardware and the hierarchi-
cal system design in this section.

4.1 Hardware Design and Implementation

The hardware is designed to provide a simple and compact
solution to capture essential data for the lower-layer system
to detect smoking-related sub-movements including lighter
usage, deep-breathing, and hand-to-mouth gesture.

Inspired by existing work on non-speech body sounds [18,
23], deep-breathing detection can be achieved by capturing
the breathing sound in the throat by attaching a stethoscope
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Figure 2: Hardware Design and deployment.

augmented microphone to the throat. The hand-to-mouth
gesture performed during smoking involves the hand move-
ment of approaching and departing the mouth to feed the
cigarette to the mouth and take it away after inhaled the
smoke, respectively. Inspired by existing work on acoustic
ranging [17], we design an audio-based active detection sys-
tem composed of a speaker and a microphone facing outside
to detect the hand-to-mouth gesture. Finally, the usage of a
lighter creates a unique sound pattern that can be discrimi-
nated from other events and noise in the environment, based
on which we can perform lighter usage detection.

The above ideas lead to the designment of our smart neck-
band which provides a pure audio-based sensing solution
for smoking-related sub-movements. As shown in Fig. 2,
our smart neckband involves two microphones (MIC#1 and
MIC#2) and a speaker. MIC#1 faces outside and is re-
sponsible of detecting environmental sound, especially for
lighter usage. The speaker, combined with MIC#1, forms
the active acoustic detection system to capture the Doppler
effect caused by the hand approaching and departing the
mouth. Finally, MIC#2, augmented with a stethoscope,
is designed to capture the inner body sound, especially for
deep-breathing detection.

The smart neckband is implemented based on a Cross
Country Smartwatch [2] with a dual-core 1.5GHz CPU, 1G-
B RAM, and the Android 4.2 OS. The built-in speaker and
microphone of the smartwatch are capable of playing and
recording audio signal up to 22kHz, which we use as the s-
peaker and MIC#1 for our system. MIC#2 is implemented
using a stethoscope augmented Bluetooth microphone with
a sampling rate of 8kHz. The audio data of MIC#2 is wire-
lessly streamed to the smartwatch. The smartwatch then
processes the data from both microphones and controls the
speaker following the design of the hierarchical smoking de-
tection framework introduced in the following sections.

4.2 Sub-movement Detection

This section introduces the design of the lower-layer sys-

tem which aims at detecting the smoking-related sub-movements

from audio data.

4.2.1 Lighter Usage Detection

The first step of the system’s lower-layer processing is
lighter usage detection, which is achieved by continuously
monitoring the ambient sound using the microphone fac-
ing outside (MIC#1 in Fig. 2). Because detection is done
continuously, it must be light-weight and real-time. Also,
because it is a trigger for the remaining parts of the sys-
tem, it must be optimized for recall (low missing rate). The
precision, on the other hand, is less important for even if
the system mistakenly regards an irrelevant event as lighter
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usage (false alarm), it can easily be corrected later for not
detecting the subsequent gestures and deep-breathings.

Following the above design trade-off, we propose a very
light-weight rule-based lighter usage detection algorithm based
on time-domain features. By observing the audio signals of
using different lighters (flint or electric ignition lighter), we
discover that they all create sudden fluctuations with large
amplitudes which can be clearly identified. As a result, we
characterize the received audio signal using time-domain fea-
tures only. For the continuous input audio stream, we first
apply a 0.5s non-overlapping sliding window to segment the
stream into frames. Time-domain features including the s-
tandard deviation (STD) and peak value (Peak) are comput-
ed for each frame. Fig. 3 illustrates the instances of lighter
usage in the feature space. Fig. 3 also plots instances of
similar events such as coughing and speaking. This figure
suggests instances of lighter usage form a cluster that can
be discriminated from other similar events.

Based on the above observation, we train a lighter usage
detector by finding a rectangle in the feature space that cov-
ers all lighter usage instances in the training data, as shown
in Fig. 3. When a new frame is received, we simply com-
pare its position in the feature space against the rectangle.
If it falls into the range of the rectangle, a lighter usage
event is detected. Though this simple approach may have a
lower precision, it well meets our design trade-off by being
very light-weight and fast. The computational complexity
for time-domain feature extraction and event detection is
linear to the size of the input frame. We also slightly ex-
pand (times 1.2) the size of the rectangle to guarantee a
high recall.

On detecting the lighter usage event, the system trigger-
s the hand-to-mouth gesture and deep-breathing detection
units introduced next.

4.2.2 Hand-to-mouth Gesture Detection

As introduced above, our system detects the hand-to-
mouth gesture by detecting the Doppler Effect caused by
the hand approaching and departing the mouth when feed-
ing the cigarette to the mouth and taking it away. More
specifically, as shown in Fig. 4, the speaker plays a tone with
fixed frequency f, the microphone facing outside (MIC#1 in
Fig. 2) picks up the audio signal and assume the received
frequency is f’. When the hand is close to the smart neck-
band, part of the emitted audio signal is reflected by the
palm. As a result, the received frequency f’ is affected by
the relative movement between the hand and the device ac-
cording to the Doppler effect as follows.

1.2
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Figure 3: Instances in the feature space.



Smart necklace, 'f |
9

(a) Hand approaching the mouth, f' > f

(b) Hand departing the mouth, f' < f
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Figure 5: Spectrogram of hand approaching and de-
parting the mouth.

F=a+ 2y 1)

where f' and f are respectively the observed and emitted
frequency, c is the velocity of the signal wave traveling in the
media, and Aw is the velocity of the palm moving relatively
to the speaker, with positive/negative values when the palm
is approaching/departing the speaker.

Fig. 5 illustrates the spectrogram of audio signal record-
ed by MIC#1 with a real-world case of hand approach-
ing and departing the mouth when the user wears the s-
mart neckband. In this case, we set the emission frequency
f = 17TkHz. Clear patterns of frequency shift can be ob-
served. Based on the above analysis and observation, it is
straightforward to design the gesture detection algorithm by
comparing the signal’s energy above and below the emission
frequency f. On receiving the raw audio signal, we first
apply a non-overlapping sliding window of 0.1s to segment
the audio stream into frames. We then apply an 8192 point
FFT to get the frequency representation of the frame. The
hand is determined to be approaching/departing the mouth
if the signal’s energy above f is significantly higher/lower
than that below f.

The advantage of this audio-based gesture detection ap-
proach lies in that it captures the essential movement of the
hand-to-mouth movement during smoking and is not sensi-
tive to the hand used. However, since this approach involves
the active emission of an audio signal, collision may take
place when multiple devices are present in the same area
(e.g., when smokers gather together in the same room). We
address the collision problem by two methods: 1) we keep
the volume of the emitted signal low so that it can only be
detected in a closed range; 2) we implement a simple MAC
protocol that each device first sniffers the environment to de-
termine occupied channels before it selects a clear channel
above 16kHz with 500Hz apart from every occupied fre-
quency so that different devices do not interfere with each
other and remain inaudible to people.

4.2.3 Deep-breathing Detection
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Figure 6: Sound captured by the stethoscope aug-
mented microphone for deep-breathing.

Table 1: Frame Level Features Used

Feature Description

Center of mass across frequencies

Degree of signal change between frames
Energy variance across different frequencies
Skewness of spectral distribution

The shape of spectra

Spectral Centroid
Spectral Flux
Spectral Variance
Spectral Skewness
Spectral Slope
MFCC

Sub-band Energy
Zero Crossing Rate  Signal diversity in time-domain

The first 7 Mel Frequency Cepstral Coefficients
Energy of eight different frequency sub-bands

Deep-breathing is detected by capturing the non-speech
body sound using the stethoscope augmented microphone
(MIC#2 in Fig. 2). Deep-breathing is essential for smok-
ing detection because the smoker must inhale and exhale
the smoke so nicotine can be delivered to his/her system
through the lung. Fig. 6 shows a real case of two deep-
breathings apart by a normal breathing and a short speech.
It is clear that deep-breathing can be discriminated from
other body sounds by analyzing the spectrogram. In this
work, we adapt the approach proposed in [18, 23] and per-
form deep-breathing detection as follows.

Frame Level Features. The system segments the raw
audio signal into frames using a 0.1s non-overlapping sliding
window. For each frame, we extract twenty-one frame level
features as shown in Table 1. The Sub-band Energy feature
computes the signal’s energy in different sub-bands with fre-
quency ranges (0, fs/256), (fs/256, fs/128), (fs/128, f./64),
(fs/64, f5/32), (fs/32, fs/16), (fs/16, f5/8), (fs/8, fs/4), and
(fs/4, fs/2), respectively, where f is the sampling rate. De-
tailed explanations are omitted due to page limits, readers
can refer to [18, 23] for more information.

Window Level Features. After extracting the frame
level features for each frame, we further group the latest
frames into a window and compute the window level fea-
tures. For each of the twenty-one frame level features, we
compute its max, min, mean, variance, median, number of
peaks, mean crossing rate, and skewness across the ten frames
within the window. As a result, we obtain a feature vector
that involves 168 features that represents a window, based
on which we perform deep-breathing detection.

Classification. Deep-breathing detection is finally done
by using a SVM classifier that classifies the instance rep-
resented by window level features into three classes—deep-
breathing inhale, deep-breathing exhale, or others.

4.3 Smoking Puff and Session Detection

This section introduces the design of the system’s higher-

layer that processes the temporal sequence of the sub-movements
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for smoking puff and session detection.

4.3.1 Smoking Puff Detection

Triggered by the lighter usage event, the smoking puff
detection unit detects each smoking puff by analyzing the
temporal sequence of smoking-related sub-movements—adeep
breathing (inhale/exhale) and hand-to-mouth gesture (ap-
proach/depart). After closely observing and interviewing
the smokers, we find a smoking puff typically starts with the
hand approaching the mouth to feed the cigarette. After the
smoker has sucked the smoke into the mouth, the cigarette
is removed from the lips by a hand departure gesture while
the smoker takes a deep-breath to inhale the smoke into the
lung. A smoking puff ends with the smoker exhale the smoke
out. Based on the above observation, we model each smok-
ing puff using the above sub-movements by Allen’s interval
algebra[5]. The model is built by a series of rule which we
informally present as follows: 1) hand approaching start-
s puff; 2) hand departure during puff; 3) inhale during
puff; 4) exhale finishes puff.

Smoking puff detection is done by constantly checking the
input sub-movement sequence against the above rules. In or-
der to tolerant possible errors in sub-movement detection, a
puff is successfully detected as long as three out of the above
four rules are met. Also, the duration of one puff is empir-
ically restricted to be within [1.2,5.6] seconds according to
the statistical results from our benchmark data set involving
twenty cigarette sessions collected from three smokers under
various conditions.

4.3.2 Smoking Session Detection

Based on the smoking puff detection results, we discover
cigarette sessions during a period of time by applying tem-
poral clustering [15] over the puffs. Asshown in Fig. 7, given
the series of smoking puffs ordered by time, we cluster the
puffs by their time intervals and find the smoking sessions
by the clustering results. We empirically set the threshold
of time interval to 60s and each smoking session to involve
at least 9 puffs according to the same benchmark data set
introduced above.

5. EXPERIMENTS

We present the experiment results to evaluate the pro-
posed system in this section.

5.1 Data Collection and Methodology

Data collection lasts for 7 weeks and we collected a total
number of 143 cigarette sessions performed by 16 differen-
t subjects. The data collection process is divided into two
stages. In the first stage, we ask the smoker to wear our
smart neckband when smoking. Each record contains data
of one smoking session with possible concurrent activities in
different environments. The concurrent activities mainly in-
clude walking, drinking, eating, coughing, and laughing. Dif-
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ferent environments are classified based on noise level which
include quiet indoor, quiet outdoor, noisy indoor, and noisy
outdoor. A total number of 14 subjects are involved in this
stage and 107 smoking sessions are recorded which last 323.3
minutes. We denote this data set as DATASET#1.

In the second stage, we recruit 2 smokers to wear our
smart neckband during their normal daily life and log their
activities. This record lasts for 1486.5 minutes and contains
36 smoking sessions with other activities performed alone
or during smoking. Besides the concurrent activities listed
above, we also discover four confounding activities to have
similar gesture or audio pattern to smoking including eating,
drinking, coughing and waving hand. We denote this data
set as DATASET#2.

Evaluation is done on these two data sets as follows. We
evaluate the system’s overall performance by combining the
two data sets. The impact of environmental noise on the
system’s performance is evaluated using DATASET#1. We
study the influence of concurrent and confounding activities
using DATASET#1 and DATASET#2, respectively. We al-
so compare the proposed approach against approaches that
use one sensing modality (i.e., gesture or deep-breathing on-
ly) to demonstrate the advantage of our system.

The metrics used for performance evaluation include recall,
precision, and I score which are defined as follows.

True Positive
recall =

True Positive + False Negative

True Positive

precision = — —
True Positive + False Positive

precision - recall
Fiscore =2 -

precision + recall

The Iy score, defined as the harmonic mean of precision and
recall, is used as a unified metric to evaluate the system’s
performance. The smoking puff and session detection in the
system’s higher-layer do not involving model training and is
evaluated directly on the data set. The performance for sub-
movement detection in the system’s lower-layer is obtained
by ten-fold-cross-validation. Detailed evaluation results are
presented in the following sections.

5.2 Overall Performance

This section presents the evaluation result of the system’s
overall performance.

First, we evaluate the performance of smoking puff de-
tection on the combined data set of DATASET#1 and #2.
Smoking puff detection is essential to our system based on
which smoking session detection is done by temporal clus-
tering the puffs. Fig. 8 illustrates the recall, precision



100% ——Recall -m—Precision —a—F1 Score 100% —+—Recall —=—Precision ——F1 Score
(] (]
95% ,% 95%
90% 90%
85% 85%
80% 80%
quietindoor  quiet outdoor  noisy indoor  noisy outdoor quietindoor  quiet outdoor _ noisyindoor  noisy outdoor
Noise Level Noise Level
(a) Smoking puff detection (b) Hand-to-mouth gesture detection
100% ——Recall —=Precision —a—F1 Score 100% ——Recall —=—Precision ——F1 Score
’ ’ e\’“\‘
95% - 90% \\\
90% 80% .\"\.\.
85% 70%
80% 60%
quietindoor  quiet outdoor noisy indoor  noisy outdoor quietindoor  quiet outdoor  noisy indoor  noisy outdoor

Noise Level

(c) Deep-breathing detection

Noise Level
(d) Lighter usage detection

Figure 9: Impact of environmental noise level on smoking puff and sub-movement detection performance.

Table 2: Performance of smoking session detection.

Recall Precision F1 Score
Puff 86.78%% 88.48% 87.62%
Session  91.67% 94.29% 92.96%

and Fi score of detection results for smoking puffs and the
component sub-movements. This result suggests our system
can accurately detect smoking puffs with recall=93.15%,
precision=94.03%, and Fy score=93.59%. The performance
of smoking puff detection is better than deep-breathing and
gesture detection alone because we fuse these two modalities
to detect puffs, demonstrating the advantage of our system
design. For lighter usage detection, we achieve a high recall
of 96.39%, suggesting the light-weight detection algorithm
well achieves our design goal. Overall speaking, the system
achieves high accuracy detection for smoking puffs and sub-
movements with F} score all above 91%.

Second, we evaluate the performance of smoking session
detection based on the smoking puff detection results. We
perform the study on DATASET#2 because DATASET#1
is already known to have one session in each record. Table 2
shows the results. This result suggests based on an accurate
detection of smoking puffs, our system can achieve high ac-
curacy detection of smoking sessions in smokers’ daily lives.
This result also suggests the performance of smoking session
detection is better than the smoking puff detection, this is
because the temporal clustering approach adopted is not
sensitive to occasional mistakes involved in the puff detec-
tion results, as shown in Fig. 7. Due to the fact that smoking
session detection heavily relies on smoking puff detection in
our system, for the following experiments, we mainly focus
on evaluating the performance of smoking puff detection.
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5.3 Impact of Environmental Noises

In this experiment, we evaluate the system’s performance
in different environments classified using the noise level.
There are four types of environments with an increasing
noise level namely the quiet indoor, quiet outdoor, noisy
indoor, and noisy outdoor. DATASET#1 is used for this
experiment for it contains smoking sessions taken place in
known environments. Information about the four environ-
ments is as follows.

The quiet indoor environment is a corridor in the lab
building with occasional noise of people walking and door
opening and closing. The quiet outdoor environment is lo-
cated in a remote stadium on campus with a few students
jogging on the track and the noise from an avenue outside the
campus. We choose a discussion room as the noisy indoor
environment where people discuss, typing on the laptops
computers with the air conditioning on. Finally, the noisy
outdoor environment is selected to be at a bus stop by the
main street with a lot of cars and buses pass and stop and
people talk and laugh while waiting for the buses. From the
above description, it is clear that there is an increasing noise
level among the above four environments. The 107 smoking
sessions involved in DATASET#1 are distributed roughly
equally in different environments to draw a fair comparison.

Fig. 9 summarizes the performance of smoking puff and
sub-movement detection in different environments. First of
all, the system’s performance generally decreases with an
increasing level of noise. For smoking puff detection, the I}
score drops from 96.91% in the quiet indoor environment to
93.51% in the noisy outdoor environment as shown in Fig.
9(a). Similar performance drop can also be observed for
different sub-movements as shown in Fig. 9(b)-(d). For ges-
ture detection, the Fy score drops from 96.23% to 86.83%.
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Figure 10: Smoking puff detection performance with
concurrent activities.

And for deep-breathing detection, the F} score drops from
96.05% to 89.29%. For lighter usage detection, the most
important metric is the recall for being the trigger of the
system’s remaining parts as discussed above. The recall of
lighter usage detection drops from 100% to 92% with noise
level increasing from quiet indoor to noisy outdoor. This
result suggests that, though affected by noise, our system
achieves high detection accuracy for both the smoking puffs
and the sub-movements even in a very noisy environment.

Next, from Fig. 9(b) and (c), it is clear that the recall and
precision are always close for gesture and deep-breathing
detection results in different environments. This result sug-
gests false positive (false alarm) and false negative (miss de-
tection) increase in similar scale with the increasing level of
noise for these two sub-movements. However, by comparing
the results in Fig. 9(a) and Fig. 9(b)-(c), it is clear that the
performance drop in smoking puff detection is much less sig-
nificant than those for gesture and deep-breathing detection.
This is because we detect smoking puffs by matching the
majority of temporal logic rules over the sub-movement se-
quence as introduced in Sec. 4.3. As a result, the increase of
false alarm and miss detection of gesture and deep-breathing
can affect the final puff detection result only if they happen
simultaneously, which is much less likely comparing to puff
detection based on a single modality.

In summary, our system achieves reliable performance in
noisy environments, and by fusing different sensing modali-
ties, achieves better performance for smoking puff detection
than single sub-movements. Smoking session detection re-
sult is not available in this experiment because each record
is known to have only one session in the data set used. How-
ever, according to the high performance of smoking puff de-
tection and the result presented in Table 2, it is reasonable
to expect that we can achieve high smoking session detection
accuracy in different environments.

5.4 Concurrent Activities

Smokers may carry out other activities when smoking,
e.g., waling, drinking, eating, etc. Such concurrent activities
can be observed in both DATASET#1 and #2 for short- and
long-term data collection, respectively. From these data set-
s, we discover five activities that are frequently performed as
concurrent activities to smoking, including walking, drink-
ing, eating, coughing, and laughing. We resample the data
sets to form a new data set that involves 216 smoking ses-
sions with concurrent activities.

Fig. 10 shows the performance (F} score as metric) of
smoking puff detection with concurrent activities and com-
pares the result of using the proposed fusing approach a-
gainst using only one modality (i.e., only deep-breathing or
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Figure 11: Smoking puff detection performance with
confounding activities.

gesture). As shown in the figure, our approach outperforms
other approaches that uses only one modality for smoking
puff detection. Among all the concurrent activities, eat-
ing is shown to have the most significant influence on the
system’s performance. It is because eating has the similar
hand-to-mouth gesture for bringing the food to the mouth
and deep-breathing pattern after swallowing the food. When
the smoker smokes while eating, the proposed system has the
lowest performance with Fy score=90.2%. For smoking puff
detection only relies on gesture or deep-breathing, the I}
score is 82% and 78.79%, respectively.

In summary, with the presence of concurrent activities,
the proposed system achieves a smoking puff detection ac-
curacy of above 90% in Fy score. Compared to approaches
that use only one modality for puff detection, the proposed
system shows an overall improvement of 6.3% in Fy score,
and the largest improvement is 11% in the eating case.

5.5 Confounding Activities

Confounding activities are activities with similar gesture
and breathing patterns that can easily be confused with
smoking. Unlike concurrent activities, confounding activi-
ties do not necessarily happen simultaneously with smoking.
With a high performance lighter usage detection as shown
in Fig. 8 and Fig. 9, confounding activities can largely be
eliminated because lighter usage is unique for smoking than
other activities. However, since the lighter usage detection
unit is optimized for recall and light-weight, the system can
be occasionally triggered by a false positive detection. In
this section, we evaluate the system’s performance with the
presence of confounding activities by assuming the system
is triggered by false positive lighter usage detection results.

We use DATASET#2 that involves data of 2 smokers over
long periods to evaluate the system’s performance with con-
founding activities. After closely observing the data, we list
four activities that frequently occur and similar to smoking,
i.e., eating, drinking, coughing and waving hand. In this data
set, there are a total number of 36 smoking sessions involv-
ing 531 puffs and 152 instances of the above confounding
activities. To study the impact of confounding activities on
the system’s performance, we resample the data set to have
it contains mo, only one confounding activity, to all four
confounding activities.

Fig. 11 illustrates the system’s performance on smoking
puff detection with the presence of different number of con-
founding activities. As shown by the figure, the system’s
performance smoothly decreases with the increasing num-
ber of confounding activities. When there is no confound-
ing activity, the system achieves the highest performance



of Fi score=95.45%. With all four confounding activities
present, the F} score drops to 89.15%. Despite the perfor-
mance drop, the system still maintains high detection accu-
racy with the presence of confounding activities.

Moreover, from Fig. 11, it is clear that the proposed
system outperforms approaches that uses one modality for
smoking puff detection in all cases by at least 3%.

In summary, the multi-modal smoking puff detection ap-
proach proposed in this paper can still accurately discrimi-
nate smoking puffs from other confounding activities. Com-
bining the overall result presented in Table 2, we conclude
that the system can accurately detect smoking puffs and ses-
sions during smokers’ daily lives with the presence of con-
current and confounding activities.

5.6 Computational Overhead and Power Con-
sumption

In this section, we evaluate the overhead of our system
implemented on Android watch and a Bluetooth module.
We analyze data using offline methods, the Android watch
take 2.9J per minute that is around 48 mW. The Bluetooth
module we use the modified Rocketfish Bluetooth headset,
the headset can last over 12 hours when it is recording or
playing music. The Android smart phone is added for solve
the Bluetooth protocol’s problem, in the future, our system
can drop it, so in this paper, we do not care about the over-
head of this phone, besides it cost less than Android watch.
Overall, we can find because we choose lightweight design,
our system has low battery usage, despite power consump-
tion may be different on different Android watches, we argue
that we present a novel and useful wearable device to detect
smoking in daily life, with the improvement of hardware de-
sign, we trust the neckband cost lower energy consumption.

6. CONCLUSION

This paper presents the design and implementation of a
simple and compact smart neckband for smoking behavior
detection. The smart neckband include both the passive and
active acoustic detection system that captures the smoking-
related sub-movements, i.e., lighter usage, hand-to-mouth
gesture, and deep-breathing, as the key indicators of smok-
ing behavior. The hierarchical processing framework involve
two layers. The lower-layer detects lighter usage as the trig-
ger for the system’s remaining parts by a light-weight time-
domain analysis algorithm. The hand-to-mouth gesture de-
tection and deep-breathing detection are also done by the
lower-layer by analyzing the Doppler effect of audio signal
reflected by the palm and pattern recognition techniques,
respectively. Given the sub-movement sequence detected by
the lower-layer, the higher layer first perform smoking puff
detection by checking the sequence against the puff mod-
el described by a series of temporal rules. Smoking session
is then detected by applying temporal clustering over the
smoking puff sequence. Experiment results suggest the pro-
posed system can accurately detect smoking puffs and ses-
sions in real life scenarios. The system has also shown to be
reliable even with a high level of environmental noise and the
presence of multiple concurrent and confounding activities.

For our future work, we plan to first further reduce the
size and cost of our smart neckband by only preserving the
hardware necessary for data transmission and high quality
audio play and record. The data processing will be migrat-
ed to a smartphone which is commonly available. The cur-
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rent Bluetooth-based devices (e.g., headsets) are insufficient
in performing the required duplex high quality audio data
transmission. As a result, a WiFi-based device may be an
option. Next, we plan to design and develop a smartphone
application that will 1) present the smoking detection re-
sults in a user friendly way; and 2) motivate the smokers to
reduce even quit smoking. We also plan to use sequential
data mining technologies to improve the performance of our
system.

Moreover, as a general platform equipped with both pas-
sive and active acoustic devices, the proposed smart neck-
band can be used for many other potential applications be-
sides smoking behavior analysis. First, our platform can
be used to detect various non-speech body sounds [18, 23].
Based on our smart neckband, it is possible to build applica-
tions such as eating and drinking behavior analysis for eat-
ing disorder or calory intake studies. By fusing the breath-
ing data with other inertial sensor readings on the smart
neckband, we can build applications including sport aid and
lung function analysis. Second, by exploring the potential
of the active acoustic system, this platform can be used for
applications such as capturing face-to-face interactions [11],
estimating the distance between different subjects [17], and
recognizing gestures performed in front of the user, etc. We
plan to build other possible applications using our platform
in the future.
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