
An Architecture for Flexible Service Discovery in
OCTOPUS

Tao Gu, H. C. Qian, J. K. Yao, H. K. Pung
Center for Internet Research, Department of Computer Science

National University of Singapore
Singapore

{gutao, qianhc, yaojiank, punghk}@comp.nus.edu.sg

Abstract ─Service discovery has been drawing much attention
from researchers and practitioners. The existing service
discovery systems, like SLP, Jini, UPnP and Salutation, provide
basic infrastructures where services can announce their presence
and users can locate these services across the network. However
there are several key issues which are partially solved or have not
been well addressed - such as scalability, availability, dynamics
and support for multiple matching mechanisms. In this paper, we
propose a design for a Service Locating Manager (SLM) system
which addresses some of these issues. The SLM system adopts a
dynamic hierarchical tree structure and service aggregation for
scalability, availability and dynamics, and introduces multiple
matching mechanisms which contain an attribute-based and a
semantic matching engine. It provides a scalable, distributed,
dynamic and robust solution to establish a flexible service
discovery architecture. We describe our concepts, architecture
and implementation, and present a performance study for our
prototype.

Keywords -Service Discovery; Scalability; Dynamic; Service
Aggregation; Service Matching

1 INTRODUCTION
Today's Internet is going through a major change - from

being a mere repository of information when it first started, to a
vehicle of various services today. Services can be defined as
any devices, or applications with well-known interfaces that
perform computation or actions on behalf of client users. They
can be deployed in various forms and with different levels of
complexities. How to facilitate users in discovering these
services is indeed a challenging task, judging from the diversity
of services and the dynamics of users as well as service
providers.

In recent years, many service discovery architectures
arising from both industrial research such as SLP, Jini, UPnP,
Salutation and UDDI, and academic research such as SDS and
INS. Service Location Protocol (SLP) [1] is a language
independent protocol for automatic resource discovery on
local-area IP network. Services are described in the form of
service:URLs which are composed of a service type and a set
of attribute-value pairs. The SLP does service matching based
on predefined service attributes. Jini [2] is a distributed service
discovery architecture built on top of Java object and RMI [3]
system. A service proxy object is registered with Jini Lookup
Service (LUS) [2]. A client downloads the service proxy and

invokes it to access the service which is identified by means of
Java class hierarchy. Jini employs Java interface matching. As
such, client is solely responsible for knowing the precise name
of the Java class representing the service. The Jini architecture
has the limitation on scalability as it does not provide any
solutions to connect Jini federations which may reside in global
networks. Universal Plug and Play (UPnP) [4] has a Peer-to-
Peer architecture based on TCP/IP networks and is designed to
accommodate home networks or small office networks. It uses
the Simple Service Discovery Protocol (SSDP) for discovery
of services, which can operate with or without a lookup service
in the network. It has a simple XML [5] matching mechanism;
however XML was defined only at syntactic level. Salutation
[6] is an open standard of communication independent service
discovery and session management protocol. The Salutation
architecture defines an entity called the Salutation Lookup
Manager that functions as a service broker for services in the
network. The services are discovered based on a comparison of
the required service types with the service types stored in the
Salutation Lookup Manager directory. Universal Description,
Discovery and Integration (UDDI) [7] is an emerging industry
standard that defines a business oriented discovery mechanism
to a global registry holding XML-based WSDL [8] service
descriptions. It uses SOAP [9] that allows one program to
invoke service interfaces across the Internet in a language
independent and distributed manner. UDDI aims at global
networks, but it is targeted towards web services [10] and has
less dynamic support. Secure Service Discovery Service (SDS)
[11] is a research level service discovery system developed at
University of California, Berkeley. It has a client-repository-
server type architecture and has a XML-based semantic
matching mechanism. Service descriptions and queries are
specified using XML. It has simple semantic matching
capability based on XML. International Naming System (INS)
[12] is a resource discovery and service locating system for
dynamic and mobile networks developed at Massachusetts
Institute of Technology. It uses a simple naming language
based on attributes and values to achieve expressiveness,
integrates name resolution and message forwarding that tracks
change, and uses soft-state name discovery protocols that
enable robust operation. INS has the limitation when it scales
to large numbers of resources spread throughout wide-area
networks. INS/Twine [13] achieves more scalability by
partitioning the name space across resolvers by mapping names
into numeric keys.

2910-7803-7945-4/03/$17.00 (C) 2003 IEEE

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:17:05 UTC from IEEE Xplore. Restrictions apply.

In this paper, we introduce the SLM service discovery
system to enable users to search for and use the services
available in the network more efficiently. It addresses some of
key issues such as scalability, service availability, the dynamic
nature of services joining and leaving, and support for multiple
matching mechanisms which are partially solved or have not
been well addressed in the existing service discovery
infrastructures. It is also an important component in
OCTOPUS [14] project which provides a middleware level
support for collaborative multimedia applications.

The rest of this paper is organized as follows. Section 2
describes our design consideration and the SLM system
architecture; in Section 3 we present our implementation;
followed by performance measurements in Section 4; and
finally, we summarize and conclude in Section 5.

2 DESIGN CONSIDERATION AND SYSTEM ARCHITECTURE
The SLM service discovery system consists of SLM

servers, services and SLM clients as shown in Figure 1. A
SLM server is a service information repository, providing SLM
clients with access to all available services. SLM clients on
behalf of end users can search for services. The system adopts
a distributed hierarchical tree structure to organize SLM
servers which may physically be located in wide-area networks.
Compared to other connection structures such as mesh and
ring, tree has the advantage of minimizing latency and
achieving good scalability. It is also more flexible and
expandable. The underlying network infrastructure of SLM
system is based on TCP/IP network. Communications between
two SLM servers, SLM clients and SLM servers, instances and
SLM servers are based on Java RMI.

The SLM system has the following features: (1) the tree is
structured in such a way that it can be re-configured for
meeting the dynamicity of services and servers; (2) to ensure
service instance is up-to-date, each service instance keeps a
lease with its SLM server, and stale service information is
deleted from its SLM server automatically upon the expiry of
the lease; (3) to ensure service availability, multiple service
instances can register to different SLM servers.

Services are deployed in various forms. A flexible service
discovery system should enable the discovery of all available
services conforming to a particular functionality or set of
attributes. In existing service discovery systems, services are
defined in syntactic level and they leverage on attributed-based
or interface-based matching mechanisms, e.g., predefined
service types and attributes in SLP or Jini's interface which is
also based on attribute-value pairs. We believe that syntactic

level matching is not enough as the same service may be
implemented by different interfaces. With the emergent trend
of the Semantic Web [15], services will be defined in a
semantic manner using semantic markup language –
DAML+OIL [16] which builds on W3C standards such as
RDF and RDF Schema [17]. Semantic matching also plays a
key role in discovering services in a mobile environment due to
the heterogeneity of service interfaces in such a domain.
Therefore there is an increasing need to discover services in a
semantic manner. We incorporate attribute-based and semantic
matching mechanisms in the SLM system and also retain Jini's
interface matching mechanism to provide users a flexible
means to search for services.

2.1 Key Components
In this section, we describe the key components in our SLM

system, focusing on the roles in the system and how they
interact with each other.

A SLM Server consists of Service Locating Manager,
Service Type Manager, Class Hierarchy Manager, Hierarchy
Server Manager, and Server Connection Manager as shown in
Figure 2. Their functionalities are described below.

Server Connection Manager: SLM servers communicate with
each other through their Server Connection Managers. Initially,
a Server Connection Manager uses Jini's multicast and unicast
to locate other SLM servers, and then its Hierarchical Server
Manager decides which SLM server to accept as its child
server. After setting up a parent-child relationship between
these two SLM servers, they can communicate with each other
through RIM. A SLM Client or a service instance also has its
own Server Connection Manager to communicate with the
correspondent SLM server for service request or advertisement.

Service Locating Manager (SLM): SLM consists of a service
information database, a DAML service database and a multiple
service matching engine. It has the functionality of service
information registration and service matching. The Multiple
Service Matching Engine consists of an attribute matching
engine and a semantic matching engine which will be
described in Section 2.4. For attribute-based service
descriptions, service instances are registered to the service
information database and abstracted service type information
will be updated in the Service Type Table. For semantic
service descriptions, DAML services are reasoned and

Figure 1. An overview of the SLM system

Figure 2. Components of a SLM server

292

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:17:05 UTC from IEEE Xplore. Restrictions apply.

registered in the DAML service database and the Class
Hierarchy Table will be updated.

Hierarchy Server Manager: Hierarchy Server Manager is
responsible for server management. Its functionality includes
building and updating the dynamic SLM server tree and
checking server relationship. It creates and maintains the
following information about a SLM server.

• Server Name: It contains the name of a SLM server.

• Server GUID (Global Unique Identifier): It is used to
identify each SLM server. Each SLM server has one
unique GUID.

• Server Level: It designates the level of a SLM server. The
administrator will determine the appropriate level for each
SLM server.

• Parent/Children Servers: It keeps a reference to its parent
server and children servers.

Service Type Manager: This component will be invoked in the
case of attribute-based service descriptions. In each SLM
server, its Service Type Manager maintains a Service Type
Table which keeps abstracts of service information that the
SLM server can support. The abstracted service information is
used for service aggregation. The Service Type Table will be
updated when a new service instance joins a SLM server; the
updating process will be propagated to its parent servers until
reaching the root SLM server. Its Service Type Manager will
also perform the updating process when there is a structural
change to its children servers. The path for updating is always
along its parent server.

Class Hierarchy Manager: This component will be invoked in
the case of DAML service descriptions. In each SLM server, its
Class Hierarchy Manager maintains a Class Hierarchy Table
which keeps a set of hierarchy subclasses through which the
SLM server can provide services. When a new DAML service
ontology is introduced and a new DAML instance joins a SLM
server, the supported subclasses will be updated in the Class
Hierarchy Table. Its parent server also performs the updating
process.

2.2 Dynamic Server Tree
In the SLM system, SLM servers are dynamically

constructed and connected in a hierarchical tree topology. The
relationship between two adjacent SLM servers is either a
parent-to-child or a child-to-parent relation. To join the tree, a
SLM server will first discover other SLM servers using its
Server Connection Manager and select a suitable server as its
parent. Its Hierarchy Server Manager will then setup a parent-
child relationship between these two SLM servers. The two
SLM servers also keep its proxy object of each other for further
communication through RMI. In the child server, the abstracted
service information will be aggregated to its parent server and
the aggregation process will continue upwards. When a SLM
server finds its parent server or its child server has closed the
connection, it should tear down a parent-child relationship
through its Hierarchy Server Manager. If one of its children
servers is leaving, the parent server must update its Service
Type Table and Class Hierarchy Table. If the parent server is

leaving, all its children servers will set their parents as null or
locate another SLM server as their parents. However, the
Service Type Tables and Class Hierarchy Tables of these
children servers remain unchanged.

A service provider can register service instances to any
SLM server. First, it discovers SLM servers using its Service
Connection Manager. The service provider will select a
suitable SLM server to register its service instances. The
selection criteria can be based on server load, geographic
region, administrative domain, and favorite.

2.3 Service Description and Service Aggregation
Services are described in various forms in our SLM system.

A service provider can register a service instance represented
by a service template, a semantic description or a Java/Jini
object.

A service template consists of attribute-value pairs
describing the properties of a service in terms of service type
and associate attributes, including service provider, IP address
and service description. Service providers can add additional
attribute names and values when the need arises. It provides a
high-level description of services, which typically would be
presented to users when browsing a service registry. It will be
used during the attribute matching which will be described in
Section 2.4.

For semantic description, services are represented by
DAML-S [18] Service Profile in terms of their capabilities and
functionalities. DAML-S is a web service ontology based on
DAML+OIL. It defines a set of classes and properties
specifically for the description of web services within
DAML+OIL. A DAML-S Service Profile consists of three
types of information: a human readable description of the
service, a specification of the functionalities that are provided
by the service, and a list of functional attributes which provide
additional information and requirements about the service that
assist when reasoning about several services with similar
capabilities. The functional specification of a service is
represented in terms of inputs, outputs, preconditions and
effects. An example of advertisement is shown in Figure 3. It

Figure 3. Advertisement of a service in DAML-S

293

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:17:05 UTC from IEEE Xplore. Restrictions apply.

shows a MP3 music service returns which music can be
brought to a requester when presented with a music title and a
credit card number.

To locate a service efficiently, it is important to find out a
service path which leads to the destination server where the
service instance is stored. In the SLM system, we introduce a
service aggregation which allows each parent SLM server to
keep summarized service information about its children
servers. Since any parent SLM server knows about service
information stored in all his children SLM servers, a service
path can be found and the destination SLM server can be
located quickly based on the hints provided by the service
aggregation. Further more, the service aggregation can be used
to minimize the cost of information exchange between servers
as we adopt a hierarchical server structure. There are two types
of service aggregation in the SLM system. In the case of
attribute-based service representation, the service aggregation
is achieved by aggregating service information through the
abstraction of service type information. It allows the lower-
tiered SLM servers to keep detailed service information and the
upper-tiered SLM servers to save space by aggregating this
specific information into a more generic type. An example is
shown in Figure 4.

In the case of semantic service representation, a separate
service aggregation is needed as services are defined using
ontologies and object instances. It is achieved by profile-based
class hierarchy. A DAML-S Service Profile is used to
characterize a service for purposes of advertisement and
discovery. We construct a hierarchy of subclasses of the Profile
class to categorize a broad array of services that exists within a
domain. Each subclass inherits the properties from its
superclass. Each SLM server contains a set of class hierarchy
in which it can provide these services; and its parent server
stores the superclass. In this way, DAML service ontologies
and instances can be distributed among SLM servers where a
parent-child relationship exists based on the class hierarchy.
Each SLM server maintains a Class Hierarchy Table indicates
which services the SLM server can support. If there are any
new DAML ontologies and instances registered or there is a
structural change on its children servers, the Class Hierarchy
Table will be updated. An example is shown in Figure 5.

2.4 Multiple Service Matching Engine
In Jini architecture, a service is registered as a Java/Jini

object to LUS. The Jini interface matching engine in LUS
maps interfaces indicating the functionality provided by a
service to sets of objects. In the design of our SLM system, we
retain the interface matching employed by Jini. In addition, we
introduce an attribute matching mechanism when services are
described using service templates, as well as a semantic
matching mechanism when services are described using
DAML-S.

Attribute matching engine: In the attribute matching, both
services and queries are defined using service templates. The
attribute matching mechanism in our SLM system is based on a
frame-based search engine which increases its precision
compared to keyword-based search engines at the cost of
requiring that all services be modeled as frames using
templates. It will match services whose service type and
attribute values equal to those in the query. The results for the
search will be returned to the client in a ranked order if
multiple service instances have been found. The ranking is
determined by the number of matched attributes and the
priority of attributes.

Semantic matching engine: The architecture of the semantic
matching engine is showed in Figure 6. A service provider
registers its DAML service ontologies and instances with any
SLM server. The service ontological information and instances
are presented as inputs to the ontology reasoner. The reasoner
parses each statement in the ontologies and instances; checks
the validity of each statement to ensure they conform to the
ontology. Then the reasoner loads the ontology, the instances
and relationship rules into its Knowledge Base. When a SLM
client makes a query through the application GUI, the query is
converted to a DAML-S description and parsed by the reasoner
for checking of validity. If the checking succeeds, the reasoner
will parse all DAML-S statements to RDF triples [17] and
perform semantic matching. The service information will
return to the client when a match is found.

3 IMPLEMENTATION
We have implemented the SLM system based on Java J2SE

1.3.1. For a rapid prototyping, we make use of Jini's multicast
and unicast mechanism to build up the Server Connection
Manager component, and use Jini's LUS to register SLM
servers. The current version is based on Jini 1.2. A testbed for
performance evaluation has also been built. Although the SLM
system allows servers to be connected in a hierarchical tree, too
many levels in the tree may increase the latency of service
searching. It is recommended to limit the number of levels of
SLM servers. In our experiments, we use three server levels as

Figure 4. Service aggregation by service type

Figure 5. Service aggregation by class hierarchy

Figure 6. The architecture of the semantic matching engine

294

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:17:05 UTC from IEEE Xplore. Restrictions apply.

shown in Figure 7. Each SLM server ran in a 1.6G Intel
Pentium 4 machine with 256M RAM.

A SLM server needs to configure itself before its startup.
The configuration includes specifying server name, server
level, unicast address, and downloading service type
information from the global service type repository and
common ontologies from the global service ontologies
repository. We assume that all the available service types and
common ontologies are stored in the global repository which is
located somewhere in the network. When a new SLM server
wants to join the SLM system, its Server Connection Manager
will use Jini's multicast or unicast or both to locate the Jini
federations. Then the SLM server registers itself to all the LUS
found. It also needs to find other SLM servers to build up a
hierarchical SLM server tree.

We have implemented the attribute matching engine and
the semantic matching engine. For the attribute matching, a
SLM client wishes to search for a service specifies the service
type name and service attributes using a service template. For
the semantic matching, we adopt JTP [19] as our DAML
reasoner as it is an object-oriented modular reasoning system
and it is easy to add-in a user specific reasoning modular. A
query is specified by DAML-S description through the
application GUI and then converted to Knowledge Interchange
Format (KIF) [20] which JTP can recognize. Then its Server
Connection Manager will use Jini's multicast or unicast to
locate the nearby SLM servers and chooses one to process the
user request. If the service type or the service class is supported
by this server, the server will call the attribute matching engine
or the semantic matching engine to process its query and return
the results. Otherwise, the user request will be forwarded to its
parent server and this process will continue until the desirable
service type or service class is identified and the corresponding
destination server is found. Finally, the corresponding SLM
server will return the results to the client.

4 PERFORMANCE
We have tested all the basic functionalities of our SLM

system in the testbed. SLM servers can join and leave the
system dynamically and smoothly. Services can also be added
or deleted to/from any SLM server dynamically. The system
can adapt to changes quickly. In our experiments, we set the
default life time to 10 seconds for multicast and 2 seconds for
unicast. All SLM servers can be discovered within the time
limit. The average latency between parent and children servers
is around 1.2 ms.

4.1 System Performance
We measured the attribute searching performance in two

experiments. In Experiment 1, we created 400 service instances

in each SLM server. A SLM client on a separate machine made
10,000 requests continuously to Server D as indicated in Figure
7. For every 1000 requests, we measured the average runtime
taken by our SLM system. We found the average runtime for
each search request is around 250 ms. Figure 8 shows the
average runtime as a function of number of search requests for
server with 400 service instances. The average runtime for
attribute searching is nearly proportional to the number of
requests. The attribute matching mechanism performs well as
the number of client requests increases. It also demonstrates the
SLM system is reasonably scalable with respect to the number
of users.

In Experiment 2, a SLM client on a separate machine made
10,000 requests continuously to Server D. We tested the
attribute matching performance for different numbers of
service instances running in each SLM server. Each time, a
SLM server stored different number of service instances
starting from 100 instances to 600 instances. We measured the
average runtime of each search request for different number of
instances as shown in Figure 9.

The runtime for attribute matching is also nearly
proportional to number of service instances. When the SLM
servers store more service instances, the attribute matching
performance will gradually decrease. This can be explained
below.

In our current implementation, all service instances are
stored in memory of SLM server machines, which are running
JVM (Java Virtual Machine). When number of service
instances increases, the required memory also increases. The
operating system is increasingly spending more time in
memory swapping, which deteriorates performance. Adding
more memory on the SLM server machines will help to
improve the performance. In the future, we plan to store service

Figure 7. SLM server levels in our testbed 0

500
1000

1500
2000

2500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Queries

A
ve

ra
ge

 R
un

tim
e

(s
)

400 service instances in each SLM servers

Figure 8. Average runtime for 400 service instances in each SLM
servers

0
0.1
0.2
0.3
0.4
0.5

0 100 200 300 400 500 600 700

Number of serv ice instances

A
ve

ra
ge

 R
un

tim
e

(s
)

Figure 9. Average runtime of each search request for different
number of service instances

295

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:17:05 UTC from IEEE Xplore. Restrictions apply.

instances into database that can deal with large volume of data
and hopefully this can better the searching performance. We
also plan to simulate our SLM system in wide-area networks to
further test the scalability by using network simulation tools.

4.2 Performance of The Multiple Matching Engine
In Experiment 3, we measured and compared the

performance of attribute matching, Java interface matching and
semantic matching engines. We created 400 service instances
using service templates, DAML-S descriptions and Jini
interfaces separately. A SLM client on a separate machine
made multiple concurrent queries to the SLM server, and we
measured the average runtime of one query for the three
matching engines. For each matching engine, the
measurements were repeated for 10 times and the average
results were collected.

As shown in Figure 10, among the three matching engines,
the attribute matching and the Java interface matching
performs better than the semantic matching. They have a
similar trend that is the average runtime for one query increases
proportionally to the number of concurrent queries. By further
studying the factors affecting the average runtime of a search
request for the semantic matching engine, we found the
reasoning process has consumed a significant time in the
overall matching process. It is the major factor which caused
the performance difference compared with the other two
engines.

We also find that the runtime for RMI operation is another
important factor in terms of overall performance. As Java RMI
is used in our system as a basic communication mechanism
between a client and a server, hence, enhancing Java RMI
operation will significantly improve the performance of all the
three matching engines.

5 CONCLUSION
We have proposed and implemented a prototype of a

service discovery system known as SLM. Tests and
performance measurements indicate our SLM system is
functional, and seems capable of providing an improved and
flexible service discovery for networked services. The SLM
system automatically adapts its behavior to handle dynamic
changes of both SLM servers and services, hiding the
complexities of internal mechanisms from users and service

providers. Our SLM system is scalable (linearly) and dynamic
as it adopts the dynamic tree structure, and is flexible as it has
multiple service matching mechanisms. The idea of service
aggregation is embedded in our SLM system, which is used for
a faster searching and minimizing communication between
SLM servers.

REFERENCES
[1] E. Guttman, C. Perkins, J. Veizades, and M. Day, "Service Location

Protocol, Version 2", IETF RFC 2608, June 1999.
[2] Jim Waldo, Ken Arnold, "The Jini Specification Second Edition",

Addison-Wesley, 2nd edition, December, 2000.
[3] "Java Remote Method Invocation - Distributed Computing for Java",

http://java.sun.com/marketing/collateral/javarmi.html
[4] UPnP White Paper, http://upnp.org/resources.htm/, June 2000.
[5] Extensible Markup Language, World Wide Web Consortium (W3C),

http://www.w3c.org/XML/.
[6] The Salutation Consortium, "Salutation Architecture Specification (part

1), version 2.1 edition", http://www.salutation.org, 1999.
[7] Thomas A. Bellwood, "UDDI - A Foundation for Web Services",

Proceedings of XML Conference & Exposition. Orlando, Florida,
December, 2001.

[8] Web Services Description Language (WSDL), W3C,
http://www.w3c.org/TR/wsdl12.

[9] Simple Object Access Protocol (SOAP), W3C,
http://www.w3.org/TR/SOAP

[10] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy,
Nirmal Mukhi, Sanjiva Weerawarana, "Unraveling the Web Services
Web: An Introduction to SOAP, WSDL, and UDDI", IEEE Internet
Computing, March 2002.

[11] Steven E. Czerwinski, Ben Y. Zhao, Todd Hodes, Anthony D. Joseph,
Randy Katz, "An Architecture for a Secure Service Discovery Service",
Proceedings of the fifth Annual International Conference on Mobile
Computing and Networks, Seattle, WA, August 1999.

[12] Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., Lilley, J., "The
design and implementation of an intentional naming system",
Proceedings of ACM Symposium on Operating Systems Principles.
(1999) 186–201.

[13] M. Balazinska, H. Balakrishnan, and D. Karger., "INS/Twine: A
scalable peer-to-peer architecture for intentional resource discovery", In
Proceedings of the First International Conference on Pervasive
Computing, pages 195–210, Zurich, Switzerland, August 2002.

[14] Cai Hong Zhang, Hung Keng Pung, Sae-Whong Suthon, "OCTOPUS: A
Middleware for Multimedia Communication", Proceedings of the sixth
IASTED International Conference Internet and Multimedia Systems and
Applications (IMSA 2002), Kauai, Hawaii, USA, August, 2002.

[15] Tim Berners-Lee, James Hendler, Ora Lassila, "The Semantic Web",
Scientific American, May 2001.

[16] Ian Horrocks, "DAML+OIL: a reason-able web ontology language",
Proceedings of the Conference on Extending Database Technology
(EDBT 2002), March 2002.

[17] Resource Description Framework, World Wide Web Consortium,
http://www.w3c.org/rdf.

[18] Ankolenkar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, D.
McDermott, S. A. McIlraith, S. Narayanan, M. Paolucci, T. R. Payne
and K. Sycara, "DAML-S: Web Service Description for the Semantic
Web", Proceedings of the First International Semantic Web Conference
(ISWC), 2002.

[19] Fikes, R., Jenkins, J., & Frank, G., "JTP: A System Architecture and
Component Library for Hybrid Reasoning", Proceedings of the Seventh
World Multiconference on Systemics, Cybemetics and Informatics,
Orlando, Florida, USA, July 2003.

[20] Genesereth, M. R. & Fikes, R. E., "Knowledge Interchange Format,
Version 3.0 Reference Manual", Technical report, Knowledge Systems
Laboratory, Stanford University, June 1992.

0
200
400
600
800

1000
1200
1400

0 10 20 30 40 50 60 70 80 90 100 110

Number of concurrent queries

Av
er

ag
e

R
un

tim
e

fo
r

O
n e

 Q
u e

ry
 (m

s)
attribute matching Java interface matching
semantic matching

Figure 10. Comparison of multiple matching performance

296

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:17:05 UTC from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

