
An Analytical Model for Coding-Based
Reprogramming Protocols in Lossy

Wireless Sensor Networks
Jun-Wei Li, Shi-Ning Li,Member, IEEE, Yu Zhang,Member, IEEE, Tao Gu, Senior Member, IEEE,

Yee Wei Law, Zhe Yang,Member, IEEE, Xingshe Zhou,Member, IEEE, and

Marimuthu Palaniswami, Fellow, IEEE

Abstract—Multi-hop over-the-air reprogramming is essential for remote installation of software patches and upgrades in wireless

sensor networks (WSNs). Several recent coding-based reprogramming protocols have been proposed to enable efficient code

dissemination in high packet loss environments. An accurate and formal analysis of the performance of these protocols, however, has

not been studied sufficiently in the literature. In this paper, we present a novel high-fidelity analytical model based on the shortest path

algorithm to measure the completion time by incorporating overhearing and packet coding. This model can be applied to any

coding-based reprogramming protocol by substituting the coding part with protocol specific operations. We conduct extensive testbed

experiments to evaluate the performance of our proposed model. Based on the analytical and numerical experiments, we find that

1) overhearing causes significant reduction of the completion time in dense wireless sensor networks, particularly, it reduces 50-70

percent of the total completion time when the packet reception rate is 0.896; 2) coding delay plays a key role in the total completion time

compared to the communication delay when the packet coding parameters are selected appropriately, for example, the communication

delay is about 65 percent of the coding delay when the number of packets per page is 16 for the finite field size 28; 3) the total

completion time can be minimized when the number of packets per page is close to 24 and the finite field size is close to 24.

Index Terms—Reprogramming, code dissemination, network coding, analytical model, lossy wireless sensor networks

Ç

1 INTRODUCTION

WIRELESS sensor networks (WSNs) have been widely
used to perceive and interact with the physical world

for different purposes such as weather monitoring [1], forest
surveillance [2], and healthcare assistance [3]. As applica-
tion requirements evolve, the software on sensor nodes
often needs to be updated for new versions or patched for
bugs. Physical access to these nodes is usually restricted,
and post-deployment or manually updating sensor nodes is
prohibitively very costly. In this case, multi-hop over-the-
air reprogramming presents an ideal solution.

Traditional reprogramming protocols–with Deluge [4]
being the benchmark–suffer from steep performance degra-
dation when the packet loss rate is high, as a result of
interference, jamming, or natural environmental factors.
Recently, the network coding-based protocols have been

introduced to improve the resilience of reprogramming pro-
tocols to packet loss, i.e., when packet loss is substantial, the
coding-based reprogramming protocols require signifi-
cantly less time and energy to complete compared to the tra-
ditional reprogramming protocols. For example, when 20
percent of packets are lost, the coding-based protocol such
as Rateless Deluge [5] requires about 76.4 percent of the
time to complete reprogramming in a multi-hop linear net-
work which consists of 16 sensor nodes [6]. The time cost of
Rateless Deluge will be reduced further when the packet
loss rate is higher than 20 percent.

Existing coding-based reprogramming protocols have
demonstrated the efficiency of code dissemination through
simulation or testbed, however simulations are neither accu-
rate enough nor efficient while testbeds suffer from scalabil-
ity issues. Compared to simulation and testbed, an analytical
model is more rigorous and it has many benefits [7]. In addi-
tion, an analytical model is important because 1) it provides
an economical alternative to labor-intensive simulations and
field experiments for performance quantification; 2) it sheds
valuable insights into the “mechanics” of these protocols,
providing essential clues for improving their performance.

Such an analytical model aiming to accurately analyzing
the performance of existing coding-based reprogramming
protocols, however, has not been explored sufficiently in
the literature. Previous models still have the following limi-
tations: 1) their model ignores overhearing and thus pro-
vides no insight into the influence of overhearing on the
total completion time; 2) their model ignores encoding delay
which is neither realistic nor accurate as data packets are

� J.-W. Li, S.-N. Li, Y. Zhang, Z. Yang, and X. Zhou are with the School of
Computer Science, Northwestern Polytechnical University, Shaanxi,
China.
E-mail: {ljw, lishining, zhangyu, zyang, zhouxs}@mail.nwpu.edu.cn.

� T. Gu is with the School of Computer Science and IT, RMIT University,
Melbourne, VIC 3000, Australia. E-mail: tao.gu@rmit.edu.au.

� Y.W. Law is with the School of Engineering, the University of South
Australia, Adelaide, SA 5001, Australia. E-mail: YeeWei.Law@unisa.edu.au.

� M. Palaniswami is with the Department of Electrical and Electronic
Engineering, the University of Melbourne, Parkville, VIC 3010, Australia.
E-mail: palani@unimelb.edu.au.

Manuscript received 1 Jan. 2016; revised 24 Mar. 2016; accepted 17 Apr.
2016. Date of publication 28 Apr. 2016; date of current version 19 Dec. 2016.
Recommended for acceptance by W. Wang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2016.2560805

24 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 1, JANUARY 2017

0018-9340� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:27:53 UTC from IEEE Xplore. Restrictions apply.

usually encoded before transmission; 3) their model sets a
fixed value for decoding delay. As a result, their model
does not allow adjustment of packet coding parameters to
optimize the encoding/decoding process, or reaching a
trade-off between coding delay and communication delay
to minimize total completion time. In comparison, existing
studies [4], [8] on overhearing show that a node receives
3.35 times the number of data packets on average due to
overhearing in a linear network. Our early experimental
studies on Rateless Deluge (i.e., a coding-based protocol)
also reveal similar findings in dense grid networks.

In this paper, we present a novel high-fidelity analytical
model based on the shortest path algorithm to measure the
completion time by incorporating overhearing and packet
coding. Our model is able to quantify the effect of overhear-
ing on the completion time in dense networks and optimize
the completion time through analyzing packet coding
parameters. The proposed model can be applied to general
networks by using the shortest path algorithm, and can also
be applied to any coding-based reprogramming protocol as
we build it in the way that the coding part can be substi-
tuted. For example, we can replace the coding part with pro-
tocol specific operations, such as encoding and decoding in
Rateless Deluge, SYNAPSE++ [8], and ReXOR [9], which
makes our model flexible and extensible. In addition, the
model is also compatible with the traditional reprogram-
ming protocols when the coding part in our model is
removed. We conduct comprehensive testbed experiments
and the results show that the performance predicted by our
model fits well with the testbed results. Compared to exist-
ing analytical approaches, our model is much more accurate
because we find that overhearing causes significant reduc-
tion of the completion time in dense networks. In particular,
it reduces 50-70 percent of the total completion time when
the packet reception rate (PRR) is 0.896, validating our
experimental studies. Hence, we characterize overhearing
in our model to accurately reflect the actual process. Based
on the analytical and numerical experiments, we also find
that coding delay plays a key role in the total completion
time compared to the communication delay when packet
coding parameters (e.g., the finite field size and encoding
coefficient) are appropriately selected. For example, the
communication delay is about 65 percent of the coding
delay when the number of packets per page is 16 for
the finite field size 28. Moreover, the total completion time
could be minimized when the number of packets per

page is close to 24 and the finite field size is close to 24.
These advantages will be lost if encoding delay is ignored
or the decoding delay is set as a fixed value, especially in
SYNAPSE++ where the degree distribution in packet coding
must be carefully optimized [10]. Our model scales well as
compared to existing analysis models, and the results of our
analytical model match that of simulations with a very low
prediction error (i.e., less than 8 percent).

This paper extends our preliminary work which appears
in [11] in the following aspects: 1) we improve the existing
algorithm for the multi-hop model; 2) we make our model
extensible to any coding-based reprogramming protocol;
3) we discuss and characterize the overhearing between
upstream and downstream nodes; 4) we conduct extensive
testbed experiments to evaluate our model and analyze the

coding delay to select appropriate packet coding parameters
based on Rateless Deluge, a representative coding-based
reprogramming protocol.

In summary, the papermakes the following contributions:

� To the best of our knowledge, this appears to be the
first comprehensive analytical model for coding-
based reprogramming protocols in lossy wireless
sensor networks. It is flexible and extensible in the
way that it can be used as a theoretical model to ana-
lyze and quantify the performance of any existing
coding-based reprogramming protocol. The results
from our extensive testbeds are in good agreement
with the performance predicted by our model.

� We characterize overhearing in our model to reflect
the real behaviors of coding-based reprogramming
protocols in dense networks, which is more realistic
and accurate. The observation from our experiments
shows that overhearing in dense networks reduces
50-70 percent of the total completion time.

� We also incorporate and analyze packet coding in
our model which is typically ignored in existing pro-
tocols. We optimize the coding process by selecting
appropriate packet coding parameters, and analyze
its consequence by comparing it to the communica-
tion delay. The analytical results show that the com-
munication delay is about 65 percent of the coding
delay when the number of packets per page is 16 for
the finite field size 28, and the minimal total comple-
tion time can be achieved when the number of pack-
ets per page is close to 24 and the finite field size is

close to 24.
The remainder of this paper is organized as follows.

Section 2 describes the background in code dissemination.
Section 3 gives the problem statement, notations and an
overview of our model. Section 4 presents the details of our
analytical model. Section 5 reports the results from our eval-
uation. Section 6 discusses the related work. Section 7 con-
cludes the paper.

2 BACKGROUND

In code dissemination, a code image (a.k.a. firmware) is
divided into equal-sized pages, these pages are dissemi-
nated page by page from the base station to all other sensor
nodes. The three-way handshaking process (ADV-REQ-
DATA) is used for transmitting each page, as shown in
Fig. 1 (main steps are marked).

In Fig. 1, when possessing a code image, the sender S1

first broadcasts an advertisement message (ADV) that
includes the current version number of the code image, the

Fig. 1. Overview of coding-based reprogramming, main steps are
marked bold italic.

LI ET AL.: AN ANALYTICAL MODEL FOR CODING-BASED REPROGRAMMING PROTOCOLS IN LOSSY WIRELESS SENSOR NETWORKS 25

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:27:53 UTC from IEEE Xplore. Restrictions apply.

number of pages contained in the image, and the number of
new pages. Its neighbor nodes R1 and R2 receive the mes-
sage and compare the advertised page number with their
existing page number, and R1 sends a request packet (REQ)
to S1 and starts page reception if a new page is available,
otherwise R1 has to wait for another ADV. Any ADV con-
taining the old code image from R1 and R2 will be sup-
pressed. If R1 has not exceeded the limit of � request
packets, it sends the REQ, or it must wait for another ADV
before making additional requests. In the page reception
phase, R1 prepares to receive all the packets in this page, in
traditional reprogramming protocols, S1 starts broadcasting
data packets (DATA) to R1 upon request. However, in cod-
ing-based reprogramming protocols, S1 loads the request-
ing page from the flash at first upon request and generates
each encoded data packet from the page (this is known as
packet coding), then S1 starts broadcasting each encoded
data packet (DATA) to R1 until all the packets are gener-
ated. R2 may overhear some encoded data packets although
it has not sent any request before. S1 may broadcast another
ADV for the next page if all the encoded packets of the cur-
rent page are generated. R1 tries to decode the received
encoded packets. If the original packets cannot be success-
fully decoded, it has to receive more encoded packets, oth-
erwise it will broadcast an ADV containing information for
this decoded page. The packet coding and overhearing are
important to coding-based reprogramming, we therefore
describe them in details in the following sections.

2.1 Packet Coding

Packet coding, which consists of encoding and decoding, is
used during the packet transmission phase to overcome
packet loss. Fig. 2 demonstrates the coding details when six
encoded packets are generated from all the four original
packets in one page.

Encoded packets are generated from all the original
packets in a page before transmission. The number of
encoded packets is usually greater than the number of
original packets for the purpose of resisting packet loss in
highly lossy wireless environments. In Rateless Deluge,
each encoded packet is linearly computed from all the origi-
nal packets in a page and the coefficients are generated

randomly from the finite field GF ð28Þ. Each encoded packet
is then transmitted to receivers.

When a sufficient amount of encoded packets are
received at any receiver, Gaussian elimination is applied to
resolve the matrix of received coefficients, if the rank of the
matrix is greater than or equal to the number of original
packets, the original packets can be decoded.

2.2 Overhearing

After the sender receives any request message in a page
from its downstream nodes, it broadcasts all the encoded
packets in that page. All its neighbors can then receive and
store these packets although it is not the node sent the
request before.

As illustrated in Fig. 3, when one of the overhearing
nodes needs to send a request for page 1 afterwards, it will
send the request for the rest two packets of page 1 as two
packets have been overheard already. If one neighbor has
overheard all the four packets in page 1, its request message
for page 1 will be suppressed and the total completion time
can be reduced accordingly.

3 OVERVIEW

In this section, we give an overview of our proposed analyt-
ical model. We formulate the problem of determining the
completion time of code dissemination as follows. Among
N sensor nodes fS1; S2; . . . ; SNg in a network, S1 is desig-
nated as the base station that disseminates a code image to
all other sensor nodes. A code image C is divided into P
equal-sized pages fC1; C2; . . . ; CPg. Let us denote the com-
pletion time for sending page Cp from node Si to node Sj by
T ðp; i; jÞ, where p 2 ½1; P � and i; j 2 ½1; N�. Then, the total
completion time of code dissemination is maxj T ðP; 1; jÞ.
When the number of overheard pages Poh > 0, the total
completion time becomes maxj T ðP � Poh; 1; jÞ and it will
be reduced. Table 1 defines all the symbols used.

In general, T ðp; i; jÞ depends on:
1) the propagation path l from Si to Sj;
2) the duration of single-hop operations for all the sen-

sor nodes along propagation path l.
Therefore, the completion time of Cp on each sensor

node along the propagation path has to be determined.

Fig. 2. Packet coding. (a) S encodes the first packet e1 from a page and
broadcasts it, R receives it; (b) S encodes the second packet e2 and
broadcasts it, R receives it; (c) S encodes the last packet e6 and broad-
casts it, R loses it; (d) R receives five packets and tests if decoding of
the original four packets is OK.

Fig. 3. Overhearing in packet transmission. (a) S broadcasts ADV for
page 1, Ra sends REQ for all the four packets; (b) Ra receives two of all
packets in page 1, Rb overhears two packets; (c) Rb sends REQ for the
rest two packets from S; (d) Rb receives the rest two packets.

26 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 1, JANUARY 2017

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:27:53 UTC from IEEE Xplore. Restrictions apply.

Furthermore, the time cost of all protocol behaviors such as
packet coding and page pipelining has to be determined.

Our analytical model consists of two main components:
multi-hop propagations and single-hop operations. The “multi-
hop propagations” component captures the dynamics of a
code image being disseminated across a network, and takes
an input from the “single-hop operations” component. The
“single-hop operations” component captures the complex-
ity of meta-data negotiation and packet coding, and takes
input from the physical layer model, which encapsulates
physical parameters such as packet reception rate, receiver
signal strength indicator (RSSI), or link quality indicator
(LQI). These physical parameters can be obtained from
experiments or simulations, as shown in Section 5.2.

4 ANALYTICAL APPROACH

In this section, we present the multi-hop propagations compo-
nent, followed by the single-hop operations component.

4.1 Modeling Multi-Hop Propagations

The completion time T ðp; 1; jÞ of any page Cp from S1 to Sj

depends on the propagation path l from S1 to Sj. We apply
Dijkstra’s shortest path algorithm to determine the propaga-
tion path as noted in [12], [13]. Compared to the conference
version [11], our model is extensible to capture different
sender selections in protocols similar to MNP [14] and ECD
[15] when generating the propagation path, as such path is
composed of sender nodes selected across the network. This
extension depends on definition of weight in the shortest
path algorithm. For example, we could define weight as
maximum number of requests from receivers in MNP [14],
while in ECD [15], we define weight as the largest sum of
outbound link qualities. In implementation, maximum
number of requests could be replaced with largest link qual-
ities of feedback channels because link quality of feedback
channel influences the number of requests successfully sent
from each receiver. The default weight is set as link quality
between any two nodes to capture sender selections for pro-
tocols similar to Deluge, including Rateless Deluge, SYN-
APSE++, ReXOR, AdapCode and Splash.

Suppose the path l from S1 to Sj consists of L nodes, and
we label the nodes as Slð1Þ; Slð2Þ; . . . ; SlðkÞ; . . . ; SlðLÞ; lðkÞ 2 ½1;
N �; k 2 ½1; L�. To determine T ðp; 1; lðkÞÞ, we first observe that

T ðp; 1; lðkÞÞ � T ðp; 1; lðk� 1ÞÞ þ T ðp; lðk� 1Þ; lðkÞÞ; (1)

where T ðp; lðk� 1Þ; lðkÞÞ represents the duration of single-
hop operations, including sending Cp from Slðk�1Þ to SlðkÞ,
p � 1; k � 2. The equality in (1) is due to the fact that page
Cp is propagated from node Slðk�1Þ to node SlðkÞ, whereas the

inequality in (1) is due to the fact that not all the packets in
page Cp arrive through the shortest path. Next, we consider
page pipelining (a.k.a. spatial multiplexing [4]), which is the
concurrent transmission of different pages by different
nodes. The nodes must be at least three hops apart to avoid
collisions. In an ideal scenario of page pipelining, when node
Slðkþ3Þ finishes receiving page Cp�1, node SlðkÞ also finishes

receiving pageCp. In other words, for p � 2, we have

T ðp; 1; lðkÞÞ � T ðp� 1; 1; lðminðkþ 3; LÞÞÞ: (2)

To approximate T ðp; 1; lðkÞÞ by its lower bound, we com-
bine (1) and (2), i.e., for k � 2, we have

T ðp; 1; lðkÞÞ � max
�
T ðp; 1; lðk� 1ÞÞ þ T ðp; lðk� 1Þ; lðkÞÞ;
T ðp� 1; 1; lðminðkþ 3; LÞÞÞ�:

(3)

The maximum completion time maxj T ðP; 1; jÞ from all
the shortest paths is calculated recursively according to (3),
with the initial condition T ðp; 1; lð1ÞÞ ¼ 0. Fig. 4 shows the
algorithm to calculate T ðp; 1; jÞ according to (1), (2), and (3).
In Fig. 4, the matrix weight½N�½N� contains values represent-
ing link quality of physical channel calculated between
any two nodes for N nodes, the link gain of the link layer
model in TOSSIM is used in simulations and PRR is used in
testbeds; the array weight½N �½N � appears as the input of
Dijkstra’s shortest path algorithm, the array SP ½j� represents
the propagation path l, and it is generated by this algorithm,
SP ½j� contains nodes from the base station to node Sj; jSP ½j�j
represents L, is the number of nodes in path l.

4.2 Modeling Single-Hop Operations

We split the computation of expected duration for single-
hop operations into two phases: communication and cod-
ing, i.e., EðT ðp; lðk� 1Þ; lðkÞÞÞ ¼ EðTcommÞ þ EðTcodingÞ. The
communication phase is carried out for meta-data negotia-
tion. The meta-data negotiation mechanism proposed by
SPIN [16] and used in Deluge and its derivatives (e.g., Rate-
less Deluge), enables the epidemic-like propagation of a
code image from the base station to all other sensor nodes.
Therefore, from a receiver’s perspective, EðTcommÞ includes
the delay for the reception of advertisement packets, the
transmission of request packets, and the reception of data
packets. In another word,

EðTcommÞ ¼ EðTadvÞ þEðTreqÞ þEðTdataÞ: (4)

The expected time of advertisement reception can be esti-
mated as

EðTadvÞ ¼ EðNpktÞ � EðriÞ � ð1þ EðNsuppÞÞ; (5)

where EðNpktÞ ¼ 1
PRR is the expected number of transmis-

sions for one packet, at a packet reception rate of PRR. The
measurements of PRR and its correlation properties will be
discussed in Section 5.2. EðriÞ specifies the expected wait
time between advertisement messages. EðNsuppÞ specifies

TABLE 1
List of Frequently Used Symbols

Symbol Definition

N total number of nodes
P number of pages divided from code image C
c page size (in bytes)
f number of packets per page
� encoding coefficient
q exponent of finite field size in GF ð2qÞ
foh the number of overheard packets per page
Poh the number of overheard pages
L number of nodes along propagation path l
Tmodel the completion time calculated by model
Ttestbed the completion time calculated by testbed

LI ET AL.: AN ANALYTICAL MODEL FOR CODING-BASED REPROGRAMMING PROTOCOLS IN LOSSY WIRELESS SENSOR NETWORKS 27

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:27:53 UTC from IEEE Xplore. Restrictions apply.

the number of times that an advertisement is suppressed by
the previous node on the propagation path before transmis-
sion. We set EðNsuppÞ ¼ 1 as in Deluge.

The expected time of a request transmission can be esti-
mated as

EðTreqÞ ¼ EðNpktÞ � EðNrepsÞ � t
2
þ EðTbackÞ; (6)

where EðNpktÞ is the same as in (5). EðNrepsÞ specifies the
expected number of request packets needed to receive one
page. t

2 specifies the expected duration of random back-off

before a request transmission.EðTbackÞ specifies the expected
time for additional advertisements and is defined as

EðTbackÞ ¼ EðNpktÞ � EðNrepsÞ
�

� 1

� �
� EðTadvÞ; (7)

where � is the number of requests, more than which the
node has to wait for another advertisement before making
additional requests.

The expected time of data reception is estimated as

EðTdataÞ ¼ EðNpktÞ � ðf� EðfohÞÞ � EðTpktÞ � EðNmacÞ; (8)

where EðNpktÞ is the same as in (5). EðfohÞ represents the
expected number of overheard packets per page. When foh

equals the total number of packets per page f, the current
page transmission is totally reduced and the number of
overheard pages Poh in multi-hop propagations increases
by 1. EðfohÞ and EðPohÞ are examined in Section 5.2. EðTpktÞ
specifies the transmission time for one packet. EðNmacÞ cap-
tures the expected time of the MAC-layer delay due to con-
tention, and we set EðNmacÞ ¼ 1.

For the coding phase, we consider only the most time-con-
suming operations: encoding and decoding, i.e., EðTcodingÞ ¼
EðTencÞ þ EðTdecÞ. As different coding-based reprogramming
protocols use different packet coding schemes, we quantify
EðTencÞ andEðTdecÞ in the following sections.

4.3 Estimating Coding Delay

Instead of calculating the coding delay and set a constant
value in the existing model, we incorporate flexible packet
coding parameters in the analytical model. In Rateless
Deluge, random linear code is used for encoding and
decoding data packets. To send a page consisting of f pack-
ets X1; . . . ; Xf, the packets are encoded as �f packets
Y1; . . . ; Y�f; � ¼ 1:5 according to (9):

b1;1 � � � b1;f

b2;1 � � � b2;f

..

. . .
. ..

.

b�f;1 � � � b�f;f

2
6664

3
7775

X1;j

X2;j

..

.

Xf;j

2
6664

3
7775 ¼

Y1;j

Y2;j

..

.

Y�f;j

2
6664

3
7775; (9)

where Xi;j denotes the jth byte of Xi, and b’s are pseudo
random numbers. By populating the matrix on the left hand
side with pseudo random numbers, the matrix is rendered
almost surely non-singular. Decoding Y1; . . . ; Y�f to X1; . . . ;
Xf is by means of Gaussian elimination.

A page can be pre-coded in anticipation of future
requests to reduce the dissemination delay. The expected
time of encoding, taking pre-coding into account, is thus

EðTencÞ ¼ �f � EðrÞ � EðTepktÞ; (10)

where EðrÞ specifies the ratio which the time overhead can
be reduced due to pre-coding, which is constrained by
RAM size, page size c ¼ 21f (i.e., the payload of one packet
in Rateless Deluge has 21 bytes), and delay before pre-cod-
ing. EðrÞ is derived from an experiment in Rateless Deluge.
�f specifies the expected number of packets to be encoded
in Rateless Deluge. A packet is encoded byte by byte,
and each byte needs ð5q AND þ 2qXOR þ 4q SHIFT þ
4q CMP Þ operations estimated. The expected time to encode
a packet is thus

EðTepktÞ ¼ qc

bqþ7
8 c � ð5 � tA þ 2 � tX þ 4 � tSH þ 4 � tCÞ; (11)

Fig. 4. Algorithm to calculate T ðp; 1; jÞ.

28 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 1, JANUARY 2017

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:27:53 UTC from IEEE Xplore. Restrictions apply.

where the finite field size is by default 2q ¼ 28 in Rateless
Deluge. tA, tX, tSH , and tC are the time for byte-wise AND,
XOR, SHIFT, and CMP operations, respectively.

The decoding procedure in Rateless Deluge consists of
Gaussian elimination. The expected time of decoding is

EðTdecÞ ¼ EðNdecÞ � EðTgeÞ; (12)

where EðNdecÞ ¼ 1
1�Prðdec:failÞ specifies the expected number

of times of decoding, under a decoding failing probability
of Prðdec:failÞ, depending on number of packets per page f
and the finite field size 2q. EðTgeÞ specifies the expected
duration of Gaussian elimination, and it is estimated as

EðTgeÞ ¼ f2 þ 3f� 1

3
� Tepkt þ 4cð2f2 þ 3f� 5Þ

3
� tS; (13)

where Tepkt is as defined in (11), and tS is the time for byte-
wise SUB operation.

4.4 Extension to SYNAPSE++

By substituting the coding phase and protocol-specific oper-
ations, we can extend our analytical model to other coding-
based reprogramming protocols.

In SYNAPSE++, the code image is subdivided into P
pages (or packets) with c bytes each. The encoding process
depends on the degree distribution rðdÞ and a degree dn is set
for the encoding process. Each encoded packet is generated
by randomly and uniformly picking dn packets from the
original P packets and is the bitwise, modulo 2 sum of these
dn packets. The encoding time can be estimated as

EðTencÞ ¼ c � EðNencÞ � ðEðdÞ � 1Þ � tX; (14)

where EðNencÞ specifies the expected number of encoded
packets generated and is constrained by the overhead set
for the degree distribution. EðdÞ is the expected number of
packets to pick for all encoded packets. tX here is the time
for byte-wise XOR operation and can be replaced by a 16-bit
word-wise operation for any target platform used micro-
controller TI MSP430.

In the decoding procedure, the decoding time can be esti-
mated similar to 12.

4.5 Extension to ReXOR

Unlike Rateless Deluge, SYNAPSE++ and other coding-
based reprogramming protocols, ReXOR encodes only lost
packets in the retransmission phase. As in Deluge, ReXOR
transmits original packets in the first phase. If some packets
are lost at the receivers, the request messages will be sent
back and the sender will broadcast extra encoded packets in
the following retransmission phases. In each retransmission
phase, the sender needs to wait for request vectors from the
receivers at first and then execute the sequential coloring
algorithm to determine which original packets should be
XOR-ed together to generate each encoded packet. When all
XOR encodings finish, the encoded packets will be broad-
cast. Extra retransmission phases will be required if some
packets are still lost after previous retransmission phase(s).
Thus, the encoding time of ReXOR is estimated as

EðTencÞ ¼ m � ðEðTwaitÞ þ EðTclrÞ þ ðEðflÞ � 1Þ � tXÞ; (15)

where m is the expected number of retransmission phases.
EðTwaitÞ denotes the expected interpage waiting time for
collecting request vectors and its relationship with average
neighbors avgnb determined in ReXOR. EðTclrÞ specifies the
expected time of executing the coloring algorithm and its
calculation depends on the number of request vectors and
PRR. The results of Tclr under some workloads are shown in
ReXOR. EðflÞ is the expected number of lost packets
within one page and can be defined as f � ð1� PRRÞ. tX is
defined in (11).

When any receiver receives the encoded packets, it
retrieves the lost packets by XOR-ing each encoded packet
with those original packets which are used in the sender to
generate this encoded packet. Then the decoding time can
be estimated as

EðTdecÞ ¼ ðf� EðflÞÞ � tX: (16)

4.6 Extension to Splash

In Splash, the whole dissemination is composed of tree
pipelining and local recovery phase. For the expected time
of tree pipelining EðTtpÞ, as no coding and message negotia-
tion is needed, we model time of single-hop operations as
EðT ðp; lðk� 1Þ; lðkÞÞÞ ¼ EðTcommÞ and have

EðTcommÞ ¼ EðTsyncÞ þEðTchCycÞ þ EðTdataÞ; (17)

where Tsync and TchCyc represent the synchronization over-
head and channel diversity overhead, respectively. EðTtpÞ
can be calculated as in Fig. 4.

To calculate the expected time of local recovery phase,
we notice that CSMA is used in local recovery phase. We
have to find out the packet loss distribution from the empir-
ical traces to calculate packet reception rate. With the packet
reception rate, the expected recovery time for each node can
be estimated and the expected time of local recovery phase
can then be modeled as the maximum expected recovery
time. The packet loss distribution can be easily derived
from the model in [17]. Therefore, the expected recovery
time for node i (1 � i � N) can be estimated by packet
transmissions as

EðT i
lrÞ ¼

fi
lost

PRRi
lr

� ðEðTpktÞ þ EðTtvÞÞ �EðTtvÞ; (18)

where fi
lost is the number of lost packets after tree pipelin-

ing. PRRi
lr is the packet reception rate calculated from

packet loss distribution. Tpkt and Ttv represent time of
packet transmission and time interval between packet trans-
mission, respectively. As a result, the expected time of local

recovery phase is EðTlrÞ ¼ max1�i�NEðT i
lrÞ.

4.7 Extension to Adaptive-Coding-Based Protocols

AdapCode [18], which exploits adaptive codes, is also sup-
ported by our model. Each sent packet is encoded from
fadap original packets, where fadap ¼ fðNnbÞ is a mapping

function of the number of neighbors, Nnb, of the sender (the
mapping is shown in Table 3 of AdapCode). To transmit

one page, f
fadap

encoded packets are generated. Therefore,

we have the encoding delay EðTencÞ ¼ f
fadap

� EðTepktÞ, where

Tepkt is time to generate one encoded packet. For decoding,

LI ET AL.: AN ANALYTICAL MODEL FOR CODING-BASED REPROGRAMMING PROTOCOLS IN LOSSY WIRELESS SENSOR NETWORKS 29

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:27:53 UTC from IEEE Xplore. Restrictions apply.

Gaussian elimination is used, so we have the expected
decoding delay EðTdecÞ ¼ EðTgeÞ, where Tge is the time of
Gaussian elimination, and is a function of fadap.

5 EVALUATIONS

We now move to evaluate our analytical model by comput-
ing the completion time of coding-based reprogramming
process. We use existing coding-based reprogramming pro-
tocol such as Rateless Deluge (an extension of Deluge T2) as
a benchmark. Testbed experiments are conducted for com-
parison in different network topologies under different
node spacing and image size. We introduce the prediction
error errtestbed; model to describe the consistency between ana-
lytical results of our model and experimental results, it is
calculated as

errtestbed; model ¼ jTtestbed � Tmodelj
Ttestbed

; (19)

where Ttestbed and Tmodel denote the completion time calcu-
lated by testbed experiments and the analytical model,
respectively. Besides, we examine the computation com-
plexity and scalability of our model.

Furthermore, we will evaluate the analysis of packet cod-
ing (consisting of encoding and decoding) through our
model. Packet coding parameters can be analyzed to com-
pare coding delay and communication delay, and should be
carefully chosen to reduce the total completion time. Over-
hearing, and its impact on the completion time in dense net-
works will be evaluated in our testbed experiments.

5.1 Experiment Setup

Before presenting our experimental results, we describe
testbeds we built to setup parameters and evaluate our
model. We deploy two testbeds (i.e., 4� 4 grid and 9� 2 lin-
ear) using MICAz and TelosB. Table 2 lists all the four set-
ups used in our experiments. (M1), (M2), and (T1) are three
setups of the grid testbed, Tea is the setup of the linear
testbed. (M1) is used for dense networks, (M2), (T1), and
Tea are for sparse networks. (M1) and (M2) are composed of
MICAz nodes, (T1) and Tea are composed of TelosB nodes.
Fig. 5 presents Tea which is mounted on the ceiling of the
main hallway in our laboratory at our school and one 4�
grid setup (T1). We deploy Tea along the hallway with two
lines where nodes on each line are 8:0 m apart and nodes at
the same position of each line are 1:5 m apart, similar to the
setup in Indriya [19]. To collect sensor data, every four nodes
in the grid setups are connected to a 4-port USB hub and all
the USB hubs are plugged into a laptop computer for further
data analysis. In Tea, the top-level hub is deployed in the cen-
ter of the line and connected to the laptop, all the hubs and

nodes form a 5-tier topology. In all the experiments, the base
station node is located at one corner. Tea shares the same ceil-
ing with many 802.11 access points, and the same hallway
with heavy student/mobile phone traffic.

As the RF output power of CC2420 (radio chip used in
both MICAz and TelosB) is controlled by a register
TXCTRL:PA LEVEL, we conduct experiments to select an
appropriate output power (in dBm) to set up the sparse and
dense networks. We set PA LEVEL ¼ 2 for (M1), (M2) and
(T1) and set PA LEVEL ¼ 3 for Tea. Channel 13 is selected
for all the testbeds. RSSI is measured by running RssiDemo
(appeared in TinyOS 2.x tutorials directory). For (M1), (M2)
and (T1), RssiDemo runs on the nearest pairwise nodes. For
Tea, RssiDemo runs on pairwise nodes with an inter-node
spacing of 1:5m and pairwise nodes with 8:0m. Each RSSI
value in Table 2 is the sum of RssiDemo reading and RSSI
offset (�45 dBm for CC2420).

The usage of our analytical model necessitates the empir-
ical determination of several key parameters. The purpose
of testbed experiments is hence twofold: 1) determine or
“set up” these parameters; 2) evaluate the analytical model.
In Section 5.2, we describe model parameters, specifically
PRR and its relation to number of requests messages. In the
remaining of this section, we report the results from a series
of experiments.

5.2 Parameter Settings

Experiments are conducted to setup parameter settings
for our model, same settings could be concluded in sim-
ulations. We set the expected random back-off time
EðtÞ ¼ 0:144 s and set � ¼ 2 such that a node makes a maxi-
mum of two requests after an advertisement (see (7)).
Through experimental results, we are able to determine the
following parameter values.

� The expected wait time between advertisement mes-
sages, EðriÞ ¼ 0:8 s;

� The expected transmission time for one packet,
EðTpktÞ ¼ 0:00862 s.

For MICAz and TelosB nodes used in the testbed experi-
ments, we need to determine additional Tpkt as follows.

Tpkt ¼ 50 bytes=pkt

250 kbps
þ 5:12ms ¼ 0:00672 s (20)

where each active message has 50 bytes (in CC2420.h) and
5:12ms is the maximum initial backoff time from CSMA
implementation of the CC2420 radio driver in TinyOS 2.x
(in CC2420CsmaP.nc).

The values of EðNrepsÞ, EðfohÞ, and EðPohÞ depend on
PRR. We determine PRR in both testbeds and simulations

TABLE 2
All Setups of Two Testbeds Used in Experiments

Setup RSSI (dBm) Platform Topology Density

(M1) �82	�87 MICAz 4� 4 Dense
(M2) �84	�90 MICAz 4� 4 Sparse
(T1) �79	�91 TelosB 4� 4 Sparse
Tea �65	�67, �84	�93 TelosB 9� 2 Sparse

Fig. 5. The linear testbed Tea and grid setup (T1).

30 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 1, JANUARY 2017

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:27:53 UTC from IEEE Xplore. Restrictions apply.

because our model can be extended and evaluated in
both situations.

For simulations, we use the discrete-event simulator
TOSSIM to measure PRR. In TOSSIM, the log-normal shad-
owing channel model [17] is used to model radio connectiv-
ity between nodes. Given a reference distance D0 (in
meters), and the corresponding path loss PLD0

(in dB), the

link quality between nodes can be calculated, given the
path loss exponent, shadowing deviation, and noise floor
(in dBm). Sensor node MICAz is simulated in TOSSIM. Sim-
ulations are conducted by running the CountRadio applica-
tion from TinyOS 2.x on two nodes that are separated from
each other with variable node spacing and path loss expo-
nent. We program each node to send 1,000 packets to and
receive from the other node, and count the number of
received packets. The PRR is estimated as follows:

PRR ¼
PD

i¼1 Vi

Ds
; (21)

where D specifies the number of experiments conducted,
s ¼ 1;000 describes the number of packets sent, and Vi

specifies the number of packets received successfully in the
ith experiment.

Fig. 6 plots the results of PRR determined in TOSSIM
with variable path loss exponent and node spacing, PRR
drops when the path loss exponent increases. When the
node spacing approaches reference distance D0 (= 1.0 m),
the results are unusable due to the limitation of the radio
model. Table 3 presents PRR measurements in simulations
when a path loss exponent is 4:0.

In testbeds, PRR cannot be calculated like in TOSSIM as
any local PRR value does not represent PRR for the entire
network due to dynamic behaviors in real-world

environments. Three steps are needed to determine PRR in
the testbeds. First, we need to identify one-physical-hop
(1ph) neighbors for each node. Second, we calculate accumu-
lated average pairwise PRR between each node and its every
neighbor as accumulated 1ph PRR for each node. Third, PRR
is the average value of accumulated 1ph PRR of all nodes.

Fig. 7 plots the results of pairwise packet receptions mea-
sured from (M1) when 200 packets are sent from each node.
In (M1), every node has good links with its 1ph neighbors,
the code image will spread fast in the network and the over-
all PRR is high. In Tea, many bad links exist for its neigh-
bors, dissemination in the whole network is slow due to
unbalanced links and the overall PRR is low. Table 4 shows
the results of PRR and its median values (for reference) cal-
culated from testbeds. This method avoids inaccuracy to
some extent when link hole exists in the networks where
most of the links have high pairwise PRR when using the
weighted average PRR reported in [7].

Average number of request packetsEðNrepsÞ can be deter-
mined after PRR. Fig. 8 shows the relation between EðNrepsÞ
and PRR. In Fig. 8, EðNrepsÞ increases as PRR decreases,
when PRR is high (over 80 percent), most of the nodes send
no requests as data packets are overheard in advance.
EðNrepsÞ drops slowly when PRR is small (less than 80 per-
cent), but drops sharplywhen PRR is over 80 percent.

The number of overheard packets per page foh depends
on estimated PRR in any neighborhood area. Fig. 9 plots the
relation between foh and PRR. The increment of number of
overheard packets when PRR is high is slower than that
when PRR is low. This is true because good link quality con-
tributes to such increment while further increment is con-
strained by density for high link quality. At last, the
expected number of overheard pages EðPohÞ is calculated as

EðPohÞ ¼ foh
f
P .

Fig. 6. PRR versus path loss exponent.

TABLE 3
PRR Measurements in Simulations

spacing (m) PRR spacing (m) PRR

1.5 0.9405 2.0 0.9380
2.5 0.9050 3.0 0.7959
3.5 0.7796 4.0 0.6711
4.5 0.6402 5.0 0.6075
5.5 0.5858 6.0 0.5597

Fig. 7. Pairwise packet receptions in (M1).

TABLE 4
PRR Measurements in Testbeds

Setup PRR PRR (med) Setup PRR PRR (med)

(M1) 0.8960 0.8995 (T1) 0.5593 0.6043
(M2) 0.5246 0.5510 Tea 0.6495 0.6433

LI ET AL.: AN ANALYTICAL MODEL FOR CODING-BASED REPROGRAMMING PROTOCOLS IN LOSSY WIRELESS SENSOR NETWORKS 31

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:27:53 UTC from IEEE Xplore. Restrictions apply.

5.3 Results on Node Spacing and Image Size

An analytical model should be general and accurate in
many scenarios. First, we test our model in both linear and
grid networks. For example, (M1) and (T1) are grid net-
works while Tea is a linear network. Second, different
node spacing is set. Third, we prepare three code images
Blink, Oscilloscope, and GoldenImage. These code images
are generated from TinyOS 2.x, each has 16, 82, and 193
pages, respectively. The packet coding parameters in our
model are set as in Rateless Deluge. We conduct testbed
experiments in above aspects to demonstrate that the ana-
lytical model is accurate to predict the completion time in
real-world deployments. The comparison results are
shown in Table 5.

As shown in Table 5, the prediction errors in these
testbed setups are 3.116, 5.161, 5.106, 0.433, and 5.402
percent, respectively. The results show that the comple-
tion time increases more slowly compared with the
increase of image size in the same setup (M1). The pre-
diction errors errtestbed; model between experimental results
and analytical results are small and below 6 percent in
all testbeds, thus validating accuracy of our model. As
(M1), (T1), and Tea have different node spacing, the com-
pletion time calculated by analytical model matches that
by each testbed experiment. Although Tea is deployed in
the hallway and may interfere with 802.11 and when
people walk around, the analytical results match experi-
mental results in the completion time with low predic-
tion error. Furthermore, we also compare our model with
a secure version of Rateless Deluge called Sreluge [20] in
the absence of attacks, and the results are similar to Rate-
less Deluge.

5.4 Results on Scalability

Before presenting evaluation results, we present the compu-
tational complexity of the analytical model. The computa-
tional complexity has two parts, as shown in Fig. 4. One
part is the calculation of shortest paths, OðjEj þN logNÞ.
The other part is the calculation of dissemination delay in
these paths, OðPNLÞ, which can be reduced to OðPNÞ by
optimization in Fig. 4. As a result, the computational com-
plexity of the analytical model is

OðPNÞ þOðjEj þN logNÞ; (22)

where jEj represents number of connected links in the net-
work. P;N are defined in Table 1.

We implement our model in C on a HP EliteBook 8440p
laptop to examine the computational complexity for differ-
ent scales. The laptop has a quad-core 2:27 GHz CPU with
8 GB RAM and runs Linux. We first use TOSSIM to generate
different grid network topologies, then we compile and run
our model on them to disseminate Blink, the analytical
results are shown in Table 6. Table 6 shows that, for a
30� 30 grid network, the analytical model finishes in less
than 2 seconds. The runtime in a 30� 30 grid network is
about 14 times of that in a 5� 5 grid network.

We also record the runtime of our analytical model in
testbed setups (M1) and (M2) with different binary image
size, all time recordings are less than 0.1 s and can be
ignored compared with the results presented in Table 5
which is actually the average of several runs. Furthermore,
we use TOSSIM on above topologies to examine whether
the analytical model can scale well. As TOSSIM cannot cap-
ture computation time on real motes since it does not simu-
late the execution of mote instructions, it is not a fair

Fig. 8. Number of requests versus PRR.
Fig. 9. Number of overheard packets per page versus PRR.

TABLE 5
Completion Time versus Image Size: Testbed Results

Setup Application image size (bytes) number of pages Ttestbed (s) Tmodel (s) errtestbed; model (%)

(M1) Blink 2,102 16 41.067 39.826 3.116
(M1) Oscilloscope 12,340 82 209.870 199.570 5.161
(M1) GoldenImage 31,346 193 492.150 468.240 5.106
(T1) Blink 2,102 22 1,182.000 1,176.900 0.433
Tea Blink 2,102 22 172.710 182.041 5.402

32 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 1, JANUARY 2017

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:27:53 UTC from IEEE Xplore. Restrictions apply.

comparison for coding-based protocols. However, testbeds
suffer from scalability or availability issues. Our model has
been validated in testbed experiments and is able to calcu-
late computation time separately, we could use this part of
computation time from our model to compensate simula-
tions. The comparison results are shown in Fig. 10, predic-
tion errors (similar to Equ. (19)) between our model and
simulations are presented.

In Fig. 10, we conclude that the prediction error is below
8:0 percent when the network size increases from 25 to 100
and increases slower than the network size, thus proving
that our model scales well in these topologies.

5.5 Results on Packet Coding Parameters

Different from the existing model with constant coding
delay [7], the packet coding parameters in our model can be
changed. We evaluate how packet coding parameters (e.g.,
the finite field size 2q of GF ð2qÞ and the number of packets
per page f) affect the completion time of coding-based
reprogramming protocols. In our model, packet coding is
analyzed and we are able to compare coding delay and
communication delay to select appropriate packet coding
parameters to reduce the total completion time. We use
the Blink application, and choose q 2 ½2; 16�, and f 2 f8;
16; 24; 32; 40; 48g. We note that when q equals 16, decoding
needs 65 KB memory space to store inverses, this require-
ment exceeds the RAM size of most sensor node platforms
(e.g., TelosB has 10 KB RAM) [5]. We calculate the comple-
tion time for both cases when coding is accounted for and
when it is not, the results are shown in Fig. 11.

Case when coding is accounted for. When the number of
packets per page f is fixed, the completion time increases
with q, because the encoding complexity is positively corre-
lated with q. When the finite field size 2q is fixed, the

completion time increases with f but experiences a tempo-
rary decline of 8 � f � 16. This observation is contrary to
the incorrect intuition that the completion time increases
continuously with f (more packets to encode/decode) for a
fixed q.

Case when coding is not accounted for. For a fixed finite
field size 2q, the completion time declines as f increases.
This is because when the number of requests is reduced,
the time wasted in waiting for and receiving advertise-
ments is also reduced.

Furthermore, when f ¼ 24 and q � 4, the coding delay
exceeds that of communication. Additionally, when
f ¼ 16, either a decrease or an increase in f will cause a
significant increase in the completion time. When f � 32,
a decrease in q is accompanied with a significant decline
in completion time. Based on the above observation, we
find that the communication delay is about 65 percent of
the coding delay when the number of packets per page is

16 for the finite field size 28, the minimal total completion
time can be achieved when the number of packets per

page is close to 24 and the finite field size is close to 24.
Moreover, the combination f ¼ 16 and q ¼ 8 provides
close-to-minimum completion time and ease of imple-
mentation for the coding-based reprogramming protocol
Rateless Deluge.

TABLE 6
Analytical Results of Runtime to Calculate the Completion Time

Topology Our model (s) Topology Our model (s)

5� 5 0.122 20� 20 0.452
10� 10 0.158 30� 30 1.647

Fig. 10. The prediction error of our model in different scales.

Fig. 11. Analytical results showing the impact of the finite field size 2q and number of packets per page f.

LI ET AL.: AN ANALYTICAL MODEL FOR CODING-BASED REPROGRAMMING PROTOCOLS IN LOSSY WIRELESS SENSOR NETWORKS 33

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:27:53 UTC from IEEE Xplore. Restrictions apply.

5.6 Results on Overhearing

We conduct testbed experiments to examine the analytical
model in sparse and dense networks when the number of
packets per page changes. Two different applications are
used. For Blink, the image size is 2,102 bytes. For Oscillo-
scope, the image size is 12,340 bytes. The analytical results of
previous model (the conference version [11] of our model)
are shown for comparison. The comparison results are
shown in Fig. 12.

From the results, we see that the analytical results of our
model match that of testbed experiments in all conditions.
However, the analytical results for the previous model
match that of testbed experiments only when the number of
packets per page f is 8. The dynamic behaviors, especially
overhearing, in dense networks have been studied in previ-
ous work [4], [8], but overhearing introduced in Section 2.2
will cause such mismatch in coding-based reprogramming
protocols as 1) any one encoded packet is identical in cod-
ing-based reprogramming protocols, such as Rateless Del-
uge, which is different from Deluge that each packet is
indexed in order, any overheard packet will contribute for
decoding; 2) request messages can be sharply reduced
when all the packets in one page may have been overheard
from neighboring nodes. By importing variables Poh and foh

to consider the effects of overhearing, the analytical results
of our model match that of testbed experiments, compared
to previous model. As a result, we conclude that overhear-
ing reduces the total completion time by 50-70 percent in
the dense networks as depicted in Fig. 12a.

For Blink, when the number of packets per page f is 8, 16
and 24, it has 16, 8 and 6 pages each. For Oscilloscope, when
f is 8, 16 and 24, it has 82, 41 and 28 pages each, respec-
tively. From Fig. 12a, we conclude that, first, when f

increases, the total number of pages decreases and the loss
on total completion time of the binary image having less
pages is worse when the same amount of pages are over-
heard (Poh is the same). Second, when f increases, the total
number of generated encoded packets �f also increases, the
packets for the same page will be exposed with longer time
period and it will increase the probability of overhearing for
neighboring nodes (foh is increased).

6 RELATED WORK

Deluge [4] is the current benchmark of reprogramming pro-
tocols. It establishes the page pipelining mechanism to
speed up the three-way handshaking page transmission.

MNP [14] employs a sender slection algorithm that makes
sure there is at most one source transmitting the code image
at a time to reduce collision in one neighbourhood. Freshet
[21], Stream [22], Zephyr [23], and ECD [15] are other tradi-
tional non-coding-based reprogramming protocols. R3 [24]
is a recent work on incremental reprogramming, which is
an orthogonal research field against ours, to optimize relo-
catable code. CoCo [25] exploits link correlation [26], [27] to
construct core structure based reprogramming.

Compared with traditional non-coding-based reprog-
ramming protocols, Rateless Deluge [5] is a coding-based
reprogramming protocols that is based on Deluge. It utilizes
random linear coding in page transmission. SYNAPSE++
[8] is another coding-based reprogramming protocol that
LT coding is introduced in data packets transmission.
AdapCode [18], RTOC [28], ReXOR [9], LR-Seluge [29] and
MT-Deluge [6] are all coding-based. CodeDrip [30] is a cod-
ing-based protocol for dissemination of small values. Recent
new progresses on data dissemination exploit link correla-
tion [31], [32] and constructive interference [33], [34]. The
work in [35] conducts experiments and simulations to show
potential of link correlation and network coding for data
dissemination. CD [36] exploits link correlation to build a
tree structure called “correlated tree” before reprogram-
ming. SYREN [37] is a multi-packet flooding protocol and
exploits the synergy among link correlation and network
coding to eliminate the overhead of explicit control packets
in networks with high correlation and to pipeline transmis-
sion of multiple packets. Splash [38] exploits constructive
interference to achieve fast and efficient dissemination.
However, unlike most coding-based dissemination, Splash
has not been designed for and tested in a high-loss environ-
ment. Due to its timing requirement during both packet
transmission and reception, its performance may not be
robust to timing error caused by packet loss.

We focus on constructing an analytical model to evaluate
the performance of coding-based reprogramming protocols.
Mathematical analysis of the performance of protocols in
WSNs is challenging, but research interest is growing in this
area [39], [40]. In the area of reprogramming protocols, some
preliminary work on performance modeling has been done.
Hui and Culler [4] analyze the performance of Deluge, how-
ever, their model is only applicable to linear topologies. In
contrast, ourmodel is applicable to any network topology.

The analysis in [22], [41] ignores either page pipelining or
other protocol details. Dong et al.’s work [7] is the closest to

Fig. 12. Testbed results showing the impact of number of packets per page f.

34 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 1, JANUARY 2017

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:27:53 UTC from IEEE Xplore. Restrictions apply.

ours. Their analytical model is applicable to any topology,
and they have established a relationship between packet
reception rate and number of request packets. We propose
refinement on the relationship between PRR and number of
request packets. The most significant difference between
existing work and ours is that we present a thorough analy-
sis of packet coding operations in three concrete coding-
based reprogramming protocols and establish an analytical
model. We evaluate one of these coding-based protocols
through the analytical model in terms of completion time.

Starobinski and Xiao [13] propose a theoretical framework
to evaluate the asymptotic performance limits of data dis-
semination in multi-channel, single-radio WSNs. In compar-
ison, the target of our model is concrete coding-based
reprogramming protocols for the more common single-
channel, single-radio WSNs.

The analysis in our previous work [11] studies the perfor-
mance of coding-based reprogramming protocols in terms of
completion time and examines influence of both the number
of packets per page and finite field size. In this paper, we fur-
ther evaluate the performance of coding-based reprogram-
ming protocols in extensive testbed experiments. Moreover,
we examine the completion time of a representative coding-
based reprogramming protocol Rateless Deluge under dif-
ferent image size and inter-node spacing. Overhearing and
its influence on the performance of coding-based reprogram-
ming is observed and discussed in dense networks.

We evaluate coding-based reprogramming protocols and
examine the impact of several parameters by the analytical
model. Rulefit [42], [43] can be used to identify the important
impacting ones from these parameters. The k factor [44] is a
new metric as a predictor of performance of network coding
protocols and can be used to examine the accuracy of an ana-
lytical model for Deluge and our model for coding-based
Rateless Deluge in predicting the total completion time.

7 CONCLUSION

An analytical model serves as an economical alternative to
computationally expensive simulations and labor-intensive
field experimentations for the performance evaluation of
coding-based reprogramming protocols. Moreover, it pro-
vides essential clues for ongoing improvements of network
protocols. To measure the completion time of existing cod-
ing-based reprogramming protocols, we propose a novel
high-fidelity analytical model by incorporating overhearing
and packet coding. The model is applicable to any coding-
based reprogramming protocol by substituting the coding
part with protocol specific operations. We examine the ana-
lytical model using extensive testbed experiments, the
results of a representative coding-based protocol (i.e., Rate-
less Deluge) confirms the validity of our model. Based on
the analytical and numerical experiments, we find that over-
hearing causes significant reduction of the completion time
in dense networks. We also find that coding delay plays a
key role in the total completion time compared to the com-
munication delay when packet coding parameters (e.g., the
finite field size and encoding coefficient) are appropriately
selected. Our model is capable of analyzing and optimizing
packet coding parameters of other coding-based reprogram-
ming protocols, such as SYNAPSE++ and ReXOR.

ACKNOWLEDGMENTS

This work is supported by National Science and Technology
Major Project of China under grant No. 2012ZX03005007. Yu
Zhang is supported by NPU Foundation for Fundamental
Research under grant No. JC20110268. Yee Wei Law and
Marimuthu Palaniswami are partly supported by the EC
under contract CNECT-ICT-609112 (SOCIOTAL). Zhe Yang
is supported by NSFC under grant No. N2014KA0031 and
NPU Foundation for Fundamental Research under grant
No. GEKY1003.

REFERENCES

[1] F. Ingelrest, G. Barrenetxea, G. Schaefer, M. Vetterli, O. Couach,
and M. Parlange, “Sensorscope: Application-specific sensor net-
work for environmental monitoring,” ACM Trans. Sens. Netw.,
vol. 6, no. 2, pp. 17:1–17:32, 2010.

[2] Y. Liu, Y. He, M. Li, J. Wang, K. Liu, and X. Li, “Does wireless sen-
sor network scale? A measurement study on greenorbs,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 10, pp. 1983–1993, Oct.
2013.

[3] J. Zhang, R. Wang, S. Lu, J. Wang, J. Gong, Z. Zhao, H. Chen,
L. Cui, N. Wang, and Y. Yu, “Easicprs: Design and implementa-
tion of a portable Chinese pulse-wave retrieval system,” in Proc.
9th ACM Conf. Embedded Netw. Sens. Syst., 2011, pp. 149–161.

[4] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemi-
nation protocol for network programming at scale,” in Proc. 2nd
ACM Conf. Embedded Netw. Sens. Syst., 2004, pp. 81–94.

[5] A. Hagedorn, D. Starobinski, and A. Trachtenberg, “Rateless del-
uge: Over-the-air programming of wireless sensor networks using
random linear codes,” in Proc. 7th Int. Conf. Inform. Process. Sens.
Netw., 2008, pp. 457–466.

[6] Y. Gao, J. Bu, W. Dong, C. Chen, L. Rao, and X. Liu, “Exploiting
concurrency for efficient dissemination in wireless sensor
networks,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 4,
pp. 691–700, Apr. 2013.

[7] W. Dong, C. Chen, X. Liu, G. Teng, J. Bu, and Y. Liu, “Bulk data
dissemination in wireless sensor networks: Modeling and analy-
sis,” Elsevier Comput. Netw., vol. 56, no. 11, pp. 2664–2676, 2012.

[8] M. Rossi, N. Bui, G. Zanca, L. Stabellini, R. Crepaldi, andM. Zorzi,
“Synapse++: Code dissemination in wireless sensor networks
using fountain codes,” IEEE Trans. Mobile Comput., vol. 9, no. 12,
pp. 1749–1765, Dec. 2010.

[9] W. Dong, C. Chen, X. Liu, J. Bu, and Y. Gao, “A lightweight and
density-aware reprogramming protocol for wireless sensor
networks,” IEEE Trans. Mobile Comput., vol. 10, no. 10, pp. 1403–
1415, Oct. 2011.

[10] W. Du, Z. Li, J. Liando, and M. Li, “From rateless to distanceless:
Enabling sparse sensor network deployment in large areas,”
IEEE/ACM Trans. Netw., vol. pp, no. 99, pp. 1–14, 2015.

[11] J.-W. Li, S.-N. Li, Y. Zhang, Y. W. Law, X. Zhou, and M. Palanis-
wami, “Analytical model of coding-based reprogramming proto-
cols in lossy wireless sensor networks,” in Proc. IEEE Int. Conf.
Commun., 2013, pp. 1867–1871.

[12] W. Dong, C. Chen, X. Liu, J. Bu, and Y. Liu, “Performance of bulk
data dissemination in wireless sensor networks,” in Proc. 5th IEEE
Int. Conf. Distrib. Comput. Sens. Syst., 2009, pp. 356–369.

[13] D. Starobinski and W. Xiao, “Asymptotically optimal data dissemi-
nation in multichannel wireless sensor networks: Single radios
suffice,” IEEE/ACMTrans.Netw., vol. 18, no. 3, pp. 695–707, Jun. 2010.

[14] S. Kulkarni and L. Wang, “Energy-efficient multihop reprogram-
ming for sensor networks,” ACM Trans. Sens. Netw., vol. 5, no. 2,
pp. 16:1–16:40, 2009.

[15] W. Dong, Y. Liu, Z. Zhao, X. Liu, C. Chen, and J. Bu, “Link quality
aware code dissemination in wireless sensor networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 7, pp. 1776–1786, Jul. 2014.

[16] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive pro-
tocols for information dissemination in wireless sensor networks,”
in Proc. ACM/IEEE 5th Annu. Int. Conf. Mobile Comput. Netw., 1999,
pp. 174–185.

[17] M. Zuniga and B. Krishnamachari, “Analyzing the transitional
region in low power wireless links,” in Proc. 1st Annu. IEEE
Commun. Soc. Conf. Sens., Mesh Ad Hoc Commun. Netw., 2004,
pp. 517–526.

LI ET AL.: AN ANALYTICAL MODEL FOR CODING-BASED REPROGRAMMING PROTOCOLS IN LOSSY WIRELESS SENSOR NETWORKS 35

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:27:53 UTC from IEEE Xplore. Restrictions apply.

[18] I.-H. Hou, Y.-E. Tsai, T. F. Abdelzaher, and I. Gupta,
“Adapcode: Adaptive network coding for code updates in wire-
less sensor networks,” in Proc. IEEE Conf. Comput. Commun.,
2008, pp. 2189–2197.

[19] M. Doddavenkatappa, M. Chan, and A. Ananda, “Indriya: A low-
cost, 3d wireless sensor network testbed,” in Proc. 7th Int. ICST
Conf. Testbeds Res. Infrastructures Develop. Netw. Communities, 2011,
pp. 302–316.

[20] Y. W. Law, Y. Zhang, J. Jin, M. Palaniswami, and P. Havinga,
“Secure rateless deluge: Pollution-resistant reprogramming and
data dissemination for wireless sensor networks,” EURASIP J.
Wireless Commun. Netw., vol. 2011, pp. 5:1–5:22, 2011.

[21] M. D. Krasniewski, R. K. Panta, S. Bagchi, C.-L. Yang, and W. J.
Chappell, “Energy-efficient on-demand reprogramming of large-
scale sensor networks,” ACM Trans. Sens. Netw., vol. 4, no. 1,
pp. 2:1–2:38, 2008.

[22] R. Panta, I. Khalil, and S. Bagchi, “Stream: Low overhead wireless
reprogramming for sensor networks,” in Proc. IEEE Conf. Comput.
Commun., 2007, pp. 928–936.

[23] R. K. Panta, S. Bagchi, and S. P. Midkiff, “Efficient incremental
code update for sensor networks,” ACM Trans. Sens. Netw., vol. 7,
no. 4, pp. 30:1–30:32, 2011.

[24] W. Dong, C. Chen, J. Bu, and W. Liu, “Optimizing relocatable
code for efficient software update in networked embedded sys-
tems,” ACM Trans. Sens. Netw., vol. 11, no. 2, pp. 22:1–22:34, 2014.

[25] Z. Zhao, W. Dong, J. Bu, T. Gu, C. Chen, X. Xu, and S. Pu,
“Exploiting link correlation for core-based dissemination in wire-
less sensor networks,” in Proc. 11th Annu. IEEE Commun. Soc.
Conf. Sens., Mesh Ad Hoc Commun. Netw., 2014, pp. 372–380.

[26] S. M. Kim, S. Wang, and T. He, “Exploiting causes and effects of
wireless link correlation for better performance,” in Proc. IEEE
Conf. Comput. Commun., 2015, pp. 379–387.

[27] Z. Zhao, W. Dong, G. Guan, J. Bu, T. Gu, and C. Chen, “Modeling
link correlation in low-power wireless networks,” in Proc. IEEE
Conf. Comput. Commun., 2015, pp. 990–998.

[28] A. D. Wood and J. A. Stankovic, “Online coding for reliable data
transfer in lossy wireless sensor networks,” in Proc. 5th IEEE Int.
Conf. Distrib. Comput. Sens. Syst., 2009, pp. 159–172.

[29] Y. Zhang and Y. Zhang, “Lr-seluge: Loss-resilient and secure code
dissemination in wireless sensor networks,” in Proc. 35th IEEE Int.
Conf. Distrib. Comput. Syst., 2011, pp. 497–506.

[30] N. d. S. R. J�unior, M. A. Vieira, L. F. Vieira, and O. Gnawali,
“Codedrip: Data dissemination protocol with network coding for
wireless sensor networks,” in Proc. 11th Eur. Conf. Wireless Sens.
Netw., 2014, pp. 34–49.

[31] S. Wang, S. M. Kim, Y. Liu, G. Tan, and T. He, “Corlayer: A trans-
parent link correlation layer for energy efficient broadcast,” in
Proc. ACM 19th Annu. Int. Conf. Mobile Comput. Netw., 2013,
pp. 51–62.

[32] T. Zhu, Z. Zhong, T. He, and Z.-L. Zhang, “Achieving efficient
flooding by utilizing link correlation in wireless sensor networks,”
IEEE/ACM Trans. Netw., vol. 21, no. 1, pp. 121–134, Feb. 2013.

[33] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient net-
work flooding and time synchronization with glossy,” in Proc.
10th Int. Conf. Inform. Process. Sens. Netw., 2011, pp. 73–84.

[34] W. Du, J. C. Liando, H. Zhang, and M. Li, “When pipelines meet
fountain: Fast data dissemination in wireless sensor networks,” in
Proc. 13th ACM Conf. Embedded Netw. Sens. Syst., 2015, pp. 365–378.

[35] S. I. Alam, S. Sultana, Y. C. Hu, and S. Fahmy, “Link correlation
and network coding in broadcast protocols for wireless sensor
networks,” in Proc. 9th Annu. IEEE Commun. Soc. Conf. Sens., Mesh
Ad Hoc Commun. Netw., 2012, pp. 59–61.

[36] Z. Zhao, W. Dong, J. Bu, Y. Gu, and C. Chen, “Link-correlation-
aware data dissemination in wireless sensor networks,” IEEE
Trans. Ind. Electron., vol. 62, no. 9, pp. 5747–5757, Sep. 2015.

[37] S. Alam, S. Sultana, Y. C. Hu, and S. Fahmy, “Syren: Synergistic
link correlation-aware and network coding-based dissemination
in wireless sensor networks,” in Proc. IEEE 21st Int. Symp. Model.,
Anal. Simul. Comput. Telecommun. Syst., 2013, pp. 485–494.

[38] M. Doddavenkatappa, M. C. Chan, and B. Leong, “Splash: Fast
data dissemination with constructive interference in wireless sen-
sor networks,” in Proc. 10th USENIX Symp. Netw. Syst. Des. Imple-
mentation, 2013, pp. 269–282.

[39] R. R. Rout and S. K. Ghosh, “Adaptive data aggregation and
energy efficiency using network coding in a clustered wireless
sensor network: An analytical approach,” Elsevier Comput. Com-
mun., vol. 40, pp. 65–75, 2014.

[40] Y. Wang, M. C. Vuran, and S. Goddard, “Cross-layer analysis of
the end-to-end delay distribution in wireless sensor networks,”
IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 305–318, Feb. 2012.

[41] P. De, Y. Liu, and S. Das, “An epidemic theoretic framework for
vulnerability analysis of broadcast protocols in wireless sensor
networks,” IEEE Trans. Mobile Comput., vol. 8, no. 3, pp. 413–425,
Mar. 2009.

[42] J. H. Friedman and B. E. Popescu, “Predictive learning via rule
ensembles,” Ann. Appl. Statist., vol. 2, no. 3, pp. 916–954, 2008.

[43] J. Wang, W. Dong, Z. Cao, and Y. Liu, “On the delay performance
analysis in a large-scale wireless sensor network,” in Proc. IEEE
Real-Time Syst. Symp., 2012, pp. 305–314.

[44] K. Srinivasan, M. Jain, J. I. Choi, T. Azim, E. S. Kim, P. Levis, and
B. Krishnamachari, “The k factor: Inferring protocol performance
using inter-link reception correlation,” in Proc. ACM 16th Annu.
Int. Conf. Mobile Comput. Netw., 2010, pp. 317–328.

Jun-Wei Li received the BS degree in computer
science from Northwestern Polytechnical Univer-
sity, Xi’an, China, in 2010. He is currently working
toward the PhD degree with the School of
Computer Science at Northwestern Polytechnical
University. His research interests include optimi-
zation, code dissemination, and wireless sensor
networks.

Shi-Ning Li received the BS and MS degrees in
computer science from Northwestern Polytechni-
cal University, Xi’an, China, in 1989 and 1992,
respectively. He received the PhD degree in com-
puter science from Xi’an Jiaotong University,
Xi’an, China, in 2005. He is currently a professor
at the School of Computer Science, Northwestern
Polytechnical University. His research interests
include mobile computing and wireless sensor
networks. He is a member of the IEEE.

Yu Zhang received the MS degree in computer
science in 2002 from the Northwestern Polytech-
nical University, Xi’an, China. He was a scholar-
ship researcher at the University of Melbourne,
before becoming an associate professor at the
School of Computer Science, Northwestern Poly-
technical University. His research areas include
protocol design, optimization of wireless sensor
networks, and power management of mobile
computing. He is a member of the IEEE.

Tao Gu received the PhD degree in computer
science from the National University of Singa-
pore. He is an associate professor in the School
of Computer Science and Information Technol-
ogy, RMIT University. His current research inter-
ests include mobile and pervasive computing,
wireless sensor networks, distributed network
systems, sensor data analytics, cyber physical
system, Internet of Things, and online social net-
works. He is a senior member of the IEEE.

Yee Wei Law received the PhD degree from the
University of Twente, and was a research fellow
at the University of Melbourne, before becoming
a lecturer at the University of South Australia. His
main research interests include the security and
privacy aspects of sensor networks, smart grids,
and more generally the Internet of Things. He
received the Best Paper Award at ICTC 2012.

36 IEEE TRANSACTIONS ON COMPUTERS, VOL. 66, NO. 1, JANUARY 2017

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:27:53 UTC from IEEE Xplore. Restrictions apply.

Zhe Yang received the PhD degree in electrical
and computer engineering from the University of
Victoria, Victoria, British Columbia, Canada, in
2013. He then joined the School of Computer
Science, Northwestern Polytechnical Univer-
sity, with the exceptional promotion to associ-
ate professor. His research areas include
protocol design, optimization, and resource
management of wireless communication net-
works. He is a member of the IEEE.

Xingshe Zhou received the MS degree from the
Northwestern Polytechnical University, Xi’an,
China, in 1984. He is a professor with the School
of Computer Science, Northwestern Polytechni-
cal University. He is the director with the Shaanxi
Key Laboratory of Embedded System Technol-
ogy, Xi’an, China. His research interests include
embedded computing and pervasive computing.
He is a member of the IEEE.

Marimuthu Palaniswami received the PhD
degree from the University of Newcastle. He is
now a professor at the University of Melbourne.
He was the convener of the ARC Research Net-
work on ISSNIP. His research interests include
control, machine learning, signal processing and
their applications to smart grids, biomedical engi-
neering, wireless sensor networks, and the Inter-
net of Things. He became a fellow of the IEEE
and IEEE distinguished lecturer in machine learn-
ing in 2012.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LI ET AL.: AN ANALYTICAL MODEL FOR CODING-BASED REPROGRAMMING PROTOCOLS IN LOSSY WIRELESS SENSOR NETWORKS 37

Authorized licensed use limited to: RMIT University Library. Downloaded on January 09,2021 at 15:27:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

