
44

AirContour: Building Contour-based Model for In-Air

Writing Gesture Recognition

YAFENG YIN and LEI XIE, State Key Laboratory for Novel Software Technology, Nanjing University,

China

TAO GU, RMIT University, Australia

YIJIA LU and SANGLU LU, State Key Laboratory for Novel Software Technology, Nanjing University,

China

Recognizing in-air hand gestures will benefit a wide range of applications such as sign-language recogni-

tion, remote control with hand gestures, and “writing” in the air as a new way of text input. This article

presents AirContour, which focuses on in-air writing gesture recognition with a wrist-worn device. We pro-

pose a novel contour-based gesture model that converts human gestures to contours in 3D space and then

recognizes the contours as characters. Different from 2D contours, the 3D contours may have the problems

such as contour distortion caused by different viewing angles, contour difference caused by different writing

directions, and the contour distribution across different planes. To address the above problem, we introduce

Principal Component Analysis (PCA) to detect the principal/writing plane in 3D space, and then tune the

projected 2D contour in the principal plane through reversing, rotating, and normalizing operations, to make

the 2D contour in right orientation and normalized size under a uniform view. After that, we propose both

an online approach, AC-Vec, and an offline approach, AC-CNN, for character recognition. The experimen-

tal results show that AC-Vec achieves an accuracy of 91.6% and AC-CNN achieves an accuracy of 94.3% for

gesture/character recognition, both outperforming the existing approaches.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing design and eval-

uation methods; Empirical studies in ubiquitous and mobile computing;

Additional Key Words and Phrases: AirContour, in-air writing, contour-based gesture model, principal com-

ponent analysis (PCA), gesture recognition

ACM Reference format:

Yafeng Yin, Lei Xie, Tao Gu, Yijia Lu, and Sanglu Lu. 2019. AirContour: Building Contour-based Model for

In-Air Writing Gesture Recognition. ACM Trans. Sen. Netw. 15, 4, Article 44 (October 2019), 25 pages.

https://doi.org/10.1145/3343855

This work is supported by National Natural Science Foundation of China under Grant Nos. 61802169, 61872174, 61832008,

61321491; JiangSu Natural Science Foundation under Grant No. BK20180325; the Fundamental Research Funds for the Cen-

tral Universities under Grant No. 020214380049; Australian Research Council (ARC) Discovery Project Grants DP190101888

and DP180103932. This work is partially supported by Collaborative Innovation Center of Novel Software Technology and

Industrialization.

Authors’ addresses: Y. Yin, L. Xie (corresponding author), Y. Lu, and S. Lu, State Key Laboratory for Novel Software

Technology, Nanjing University, Nanjing, 210023, China; emails: {yafeng, lxie}@nju.edu.cn, lyj@smail.nju.edu.cn, sanglu@

nju.edu.cn; T. Gu, School of Computer Science and Information Technology, RMIT University, Melbourne VIC 3000, Aus-

tralia; email: tao.gu@rmit.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1550-4859/2019/10-ART44 $15.00

https://doi.org/10.1145/3343855

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

https://doi.org/10.1145/3343855
mailto:permissions@acm.org
https://doi.org/10.1145/3343855

44:2 Y. Yin et al.

1 INTRODUCTION

With the advancement of rich embedded sensors, mobile or wearable devices (e.g., smartphones,
smartwatches) have been largely used in activity recognition [21, 23, 26, 31, 37, 41, 45] and benefit
many human-computer interactions, e.g., motion-sensing games [25], sign-language recognition
[12], in-air writing [1], and so on. As a typical interaction mode, writing in the air has aroused
wide attention [6, 9, 10, 36, 39]. It allows users to write characters with arm and hand freely in
the air without focusing attention on the small screen or tiny keys on a device [2]. As shown in
Figure 1, a user carrying/wearing a sensor-embedded device writes in the air, and the gesture will
be recognized as a character. Recognizing in-air writing gestures is a key technology to facilitate
writing gesture-based interactions in the air and can be used in many scenarios. For example,
“writing” commands in the air to control a unmanned aerial vehicle (UAV), while looking at the
scene transmitted from the UAV in a virtual reality (VR) headset, to avoid taking off the VR headset
and inputting the commands with a controller. Another example could be replacing the traditional
on-screen text input by “writing” the text message in the air, thus allowing to interact with mobile
or wearable devices having a tiny or no screen. Besides, when one hand of the user is occupied,
typing with a keyboard becomes inconvenient; the sensor-assisted in-air input technology can
be used to capture hand gestures and lay them out in text or image [1]. When comparing to the
existing handwriting, voice, or camera-based input, in-air writing with inertial sensors can tol-
erate limited screen, environmental noises, and poor light conditions. In this article, we focus on
recognizing in-air writing gestures as characters.

In inertial sensor-based gesture recognition, many approaches have been proposed. Some data-
driven approaches [2, 7, 10, 15, 35] tend to extract features from sensor data to train classifiers for
gesture recognition while paying little attention on human activity analysis. If the user performs
gestures with more degrees of freedom, i.e., the gestures may have large variations in speeds, sizes,
or orientations, then the type of approaches may fail to recognize them with high accuracy. In
contrast, some pattern-driven approaches [1, 13, 32] try to capture the moving patterns of gestures
for activity recognition. For example, Agrawal et al. [1] utilize the segmented strokes and grammar
tree to recognize capital letters in a 2D plane. However, due to the complexity of analyzing human
activities, the type of approaches may redefine the gesture patterns or constrain the gestures in
a limited area (e.g., on a limited 2D plane), which may decrease user experience. To track the
continuous in-air gestures, Shen et al. [29] utilize the 5-DoF arm model and HMM to track the 3D
posture of the arm. However, in 3D space, tracking is not directly linked to recognition, especially
when the trajectory (e.g., handwriting trajectory) locates in different planes. Therefore, it is still a
challenging task to apply the existing approaches to recognize in-air writing gestures that occur
in 3D space with more degrees of freedom while guaranteeing user experience.

To address the aforementioned issues, in this article, we explore contours to represent in-air
writing gestures and propose a novel contour-based gesture model, where the “contour” is repre-
sented with a sequence of coordinate points over time. We use an off-the-shelf wrist-worn device
(e.g., smartwatch) to collect sensor data, and our basic idea is to build a 3D contour model for
each gesture and utilize the contour feature to recognize gestures as characters, as illustrated in
Figure 1. Since the gesture contour keeps the essential movement patterns of in-air gestures, it can
tolerate the intra-class variability of gestures. It is worth noting that while the proposed “contour-
gesture” model is applied in in-air writing gesture recognition for this work, it can also be used in
sign-language recognition and remote control with hand gestures [40]. However, different from
2D contours, building 3D contours presents several challenges, i.e., contour distortion caused by
different viewing angles, contour difference caused by different writing directions, and contour
distribution across different planes, making it difficult to recognize 3D contours as 2D characters.

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

AirContour: Building Contour-based Model for In-Air Writing Gesture Recognition 44:3

Fig. 1. AirContour: in-air writing gesture recognition based on contours.

To solve this problem, we first describe the range of viewing angles based on the way that the
device is worn, which indicates the possible writing directions. We then apply Principal Compo-
nent Analysis (PCA) to detect the principal/writing plane, i.e., most of the contour is located in
or close to the plane. After that, we calibrate the 2D projected contour in the principal plane for
gesture/character recognition while considering the distortion caused by dimensionality reduction
and the difference of gesture sizes.

We make the following contributions in this article:

• To the best of our knowledge, we are the first to propose the contour-based gesture model

to recognize in-air writing gestures. The model is designed to solve the new challenges in
3D gesture contours, e.g., observation ambiguity, uncertain orientation and distribution of
3D contours, and tolerate the intra-class variability of gestures. The contour-based gesture
model can be applied in not only in-air writing gesture recognition, but also many other
scenarios such as sign-language recognition, motion-sensing games, and remote control
with hand gestures.

• To recognize gesture contours in 3D space as characters in a 2D plane, we introduce PCA
for dimensionality reduction and a series of calibrations for 2D contours. Specifically, we
first utilize PCA to detect the principal/writing plane, and then project the 3D contour into
the principal plane for dimensionality reduction. After that, we calibrate the 2D contour in
the principal plane through reversing, rotating, and normalizing operations, to make it in
right orientation and normalized size under a uniform view, i.e., to make the 2D contour
suitable for character recognition.

• We conduct extensive experiments to verify the efficiency of the proposed contour-based
gesture model. In addition, based on the model, we propose an online approach, AC-Vec,
and an offline approach, AC-CNN, to recognize 2D contours as characters. The experimental
results show that AC-Vec and AC-CNN achieve an accuracy of 91.6% and 94.3%, respectively,
for gesture/character recognition, and both outperform the existing approaches.

2 RELATED WORK

In this section, we describe and analyze the state-of-the-art related to in-air gesture recognition,
tracking, writing in the air, and handwritten character recognition, especially focusing on inertial
sensor-based techniques.

In-air gesture recognition: Parate et al. [26] design a mobile solution called RisQ to detect
smoking gestures and sessions with a wristband and use a machine learning pipeline to process
sensor data. Blank et al. [7] present a system for table tennis stroke detection and classification by
attaching inertial sensors to table-tennis rackets. Thomaz et al. [31] describe the implementation

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

44:4 Y. Yin et al.

and evaluation of an approach to infer eating moments using a 3-axis accelerometer in a smart-
watch. Xu et al. [35] build a classifier to identify users’ hand and finger gestures utilizing the
essential features of accelerometer and gyroscope data measured from a smartwatch. Huang et al.
[18] build a system to monitor brushing quality using a manual toothbrush modified by attaching
small magnets to the handle and an off-the-shelf smartwatch. These approaches typically extract
features from sensor data and apply machine learning techniques for gesture recognition.

In-air gesture tracking: Zhou et al. [42–44] utilize a kinematic chain to track human upper-
limb motion by placing multiple devices on the arm. Cutti et al. [11] utilize the joint angles to
track the movements of upper limbs by placing sensors on the chest, shoulder, arm, and wrist.
Chen et al. [8] design a wearable system consisting of a pair of magnetometers on fingers and a
permanent magnet affixed to the thumb and introduce uTrack to convert the thumb and fingers
into a continuous input system (e.g., 3D pointing). Shen et al. [29] utilize the 5-DoF arm model and
HMM to track the 3D posture of the arm, using both motion and magnetic sensors in a smartwatch.
In fact, accurate in-air gesture tracking in real time can be very challenging. Besides, obtaining the
3D moving trajectory does not mean recognizing in-air gestures. In this article, we do not require
accurate trajectory tracking while aiming to obtain gesture contour and recognize it as a character.

Writing in the air: Zhang et al. [39] quantify data into small integral vectors based on accel-
eration orientation and then use HMM to recognize 10 Arabic numerals. Wang et al. [32] present
IMUPEN to reconstruct motion trajectory and recognize handwritten digits. Bashir et al. [6] use a
pen equipped with inertial sensors and apply DTW to recognize handwritten characters. Agrawal
et al. [1] recognize handwritten capital letters and Arabic numerals in a 2D plane based on strokes
and a grammar tree by using the built-in accelerometer in smartphone. Amma et al. [2] design a
glove equipped with inertial sensors and use SVM, HMM, and statistical language model to rec-
ognize capital letters, sentences, and so on. Deselaers et al. [13] present GyroPen to reconstruct
the writing path for pen-like interaction. Xu et al. [36] utilize the continuous density HMM and
Viterbi algorithm to recognize handwritten digits and letters using inertial sensors. In this article,
we focus on single in-air character recognition without the assistance of a language model. For a
character, we do not define specific strokes or require pen-up for stroke segmentation, while tol-
erating the intra-class variability caused by writing speeds, gesture sizes, writing directions, and
observation ambiguity caused by viewing angles and so on in 3D space.

Handwritten character recognition: In addition to inertial sensor-based approaches, many
image processing techniques [3, 14, 16] have also been adopted for recognizing handwritten
characters in a 2D plane (i.e., image). Bahlmann et al. [4] combine DTW and SVMs to establish
a Gaussian DTW (GDTW) kernel for on-line recognition of UNIPEN handwriting data. Rayar
et al. [28] propose preselection method for CNN-based classification and evaluate it in handwritten
character recognition in images. Rao et al. [27] propose a newly designed network structure based
on an extended nonlinear kernel residual network to recognize the handwritten characters over
MINIST and SVHN datasets. These approaches focus on recognizing hand-moving trajectories in
a 2D plane, while our article focuses on transforming the 3D gesture into a proper 2D contour and
then utilizes the contour’s space-time feature to recognize contours as characters.

3 TECHNICAL CHALLENGES AND DEFINITIONS IN IN-AIR GESTURE

RECOGNITION

3.1 Intra-class Variability in Sensor Data

As shown in Figure 2, even when the user performs the same type of gestures (e.g., writes “t”),
the sensor data can be quite different due to the variation of writing speeds (Figure 2(a)), gesture
sizes (Figure 2(b)), writing directions (Figure 2(c)), and so on. It indicates that directly using the

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

AirContour: Building Contour-based Model for In-Air Writing Gesture Recognition 44:5

Fig. 2. Linear acceleration of writing the same character “t.”

extracted features from sensor data may fail to recognize in-air gestures accurately. In regard to
the definitions of speeds, sizes, and directions, they can be found in Section 6.2.

To handle the intra-class variability of in-air gestures, e.g., the variation of speed, amplitude,
and orientation of gestures, we present the contour-based gesture model, which utilizes contours
to correlate sensor data with human gestures. The “contour” is represented with a sequence of
coordinate points over time. Additionally, to avoid the differences caused by facing directions, we
transform the sensor data from a device coordinate system to a human coordinate system shown
in Figure 5(a), i.e., we analyze the 3D contours in a human coordinate system. In this article, we
take the instance of writing characters in the air to illustrate the contour-based gesture model.
The characters refer to the alphabet, i.e., “a”–“z,” and we use the term “character” and “letter”
interchangeably throughout the article. It is worth mentioning that in-air writing letters can be
different from printed letters due to joined-up writing. In particular, we remove the point of “i”
and “j,” and use “ι” to represent the letter “l” for simplification.

3.2 Difference between 2D Contours and 3D Contours

Usually, people get used to recognizing and reading handwritten characters in a 2D plane, e.g., on
a piece of paper. Therefore, we can map a 2D gesture contour with a 2D character for recogni-
tion. However, based on extensive observations and experimental study, we find that 3D contour
recognition is quite different from 2D contour recognition. In fact, recognizing 3D contours as
2D characters is a challenging task, due to the contour distortion caused by viewing angles, con-
tour difference caused by writing directions, and contour distribution across different planes, as
described below.

3.2.1 Viewing Angles. There is a uniform viewing angle for a 2D character contour, while there

are multiple viewing angles for a 3D character contour. In a predefined plane-coordinate system,
the 2D gesture contour is discriminative and can be used for character recognition; it is consistent
with people’s cognition habits for handwriting letters. However, in 3D space, even in a predefined
coordinate system, we can look at the 3D contour from different viewing angles, thus the observed
3D contour can be quite different. As shown in Figure 3, when we look at the 3D contour of “t”
from left to right, the shape and orientation of the character contour change a lot, as the contour
located in the red circle in Figure 3(a), Figure 3(b), and Figure 3(c) indicates. For a character, its
contour consists of one or several strokes in a sequential order and right orientation. If the char-
acter contour changes, then it can lead to the misrecognition of characters. For example, when we

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

44:6 Y. Yin et al.

Fig. 3. Observed 3D contours from different viewing angles.

Fig. 4. Different contours from the same viewing angle.

look at the contours of “b” and “q” from different viewing angles, we may see similar shapes, and
it may be difficult to distinguish them. Therefore, it is expected to select a proper viewing angle to
mitigate the confusion about character contours.

3.2.2 Writing Directions. From a uniform view, 2D contours of a same character are similar, while

the 3D contours can be quite different, due to uncertain writing directions. On a 2D plane, the contours
of the same character keep the essential shape feature. Even if the orientation of a 2D contour
changes, e.g., the 2D contour rotates in the plane, it still keeps the shape feature of the contour.
However, in 3D space, even if we look at the contours of the same character from the same viewing
angle, the observed contours can be quite different, as the contours in the red circles shown in
Figure 4. This is because the user can write in-air gestures towards different directions. Intuitively,
if we can adaptively project the 3D contour into a corresponding coordinate plane (e.g., xh − zh

plane, yh − zh plane, or xh − yh plane), we may mitigate the contour distortion caused by writing
directions.

3.2.3 Contour Distribution. A 2D contour locates in a plane, while a 3D contour can distribute

across different planes. In Figure 5(a), we show the human coordinate system (human-frame for
short) xh − yh − zh . When the user writes in the air, her/his hand can move left and right, up and
down, thus the in-air gesture generates a 3D contour across different planes. At this time, the
in-air contour may be mainly located in or close to the plane A3B3C3D3 while not be parallel to
any coordinate plane, and we cannot directly project the in-air contour into a coordinate plane
for dimensionality reduction, e.g., xh − zh plane. As shown in Figure 5(b), the 3D contour of “k”
distributes across different planes, and the 3D contour is mainly located in or close to the red
plane, instead of any coordinate plane (e.g., the blue plane in Figure 5(a)). Here, the red plane
is called principal plane or writing plane, which contains or is close to most of points in the 3D

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

AirContour: Building Contour-based Model for In-Air Writing Gesture Recognition 44:7

Fig. 5. In-air gesture across different planes.

Fig. 6. Viewing angles for writing with different hands.

contour, i.e., the projected contour in the principal plane keeps the essential feature of the 3D
contour. Therefore, we are expected to adaptively project the 3D contour into the principal plane
and obtain the essential contour feature of the handwritten character, as the contour “k” shown in
the red circle in Figure 5(b).

3.3 Some Definitions about In-air Gestures

According to Section 3.2, the improper viewing angle will lead to the distortion of the observed
gesture contour. To mitigate the confusion or misrecognition of gesture contours caused by view-
ing angles, we first define the appropriate range of viewing angles based on people’s writing habits,
i.e., when the user writes in the air, her/his eyes track the movement of the hand naturally.

As shown in Figure 6(a), when the user writes with the left hand, she/he tends to write in
front, left side, or below; the corresponding viewing angle comes from behind, right side, or up
side. Accordingly, we select a reference coordinate plane for each viewing angle, i.e., xh − zh plane,
yh − zh plane, and xh − yh plane, respectively. Similarly, as shown in Figure 6(b), when the user
writes with the right hand in front, right side, or below, the corresponding viewing angle comes
from behind, left side, or up side. The selected reference coordinate plane under the viewing angles
are xh − zh plane, (−yh) − zh plane, and xh − yh plane, respectively. Therefore, there is a mapping
relationship between a reference coordinate plane and a viewing angle. With the selected reference
coordinate plane, the user will not view a character contour in the right orientation as a reversed
contour (referring to Figure 3(a) and Figure 3(c)). It is worth mentioning that the selected reference
coordinate plane is used to indicate the possible orientation of the projected contour in principal
plane, as described in Section 4.2. It does not mean that the user can only write on xh − zh ,yh − zh ,
or xy − yh planes; in fact, the user can write towards arbitrary directions in 3D space.

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

44:8 Y. Yin et al.

Fig. 7. Different principal planes.

Here, the hand (i.e., left hand or right hand) and the writing directions, i.e., in front, left side,
right side, or below, determine the viewing angles. To detect which hand writes in the air, we
introduce an initial gesture before writing, i.e., the user stands with the hands down and then
opens up the arm wearing the device until the arm is parallel to the floor. In the human coordinate
system, if the hand moves left, then the user writes with the left hand. Otherwise, the user writes
with the right hand. In regard to the human coordinate system, it will be described in the later
System Design section. To detect the writing direction and project the 3D contour into a 2D plane
properly, we introduce the 3D contour-based gesture model, as described below.

4 3D CONTOUR-BASED GESTURE MODEL

Based on the accelerometer, gyroscope, and magnetometer of the wrist-worn device, we can get
the 3D contour of the in-air gesture. However, according to Section 3.2, due to the uncertainty of
the viewing angle, writing direction, and contour distribution, it is essential to find a plane to get
the proper projection of 3D contour for character recognition. To solve this issue, we first introduce
Principal Component Analysis (PCA) to adaptively detect the principal/writing plane. Then, we
detect the reference coordinate plane and determine the viewing angle. After that, we tune the 2D
contour in the principal plane to get the character contour in right orientation and normalized size.

4.1 Principal Plane Detection with PCA

As mentioned before, to get a proper projected 2D contour for character recognition, we need to
detect the principal/writing plane, which contains or is close to most of points in the 3D contour,
as the red plane in Figure 7(a), Figure 7(b), and Figure 7(c) indicates. It is worth noting that the
principal plane may not be parallel to any coordinate plane, as shown in Figure 7. In this article,
we utilize Principal Component Analysis (PCA) [30] to reduce the dimensionality of 3D contour
and detect the principal plane adaptively, as described below.

For convenience, we use x i = (xi1,xi2,xi3)T , i ∈ [1,n] to represent the contour (i.e., point se-
quence) in xh − axis , yh − axis, and zh − axis of the human coordinate system. First, we introduce
the centralization operation to update the coordinates x i of the contour, i.e., xi1 = xi1 − 1

n

∑n
j=1 x j1,

xi2 = xi2 − 1
n

∑n
j=1 x j2, xi3 = xi3 − 1

n

∑n
j=1 x j3. Then, we use ωi = (ωi1,ωi2,ωi3)T , i ∈ [1, 2] to rep-

resent the orthonormal basis vectors of the principal plane. Here, ‖ωi ‖2 = 1, ωT
i ω j = 0, i � j.

As shown in Figure 8, for the point x i in human-frame, its projection point in the principal plane

isyi = (yi1,yi2)T = ΩTx i , where Ω = (ω1,ω2). Then, we can useyi to reconstruct the coordinate
of x i as x̂ i , as shown in Equation (1). The distance between x i and x̂ i is di = ‖x i − x̂ i ‖2:

x̂ i =

2∑
j=1

yi jω j = Ω(ΩTx i). (1)

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

AirContour: Building Contour-based Model for In-Air Writing Gesture Recognition 44:9

Fig. 8. The principle of writing plane detection with PCA.

Fig. 9. Relationship between contours and principal plane.

When the average distance d̄ =
∑n

i=1 di , i ∈ [1,n] reaches the minimal value, the plane represented
with the orthonormal basis vectors Ω = (ω1,ω2) is the principal/writing plane, as shown in Equa-
tion (2):

arg min
Ω

1

n

n∑
i=1

‖x i − x̂ i ‖2

s .t .ΩT Ω = I .

(2)

By combining Equation (1) and Equation (2), we can transform the objective in Equation (2) to
Equation (3), where X = (x1,x2, . . . ,xn), while tr means the trace of a matrix, i.e., the sum of the
elements on the main diagonal of the matrix.

arg max
Ω

tr (ΩTXXT Ω)

s .t .ΩT Ω = I .
(3)

After that, we use Lagrange multiplier method to obtain the orthonormal basis vectors {ω1,ω2},
based on eigenvalue decomposition ofXXT , as shown in Equation (4). The orthonormal basis vec-
torωi with the largest eigenvalue corresponds to the eigenvectorω1, while the second eigenvector
isω2. In the principal plane, we useω1 andω2 to represent the xp -axis andyp -axis of the principal
plane, respectively.

XXTωi = λiωi . (4)

As shown in Figure 9(a), the black line and the green line respectively mean the first basis
vector ω1 and the second basis vector ω2, while the red plane containing ω1 and ω2 is the de-
tected principal plane. In the principal plane, we can obtain the projected 2D contour, as shown in
Figure 9(b). However, due to the information loss of dimensionality reduction, there may exist the

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

44:10 Y. Yin et al.

problems such as reversal and skew of the projected contour, which needs further calibration. It is
worth mentioning that lowercase letters are different from capital letters; the shapes of different
lowercase letters observed from different viewing angles can be similar, e.g., “b” and “q,” “d” and
“p,” thus the orientation and writing order of a character are both important for lowercase letter
recognition. It is essential to calibrate the projected 2D contour in right orientation and normalized
size under a uniform view for character recognition.

4.2 Reference Coordinate Plane Detection

According to Section 4.1 and Figure 9, the projected 2D contour in the principal plane has a high
probability of keeping the shape feature of the in-air contour, while still having the problems such
as reversal and skew, i.e., the orientation of the contour is changed. Thus, we need to calibrate the
2D contour in the principal plane. To achieve this goal, we detect the reference coordinate plane

and determine the viewing angle first. Here, the reference coordinate plane is used to indicate the
viewing angle and possible orientation of the projected contour in the principal plane. In regard
to the user, she/he can perform the gesture towards arbitrary directions; the writing plane may be
not parallel to any coordinate plane.

4.2.1 Axis Projection Calculation. We project the xh-axis, yh-axis, zh-axis of human-frame into
the principal plane and then compare the length of the projected axis to determine the reference

coordinate plane. According to Section 4.1, in the principal plane, the orthonormal basis vectors
ω1,ω2 represent the xp -axis and yp -axis, respectively. With xp -axis and yp -axis, we further cal-
culate the zp -axis as ω3 = ω1 ×ω2 to establish the principal-plane coordinate system (principal-
frame for short). Here,ω1,ω2,ω3 are described in human-frame. While in the principal-frame, we
can represent xp -axis, yp -axis, zp -axis as the unit vector (1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T , respectively.
By comparing ω1, ω2, ω3 in human-frame and xp -axis, yp -axis, zp -axis in principal-frame, we can
get the rotation matrix Rhp , which transforms coordinates from human-frame to principal-frame,
as shown in Equation (5) and Equation (6):⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦ = Rhp[ω1 ω2 ω3], (5)

Rhp = [ω1 ω2 ω3]−1. (6)

With the rotation matrix Rhp , we then calculate the projection of each axis of human-frame
in principal plane. For convenience, we use ui , i ∈ [1, 3] to represent xh-axis, yh-axis, zh-axis,
respectively. For ui , its coordinates in the principal-frame is qi , where qi = Rhpui . Then, we get
the projection vi of qi in the principal plane with M , i.e., setting the coordinate value in zp -axis
to zero, as shown in Equation (7):

vi = Mqi =

⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ qi . (7)

As shown in Figure 10(b), Figure 11(b), Figure 12(b), Figure 13(b), and Figure 14(b), we represent
the projected axis of xh-axis, yh-axis, zh-axis (of human-frame) in the principal plane with black,
green, and fuchsia dashed line, respectively.

4.2.2 Reference Plane Detection. In Figure 15, we show how to utilize the length of the pro-
jected axis to detect the reference coordinate plane. Intuitively, if the projection of axis ωi has the
shortest length in the principal plane, it indicates that the coordinate plane perpendicular to ωi

has the highest probability of being parallel to the principal plane and should be selected as the

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

AirContour: Building Contour-based Model for In-Air Writing Gesture Recognition 44:11

Fig. 10. Contour of character “m” written with right hand; x ′
h

, y′
h

, z′
h

-axis mean the projection of xh , yh ,

zh -axis, respectively.

Fig. 11. Contour of character “e” written with right hand; x ′
h

, y′
h

, z′
h

-axis mean the projection of xh , yh ,

zh -axis, respectively.

Fig. 12. Contour of character “g” written with right hand; x ′
h

, y′
h

, z′
h

, −y′
h

-axis mean the projection of xh , yh ,

zh , −yh -axis, respectively.

Fig. 13. Contour of character “d” written with right hand; x ′
h

, y′
h

, z′
h

-axis mean the projection of xh , yh ,

zh -axis, respectively.

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

44:12 Y. Yin et al.

Fig. 14. Contour of character “t” written with left hand; x ′
h

,y′
h

, z′
h

-axis mean the projection of xh ,yh , zh -axis,

respectively.

Fig. 15. Relationship between projected axis and plane included angle.

reference coordinate plane for contour calibration. In the following, we will provide the proof for
this intuition.

As shown in Figure 15, the plane ABCD and the plane EFGH intersect on line CD (i.e., EF). For

simplification, we use
−−→
O1P to represent one of the three axes (i.e., xh-axis, yh-axis, zh-axis), the

plane ABCD represents the corresponding plane perpendicular to
−−→
O1P (i.e., yh − zh plane, xh − zh

plane, or xh − yh plane), while EFGH represents the principal plane. To obtain the projection of
O1P , we first extend the line O1P to intersect with EFGH at P ′, then O1P

′ ⊥ CD, because O1P ⊥
ABCD. Besides, we make the line O1I ⊥ CD, then, we get O1I ⊥ CD and O1P

′ ⊥ CD, thus CD ⊥
�O1IP

′. From point O1, we make the line O1O
′
1, where O1O

′
1 ⊥ IP ′. Then, we obtain that O1O

′
1 ⊥

CD and O1O
′
1 ⊥ IP ′, thus O1O

′
1 ⊥ EFGH . Similarly, from point P , we make the line PO2, where

PO2 ⊥ IP ′ and PO2//O1O
′
1. Therefore,O ′1O2 is the projection ofO1P in the principal plane, |O ′1O2 | =

|O1P | · sinθ1.
In regard to θ1 and θ3, θ1 + θ2 = 90◦, θ2 + θ3 = 90◦, thus θ1 = θ3, where θ3 means the plane in-

cluded angle betweenABCD and EFGH . If θ3 (or θ1) is equal to zero, then the planeABCD is parallel
to the plane EFGH , and ABCD will be selected as reference coordinate plane, in what the projected
2D contour has the similar orientation with the 2D contour in the principal plane. In regard to

θ1 = arcsin
|O ′1O2 |
|O1P | , the length of O1P is a fixed value (e.g., a unit), if the projection’s length |O ′1O2 |

of O1P (i.e., projection of xh-axis, yh-axis, or zh-axis) achieves the minimal value, then θ1 (and θ3)
achieves the minimal value, the plane perpendicular to this axis will be selected as the reference

coordinate plane.
Therefore, in human-frame, the coordinate plane perpendicular to the axis that has the shortest

projection in principal plane will be selected as the reference coordinate plane. In Figure 10(b),
Figure 13(b), and Figure 14(b), the shortest projected axis from human-frame is yh-axis, zh-axis,

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

AirContour: Building Contour-based Model for In-Air Writing Gesture Recognition 44:13

xh-axis, respectively. Thus, the corresponding reference coordinate plane is xh − zh plane, xh − yh

plane, and yh − zh plane.

4.2.3 Reference Axis Pair Determination. As shown in Figure 6, when we detect the reference
coordinate plane, we can determine the viewing angle based on the orientation of the coordinate
plane. To describe the reference coordinate plane and its associated orientation, we introduce the
reference axis pair. For the detected xh − zh plane, yh − zh plane, xh − yh plane, the corresponding
reference axis pairs are < xh , zh >, < −yh , zh >, < xh ,yh >, when writing with right hand. Accord-
ingly, the reference axis pairs are < xh , zh >, < yh , zh >, < xh ,yh >, when writing with the left
hand. By obtaining the projection of reference axis pair in the principal plane, we can detect the
reversal and skew of the projected 2D contour.

As shown in Figure 11(b), Figure 12(b), and Figure 13(b), the user writes with the right hand,
and the reference plane is xh − zh plane, yh − zh plane, and xh − yh plane, respectively. Thus the
corresponding reference axis pairs are < xh , zh >, < −yh , zh >, and < xh ,yh >. It is noteworthy
that when the user writes with the right hand and the reference plane isyh − zh plane, the reference
axis pair is < −yh , zh > instead of < yh , zh >. Therefore, we project −yh-axis of human-frame into
the principal plane based on M (Rhp[0,−1, 0]T), as the cyan dashed line indicates in Figure 12(b).
In the figures, to clearly show the small contour in the coordinate range, we shorten the projection
vi of an axis by multiplying a scale factor α , i.e., updatingvi as αvi and setting α = 0.2 by default.
In Figure 10–Figure 14, the reference axis pairs are emphasized with bold dashed lines.

4.3 2D Contour Calibration in Principal Plane

We use the projection of reference axis pair, e.g., the projections of xh-axis, zh-axis in Figure 10(b),
to calibrate the projected 2D contour in the principal plane through reversing, rotating, and nor-
malizing.

Reversing: First, we verify whether the projected axes in the principal plane satisfy the right-
hand rule based on their cross product. If not, we will reverse the 2D contour in the principal
plane for calibration. For convenience, we use < v1,v2 > to represent the projection of the refer-
ence axis pair in the principal plane. If v1 and v2 can not meet the condition of the right-handed
coordinate system, i.e., satisfying Equation (8), then it means the projected reference axis pair and
the projected 2D character contour in the principal plane are reversed. Then, we reverse the above
axis pair and 2D contour around xp -axis for calibration, i.e., updating (xpi

,ypi
) with Equation (9),

as shown in Figure 11(c), Figure 13(c), and Figure 14(c). Otherwise, the 2D contour keeps the same
orientation, i.e., [xv

pi
,yv

pi
]T = [xpi

,ypi
]T , as shown in Figure 10(c) and Figure 12(c). Here, xp -axis,

yp -axis mean the coordinate axes in principal-frame, while (xpi
,ypi

) means the coordinates in
principal-frame.

v1 ×v2 < 0 (8)[
xv

pi
,yv

pi

]T
= [xpi

,−ypi
]T (9)

Rotating: Until now, we have introduced the reversal operation to calibrate the 2D contour.
However, the contour still has the problem like skew, as shown in Figure 10(c)–Figure 14(c). At
this time, we introduce the calibration axis vc in the principal plane to tune the contour through
rotation. For xh − zh plane andyh − zh plane, zh-axis is set as the calibration axisvc , while for xh −
yh plane, yh-axis is set asvc . After that, we use Equation (10) to calculate the rotation angle of 2D
contour, i.e., the contour rotates Δθc counterclockwise to makevc overlapyp -axis. The rotation can
be found from Figure 10(c)–Figure 14(c) to Figure 10(d)–Figure 14(d), respectively. In Equation (10),
vy means yp -axis in principal-frame, while Sgn is a sign function used to determine the rotation
angle in counterclockwise (positive) or clockwise (negative). After the calibration with rotation,

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

44:14 Y. Yin et al.

Fig. 16. Components and workflow of AirContour.

the coordinates (xv
pi
,yv

pi
) of the 2D contour are updated as (x ′pi

,y ′pi
) based on Equation (11).

Δθc =

(
arccos

vc ·vy

|vc | |vy |

)
· Sgn(vc ×vy). (10)

[
x ′pi

y ′pi

]
=

[
cos Δθc − sin Δθc

sin Δθc cos Δθc

] [
xv

pi

yv
pi

]
. (11)

Normalizing: Considering the size difference of gesture contours, we introduce the normal-
ization operation to mitigate the recognition error caused by size difference. Specifically, we use
(x ′pi ,y

′
pi), i ∈ [1,n] to represent the points in the 2D contour after rotation. Then, we use Equa-

tion (12) to update the coordinates of each point, i.e., normalizing the 2D contour. Until now, the
2D contour has been calibrated and will be used for the following character recognition.

D = arg max
i ∈[1,n]

√
(x ′pi

)2 + (y ′pi
)2.

x ′pi
=

x ′pi

D
,y ′pi
=
y ′pi

D
.

(12)

5 SYSTEM DESIGN

In Figure 16, we show the key components and workflow of our proposed system AirContour.
There are three key components: data collection and pre-processing, contour calculation, and con-
tour recognition. We first collect sensor data and pre-process the data. We then compute gesture
contours in 3D space and then utilize PCA to select the principal plane to project 3D contours into
a 2D plane. After that, we calibrate the 2D contour through reversing, rotating, and normalizing
operations. Finally, we propose an online approach, AC-Vec, and an offline approach, AC-CNN, to
recognize 2D contours as characters.

5.1 Data Collection and Pre-processing

In AirContour, sensor data are collected using a wrist-worn device (i.e., smartwatch) equipped
with an accelerometer, a gyroscope, and a magnetometer, as shown in Figure 1. With the accelera-
tion measured from accelerometer, we further get the linear acceleration (linear-acc for short) and
gravity acceleration (gravity-acc for short), according to the API supported by Android Platform
[19]. We then pre-process the sensor data by data offset correction [38], noise removal [38], coor-
dinate system transformation, and so on. In coordinate system transformation, we first transform
the sensor data from the device coordinate system (device-frame for short) to the fixed earth co-
ordinate frame (earth-frame for short) [34]. Then, we introduce the initial gestures, i.e., extending
the arm to the front and dropping the arm downward [34], to establish the human-frame shown

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

AirContour: Building Contour-based Model for In-Air Writing Gesture Recognition 44:15

in Figure 5(a). After that, we transform the sensor data from earth-frame to human-frame [34] to
tolerate the direction variation of human body.

5.2 Contour Calculation

After data pre-processing, we now calculate gesture contour in human-frame. It consists of the
following three main steps: extracting activity data, calculating gesture contours in 3D space, and
transforming 3D contours to 2D contours.

5.2.1 Extracting Activity Data. Intuitively, the start and the end of a writing gesture mean the
hand transforms from static state to active state and from active state to static state, respectively.
The sensor data between the static-to-active point and active-to-static point will be extracted as
the activity data. Suppose the linear-acc at time t is at , if at ≤ ϵl , then at means a static state.
Otherwise, it means an active state. Here, ϵl is a constant and set to 0.8m/s2 by default. If the ratio
of active states in a window wa is larger than ρa , then the end of this window indicates the start
of a writing gesture. On the contrary, if the ratio of static states in a window wa is larger than ρa ,
the start of the window indicates the end of a writing gesture. In this article, we set wa = 15 (i.e.,
number of sampling data in a window), ρa = 85% by default. Similarly, we can extract the activity
data based on gyroscope data. Finally, we select the sensor data in the common extracted segment
from linear-acc and gyroscope data as activity data.

5.2.2 Calculating Gesture Contour in 3D Space. With the extracted activity data, we will calcu-
late the contour of the in-air writing gesture. Considering the uncontrollable accumulated error
of continuous double integral, we introduce segmented integral and velocity compensation [5, 17]
for contour calculation. We utilize the gyroscope data close to zero (or below a threshold) to split
the writing process into multiple segments. Then, we reset the velocity at the start and the end of
the segment to zero to suppress the velocity drifts. In each segment, we use velocity compensation
to mitigate the computation error of velocity. With the calibrated velocity, we calculate the ges-
ture contour in 3D space by integral. In this way, although the calculated contour can be smaller or
larger than the actual contour, it keeps the important contour features (e.g., shape and orientation),
which are essential to recognizing contours as characters, as shown in Figures 10(a)–14(a).

5.2.3 Transforming 3D Contour to 2D Contour. As described in Section 4, we first introduce
Principal Component Analysis (PCA) to detect the principal/writing plane of the 3D contour. Then,
we calibrate the projected 2D contour in the principal plane through reversing, rotating, and nor-
malizing operations. After that, the calibrated 2D contour will be used for character recognition.

5.3 Contour Recognition

To recognize the calibrated 2D contours as characters, we utilize the overall space-time distribution
in the contour, i.e., the relative positions among the contour points and the shape changes along
with time, to recognize contours as characters. Specifically, we propose an online approach, AC-
Vec, and an offline approach, AC-CNN.

Vector sequence-based recognition approach: Considering the distribution of contour, we
first propose a vector sequence–based recognition approach, AC-Vec. As shown in Figure 17, we
sequentially and evenly select m points in the contour. Suppose the origin of coordinates in the
principal plane is (xp0 ,yp0), the coordinates of the ith selected point is (x ′pi

,y ′pi
). Then, we can get

the vector from the origin of coordinates to the ith selected point as �ndi
= (x ′pi

− xp0 ,y
′
pi
− yp0), as

shown in Figure 17. By putting the m coordinate vectors in a vector, we can get a feature vector
(�nd1
, �nd2
, . . . , �ndm−1

, �ndm
) that describes the distribution of the contour in principal plane. After

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

44:16 Y. Yin et al.

Fig. 17. The principle of AC-Vec.

Fig. 18. The architecture of AC-CNN.

that, we use the feature vector containing 2 ∗m elements to train a classifier (i.e., Random Forest)
for character recognition.

CNN-based recognition approach: As shown in Figure 10(d)–Figure 14(d), we can get the
image containing the 2D character contour. With the images containing the calibrated contours,
we propose AC-CNN, which utilizes convolutional neural network (CNN) [20, 22] to recognize the
handwritten character in an image as a letter belonging to “a”–“z.” The architecture of AC-CNN
is shown in Figure 18. Here, the input image containing the 2D contour is 64 ∗ 64 (pixels). To put
the time information into the 2D contour, we change the gray levels of points along the contour—
i.e., as time goes, the gray level of a point decreases from 100 to 0, as shown in Figure 18—from
gray to black. Then, the first convolutional layer filters the 64 ∗ 64 input image with six kernels
of size 5 ∗ 5, and followed by 2 ∗ 2 max-pooling. After that, the second convolutional layer and
max-pooling layer perform the similar operations. When going to the fully connected layers, we
get an 84-dimensional feature vector, which is transformed into a 26-dimensional feature vector
afterward. Finally, we use a softmax function to obtain the probability distribution over 26 classes,
i.e., classifying the contour into one of 26 characters.

6 PERFORMANCE EVALUATION

We now move to evaluate AirContour. First, we evaluate the individual components of AirContour
to verify the efficiency of the proposed contour-based gesture model. Then, we evaluate whether
AirContour can tolerate the intra-class variability among gestures, and compare our proposed
approaches AC-Vec and AC-CNN with three typical character recognition approaches: (1) DTW-
based approach [24], which converts the acceleration data into one of 33 levels and then calculates
the DTW distance between two activity segments for similarity comparison and character recog-
nition. (2) HMM-based approach [2], which utilizes six-dimensional feature vectors containing the
averaged 3D acceleration (āx , āy , āz) and the averaged 3D angular rate (д̄x , д̄y , д̄z) to train classi-
fiers for character recognition. (3) strokes and grammar tree–based approach [1] (Grammar-based
approach for short), which splits the writing gesture into strokes in the writing plane and then
utilizes the constitution relations between strokes for character recognition. After that, we eval-

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

AirContour: Building Contour-based Model for In-Air Writing Gesture Recognition 44:17

uate the person-dependent performance and person-independent performance of each approach
in character recognition. In the experiments, we use the LG Watch Urbane running on Android
platform (Android Wear 1.1.0 and Android OS 5.1.1) as a wrist-worn device, which captures the
in-air writing gestures with the embedded accelerometer, gyroscope, and magnetometer. The
sampling rate of each sensor is set to 50Hz. We recruit 14 subjects and collect data in a period of
four weeks. Subjects write in the air with the smartwatch, as shown in Figure 1 and Figure 6.

6.1 Efficiency of Contour-based Gesture Model

As shown in Figure 16, AirContour converts sensor data to contours for gesture recognition. To
verify the efficiency of the proposed contour-based gesture model, we first evaluate the compo-
nents related to the model, including sensor data processing and contour calculation, i.e., coor-
dinate system transformation, data-to-contour transformation, 3D-contour–to–2D-contour trans-
formation, principal plane selection, and 2D contour calibration. In each test, we alter only one
of the five aspects while keeping the rest unchanged. In the experiments, we invite six subjects
to write in the air, and the subjects write each character five times. We allow a certain degree of
variation in writing, i.e., the subject can hold the device in different ways, write slow or fast with
different gesture sizes, towards different directions, and so on. To evaluate the contour-based ges-
ture model, we keep AC-Vec and AC-CNN unchanged. The difference lies in the input to AC-Vec
and AC-CNN. Unless otherwise specified, we utilize the 5 times 5-fold cross-validation to evaluate
the effect of each aspect.

6.1.1 Coordinate System Transformation. In AirContour, we transform the sensor data from
device-frame to human-frame. To verify the efficiency of coordinate system transformation, we
compare the gesture contours calculated in device-frame and that in human-frame in terms of
character recognition accuracy. As shown in Figure 19, the accuracy in device-frame is inferior to
that in human-frame. Take AC-CNN as an example: The accuracy in device-frame is 77.6%, while
in human-frame it is 89.1%. This is mainly because the continuous change of device-frame makes
it difficult to accurately calculate the gesture contour, leading to the distortion of 3D contours and
disturbing the contour calibration. Therefore, coordinate system transformation is necessary; it
paves the way for the following contour calculation and calibration.

6.1.2 Data to Contour Transformation. Instead of directly using the collected sensor data for
gesture recognition, AirContour transforms sensor data to contours. To evaluate the efficiency of
the data-to-contour transformation, we compare the sensor data and final calibrated 2D contour in
terms of character recognition accuracy. As shown in Figure 20, the performance using sensor data
is inferior to the performance using gesture contour. Take AC-Vec as an example: The accuracy
using sensor data is 62.4%, while using gesture contour it is 91.0%. This is mainly because the
sensor data is difficult to tolerate the intra-class variability of gestures, e.g., the gestures of the
same character may have different sizes, orientations, and so on. Therefore, transforming sensor
data to gesture contours is meaningful.

6.1.3 3D-contour to 2D-contour Transformation. In Section 4, we describe how to transform a
3D contour to a 2D contour for character recognition. To verify the necessity of 3D contour to
2D contour transformation, we use both 3D contours and the calibrated 2D contours to test the
character recognition accuracy. Figure 21 shows that the performance of 3D contours is worse than
that of 2D contours, whether in AC-Vec or AC-CNN. Take AC-Vec as an example: The character
recognition accuracy of 3D contours is 62.3%, while accuracy of 2D contours is 91.0%. This is
mainly because 3D contours have problems such as confused viewing angles and uncertain writing
directions, as described in Section 3.2. It is difficult to directly compare the similarity between

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

44:18 Y. Yin et al.

Fig. 19. Device-frame vs.
human-frame.

Fig. 20. Sensor data vs. ges-
ture contour.

Fig. 21. 3D contour vs. cali-
brated 2D contour.

Fig. 22. Coordinate plane vs.
principal plane.

Fig. 23. 2D contour with or
without calibration.

Fig. 24. Effect of training size.

3D contours. Therefore, transforming 3D contours to 2D contours is a good choice for character
recognition.

6.1.4 Principal Plane Selection. In Section 4, we introduce PCA to detect the principal/writing
plane instead of just choosing a coordinate plane to obtain the projection of 3D contours. To eval-
uate the efficiency of the selected principal plane, we test the character recognition accuracy by
projecting 3D contours intoxh − zh plane,yh − zh plane,xh − yh plane, and principal plane, respec-
tively. Figure 22 shows that the performance of projecting 3D contours in any coordinate plane is
worse than performance in the principal plane. Take AC-CNN as an example: The character recog-
nition accuracy in xh − zh plane, yh − zh plane, xh − yh plane, and principal plane is 56.7%, 29.1%,
26.4%, 89.1%, respectively. This is mainly because the user can write towards different directions;
projecting 3D contours in a fixed coordinate plane will distort the contours of the same character.
It indicates that introducing PCA to adaptively detect the principal plane is efficient.

6.1.5 2D Contour Calibration. In AirContour, we need to calibrate the projected 2D contours in
the principal plane for the following character recognition. To verify the efficiency of the 2D con-
tour calibration, we use uncalibrated 2D contours and calibrated 2D contours in the principal plane
to test the character recognition accuracy. Figure 23 shows that the performance of uncalibrated
2D contours is worse than that of calibrated 2D contours. This is mainly because the dimensional-
ity reduction of contours with PCA may result in information loss and introduce the uncertainty
of 2D contour’s orientation, thus may confuse contours such as “b” and “q,” “d” and “p.” Therefore,
2D contour calibration is necessary for obtaining the character contour in right orientation.

6.1.6 Effect of Training Size. To further verify that the efficiency of our contour-based gesture
model shown in Figure 19–Figure 23 is not accidental, we change the size of training data and test
the performance of the two essential components in AirContour, i.e., 3D-contour to 2D-contour
transformation, 2D contour calibration. In the experiments, we recruit six subjects and every sub-
ject writes each character 10 times. Then, we randomly select one-fifth of testing samples (i.e., 12

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

AirContour: Building Contour-based Model for In-Air Writing Gesture Recognition 44:19

samples) for each character, and the remaining samples (i.e., 48 samples) for each character can be
used for training. Here, the training size means the number of training samples for each character.
As shown in Figure 24, when the training size is the same, using the final calibrated 2D contour for
character recognition achieves the best performance. Hence, each component of the contour-based
gesture model is necessary.

6.2 Effect of Intra-class Variability of Gestures

In the following experiments, we invite six subjects to write characters with different speeds, sizes,
and directions, and evaluate the character recognition accuracy. Here, the writing speed is mea-
sured with the average duration t̄a of writing a character and categorized into “Fast” (t̄a < 2.5s),
“Normal” (t̄a ∈ [2.5s, 3.5s]) and “Slow” (t̄a > 4.5s). In regard to the gesture size, it is measured
with the height and width of the contour in the principal plane, e.g., 20cm ∗ 20cm, 40cm ∗ 40cm,
60cm ∗ 60cm. While for the directions, they consist of “Front,” “Right” (or “Left”), “Below,” which
have been described in Section 3.3 and Figure 6. In an experiment, when the speed, size, and
direction are fixed, the subject writes each character five times. Unless otherwise specified, the
speed, size, direction of the writing gesture are set to “Normal,” “40cm*40cm,” “Front” by default.
In the experiments, we utilize the 5 times 5-fold cross-validation to evaluate the performance of an
approach.

6.2.1 Effect of Writing Speed. In the experiments, the subjects write characters with three dif-
ferent speeds, i.e., “Fast,” “Normal,” and “Slow.” In each speed, the subject writes each character
five times. Besides, we use “Hybrid” to represent the combination of writing gestures in different
speeds. As shown in Figure 25, as the writing speed decreases, the character recognition perfor-
mance increases. This is because the user tends to write neatly in a slow speed, and the gesture
contour can be calculated more accurately. Among the five approaches, the DTW-based approach
and HMM-based approach rely on the sensor data and can be easily affected by the writing speed,
thus the recognition accuracy is low. While for the other three approaches, they utilize the cali-
brated 2D contour generated by AirContour model for character recognition, thus having better
performances. In regard to the Grammar-based approach, it utilizes the strokes for recognition,
thus the stroke segmentation accuracy will limit the recognition accuracy. Instead, our AC-Vec
and AC-CNN use the overall contour distribution for recognition, thus having higher accuracies.
When the speed is “Slow,” the recognition accuracy of DTW-based approach, HMM-based ap-
proach, Grammar-based approach, AC-Vec, AC-CNN is 35.3%, 45.9%, 88.9%, 95.0%, 89.3%, respec-
tively.

6.2.2 Effect of Gesture Size. In the experiments, the subjects write characters with three dif-
ferent sizes, i.e., 20cm ∗ 20cm, 40cm ∗ 40cm, and 60cm ∗ 60cm. We use “Hybrid” to represent the
combination of writing gestures in different sizes. According to Figure 26, if the gesture size is
too small, the character recognition performance is low. This is mainly because the subjects tend
to perform small contours with hand or finger movements instead of arm movements, while the
wrist-worn device can hardly capture the gesture contours of micro hand or finger movements.
To solve this problem, we can attach the sensing device to the palm or fingers. Usually, our Air-
Contour can tolerate the size difference by contour normalization, as shown in Section 4.3. When
the size is “60cm*60cm,” the recognition accuracy of DTW-based approach, HMM-based approach,
Grammar-based approach, AC-Vec, AC-CNN is 57.1%, 36.5%, 84.0%, 92.3%, 89.1%, respectively. Our
approaches AC-Vec and AC-CNN outperform the three existing approaches.

6.2.3 Effect of Writing Direction. In the experiments, the subjects write characters towards dif-
ferent directions with the right hand, i.e., “Front,” “Right,” “Below,” as shown in Figure 6. We use

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

44:20 Y. Yin et al.

Fig. 25. Character recognition
vs. different writing speeds.

Fig. 26. Character recognition
vs. different gesture sizes.

Fig. 27. Character recognition
vs. different writing directions.

“Hybrid” to represent the combination of writing gestures towards different directions. According
to Figure 27, the writing directions have little effect on character recognition accuracy. This is be-
cause the sensor data and gesture contours under a same direction have similar features. In regard
to our AirContour, it can adaptively detect the principal plane and obtain a calibrated 2D character
contour, thus can tolerate the variability of writing directions. When the direction is “Front,” the
recognition accuracy of DTW-based approach, HMM-based approach, Grammar-based approach,
AC-Vec, AC-CNN is 39.1%, 38.7%, 85.9%, 94.2%, 91.2%, respectively. Our approaches AC-Vec and
AC-CNN outperform the three existing approaches.

6.3 Person-dependent Character Recognition

To evaluate the person-dependent performance in character recognition, we recruit 14 subjects to
write each character (i.e., “a”–“z”) 15 times in the air. In the experiments, the writing speed can
be “Fast,” “Normal,” “Slow,” the gesture sizes range from 20cm × 20cm to 60cm × 60cm, while the
writing direction can be “Front,” “Right’ (or “Left’), “Below.” For each subject, we use the 5 times
5-fold cross-validation method to test the character recognition accuracy by default.

Approach comparison: Based on Figure 28, the average character recognition accuracy of
DTW-based approach, HMM-based approach, Grammar-based approach, AC-Vec, AC-CNN is
55.5%, 44.3%, 84.5%, 91.8%, 80.4%, respectively. AC-Vec achieves the best performance. For our
proposed approaches, AC-Vec utilizes the Random Forest classifier, which works well with small-
size training data, i.e., 12 training samples for each character. While for AC-CNN, the convolutional
neural network (CNN) expects large-size training samples and hardly achieves high accuracy with
small-size training data. Therefore, AC-Vec is more suitable for person-dependent character recog-
nition and can provide an online recognition result for the resource-limited wearable device.

Character analysis: In Figure 31, we show the average recognition accuracy of each character.
For the characters having similar strokes, e.g., “a” and “q,” “h” and “n,” the existing Grammar-
based approach working based on strokes often fails to distinguish them. While for AC-Vec and
AC-CNN, they can utilize the overall contour distribution to distinguish characters with similar
strokes. On average, AC-Vec has the best performance.

User difference: In Figure 29, we show the average character recognition accuracy of each
subject. Due to the user difference, the character recognition accuracy of each user can be different.
However, in most cases, our approach AC-Vec outperforms the other approaches.

Training size: In this experiment, we further evaluate how the training size affects the perfor-
mance of each approach. Specifically, for each subject, we randomly select one testing sample for
each character, and the remaining 14 samples can be used for training. We change the training size,
i.e., the number of training samples for each character, from 2 to 14. As shown in Figure 30, as the
training size increases, the character recognition accuracy increases. Besides, even if there is only
small-size training data, e.g., the training size is 5, AC-Vec can achieve a good accuracy of 90.7%.
When the training size is 14, the average character recognition accuracy of DTW-based approach,

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

AirContour: Building Contour-based Model for In-Air Writing Gesture Recognition 44:21

Fig. 28. Person-
dependent: approach
comparison.

Fig. 29. Person-dependent: user difference. Fig. 30. Person-
dependent: training
size.

Fig. 31. Person-dependent: character analysis. Fig. 32. Person-independent: character analysis.

HMM-based approach, Grammar-based approach, AC-Vec, AC-CNN is 58.5%, 48.6%, 84.6%, 91.8%,
84.9%, respectively. AC-Vec and AC-CNN outperform the three existing approaches.

6.4 Person-independent Character Recognition

In these experiments, the collected sensor data is the same as that in Section 6.3. The difference is
that, here, we choose the data from one subject as testing set (i.e., leave one user out), while the
others are used as training set.

Approach comparison: Based on Figure 33, the average character recognition accuracy of
DTW-based approach, HMM-based approach, Grammar-based approach, AC-Vec, AC-CNN is
51.2%, 59.5%, 83.4%, 91.6%, 94.3%, respectively. Here, AC-CNN achieves the best performance,
which is different from that in Figure 28. This is because AC-CNN works better with large-size
training data, i.e., 13 ∗ 15 = 195 training samples for each character. Thus, AC-CNN is more suit-
able for person-independent character recognition, especially with large-size training data. Addi-
tionally, we can introduce other data sets of handwritten characters to extend the training data
and further improve the performance of AC-CNN. In practical use, person-independent recogni-
tion performance can be more important.

Character analysis: In Figure 32, we show the average recognition accuracy of each character.
According to Section 5.3, our approaches AC-Vec and AC-CNN utilize the contour distribution for
character recognition, thus outperforming the three existing approaches.

User difference: In Figure 34, we show the average character recognition accuracy of each
subject. Due to the user difference, the character recognition accuracy of each user can be different.
However, our approaches AC-Vec and AC-CNN often outperform the three existing approaches.

Training size: In the experiments, we randomly leave the data of one subject as testing data,
while the data from other subjects can be used as training data. As shown in Figure 35, the training
size, i.e., the number of users whose data are used as training data, ranges from 1 to 13. As the
training size increases, the character recognition accuracy increases. When the training size is
4, the average character recognition accuracy of DTW-based approach, HMM-based approach,
Grammar-based approach, AC-Vec, AC-CNN is 36.7%, 48.2%, 87.7%, 91.3%, 90.3%, respectively.

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

44:22 Y. Yin et al.

Fig. 33. Person-
independent: approach
comparison.

Fig. 34. Person-independent: user difference. Fig. 35. Person-
independent: training
size.

When the training size is equal to or larger than 4, AC-Vec and AC-CNN can achieve good accuracy,
i.e., equal to or larger than 90%.

6.5 Discussion

Running States of AirContour: To deploy AirContour on wrist-worn devices, e.g., LG Watch
Urbane, we should consider the computational complexity. In AirContour, the training process
is conducted offline, and the trained classifiers can be added to the smartwatch. In regard to the
testing process, our online approach AC-Vec can work on smartwatches. When adding the data
processing time and the classification time of Random Forest classifier, AC-Vec can recognize the
character without noticeable time latency (i.e., usually less than 150ms). In regard to the offline
approach AC-CNN, it performs the testing process on a PC and sends the recognized result to the
smartwatch. In addition to time latency, we also test the energy consumption of the smartwatch in
the following three states: (1) idle with screen on; (2) sensing with accelerometer, gyroscope, and
magnetometer; (3) processing data with PCA. We use “Battery Historian” from Google to mea-
sure the energy consumption of the smartwatch [33]. The duration for consuming 1% battery for
each state is 423s, 259s, and 189s, respectively. Given 410mAh battery capacity and 3.7V working
voltage, the power consumption of each state is 129mW, 211mW, and 289mW, respectively. In the
future, we will further optimize AC-Vec and AC-CNN to make them work on a smartwatch in a
more time-efficient and power-saving way.

Limitations and future work: When writing a character, a user can write slow or fast, and
the duration of writing can last several seconds. Even if the user writes fast, the duration is often
larger than one second, which indicates that AirContour can hardly provide a fast input speed.
This is because AirContour mainly focuses on building contours for gesture recognition in 3D
space, which can benefit not only in-air writing gesture recognition, but also other scenarios such
as sign-language recognition and remote control with hand gestures. In our future work, we will
combine application scenarios with AirContour to improve the input speed.

In addition to writing speed, Section 6.2.2 has mentioned some limitations in writing sizes. In
this article, we utilize a wrist-worn device to capture in-air writing gestures. When the gesture size
is to small, the device worn on the wrist can hardly capture micro-gesture contours. To guarantee
the gesture recognition accuracy, we expect the gesture size is larger than 20cm ∗ 20cm. In our
future work, we will try to apply AirContour in small-size in-air gesture recognition by attaching
lightweight sensors on fingers to capture micro movements.

In regard to the writing direction, we allow the user to write towards different directions. How-
ever, AirContour expects that most of the points in the 3D contour are close to or located in a
plane, thus it can detect a valid principal plane. In the future, we will try to improve the robust-
ness of AirContour in recognizing more complex 3D contours. Besides, during a writing process,
the user almost keeps the body unchanged. However, if the user keeps walking while writing in

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

AirContour: Building Contour-based Model for In-Air Writing Gesture Recognition 44:23

the air, we will get the mixed sensor data of body movements and arm movements. At this time,
we need to filter out the body movements and extract the arm movements for gesture recognition.
In our future work, we will try to recognize in-air writing gestures with complex movements.

In addition, this article mainly focuses on single character recognition for in-air writing gestures
in 3D space. For a character, a user writes in a continuous way, i.e., no forced segmentation of
strokes in a character. While among different characters, we introduce a relatively long pause,
i.e., segmenting different characters with pauses. In the future, we will consider removing the
pauses among characters to recognize words or sentences in a more natural and continuous way.
In addition, we will try to introduce language models to further improve the character recognition
accuracy.

7 CONCLUSION

In this article, we propose AirContour to recognize in-air writing gestures. We propose a novel
contour-based gesture model to model human gestures as contours in 3D space based on sensor
data and then propose an online approach, AC-Vec, and an offline approach, AC-CNN, to recog-
nize contours as characters. The AC-Vec is more suitable for person-dependent character recog-
nition with small-size training data, while AC-CNN has better scalability and is more suitable for
person-independent character recognition with large-size training data; and AC-CNN can achieve
an even higher recognition accuracy. Experimental results show that we can achieve the character
recognition accuracy of 94.3%.

REFERENCES

[1] Sandip Agrawal, Ionut Constandache, Shravan Gaonkar, Romit Roy Choudhury, Kevin Caves, and Frank DeRuyter.

2011. Using mobile phones to write in air. In Proceedings of the 9th International Conference on Mobile Systems, Appli-

cations, and Services. ACM, 15–28.

[2] Christoph Amma, Marcus Georgi, and Tanja Schultz. 2014. Airwriting: A wearable handwriting recognition system.

Person. Ubiq. Comput. 18, 1 (2014), 191–203.

[3] Muhammad Naeem Ayyaz, Imran Javed, and Waqar Mahmood. 2012. Handwritten character recognition using multi-

class SVM classification with hybrid feature extraction. Pakistan Journal of Engineering and Applied Sciences 10 (2012),

57–67.

[4] Claus Bahlmann, Bernard Haasdonk, and Hans Burkhardt. 2002. Online handwriting recognition with support vector

machines—A kernel approach. In Proceedings of the 8th International Workshop on Frontiers in Handwriting Recognition.

IEEE, 49–54.

[5] Won-Chul Bang, Wook Chang, Kyeong-Ho Kang, Eun-Seok Choi, Alexey Potanin, and Dong-Yoon Kim. 2003. Self-

contained spatial input device for wearable computers. In Proceedings of the 7th IEEE International Symposium on

Wearable Computers. IEEE Computer Society, 26.

[6] Muzaffar Bashir, Georg Scharfenberg, and Jürgen Kempf. 2011. Person authentication by handwriting in air using a

biometric smart pen device. BIOSIG 191 (2011), 219–226.

[7] Peter Blank, Julian Hoßbach, Dominik Schuldhaus, and Bjoern M. Eskofier. 2015. Sensor-based stroke detection and

stroke type classification in table tennis. In Proceedings of the ACM International Symposium on Wearable Computers.

ACM, 93–100.

[8] Ke-Yu Chen, Kent Lyons, Sean White, and Shwetak Patel. 2013. uTrack: 3D input using two magnetic sensors. In

Proceedings of the 26th ACM Symposium on User Interface Software and Technology. ACM, 237–244.

[9] Sung-Jung Cho, Jong Koo Oh, Won-Chul Bang, Wook Chang, Eunseok Choi, Yang Jing, Joonkee Cho, and Dong Yoon

Kim. 2004. Magic wand: A hand-drawn gesture input device in 3-D space with inertial sensors. In Proceedings of the

9th International Workshop on Frontiers in Handwriting Recognition (IWFHR-9’04). IEEE, 106–111.

[10] Eun-Seok Choi, Won-Chul Bang, Sung-Jung Cho, Jing Yang, Dong-Yoon Kim, and Sang-Ryong Kim. 2005. Beatbox

music phone: Gesture-based interactive mobile phone using a tri-axis accelerometer. In Proceedings of the IEEE Inter-

national Conference on Industrial Technology (ICIT’05). IEEE, 97–102.

[11] Andrea Giovanni Cutti, Andrea Giovanardi, Laura Rocchi, Angelo Davalli, and Rinaldo Sacchetti. 2008. Ambulatory

measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med. Bio. Eng. Comput. 46, 2

(2008), 169–178.

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

44:24 Y. Yin et al.

[12] Qian Dai, Jiahui Hou, Panlong Yang, Xiangyang Li, Fei Wang, and Xumiao Zhang. 2017. The sound of silence: End-

to-end sign language recognition using SmartWatch. In Proceedings of the 23rd International Conference on Mobile

Computing and Networking. ACM, 462–464.

[13] Thomas Deselaers, Daniel Keysers, Jan Hosang, and Henry A. Rowley. 2015. Gyropen: Gyroscopes for pen-input with

mobile phones. IEEE Trans. Human-Machine Syst. 45, 2 (2015), 263–271.

[14] Patrick Doetsch, Michal Kozielski, and Hermann Ney. 2014. Fast and robust training of recurrent neural networks

for offline handwriting recognition. In Proceedings of the 14th International Conference on Frontiers in Handwriting

Recognition (ICFHR’14). IEEE, 279–284.

[15] Tao Gu, Liang Wang, Hanhua Chen, Xianping Tao, and Jian Lu. 2011. Recognizing multiuser activities using wireless

body sensor networks. IEEE Trans. Mobile Comput. 10, 11 (2011), 1618–1631.

[16] Kamal Hotwani, Sanjeev Agarwal, and Roshan Paswan. 2018. Hybrid models for offline handwritten character recog-

nition system without using any prior database images. In Data Engineering and Intelligent Computing. Springer,

99–108.

[17] B. Huang, G. Qi, X. Yang, L. Zhao, and H. Zou. 2016. Exploiting cyclic features of walking for pedestrian dead reck-

oning with unconstrained smartphones. In Proceedings of the ACM International Joint Conference on Pervasive and

Ubiquitous Computing (UbiComp’16).

[18] Hua Huang and Shan Lin. 2016. Toothbrushing monitoring using wrist watch. In Proceedings of the 14th ACM Con-

ference on Embedded Network Sensor Systems CD-ROM. ACM, 202–215.

[19] Google Inc.2018. Motion sensors. Retrieved from: https://developer.android.com/guide/topics/sensors/sensors_

motion.

[20] Wenchao Jiang and Zhaozheng Yin. 2015. Human activity recognition using wearable sensors by deep convolutional

neural networks. In Proceedings of the 23rd ACM International Conference on Multimedia. ACM, 1307–1310.

[21] Zhiping Jiang, Jinsong Han, Chen Qian, Wei Xi, Kun Zhao, Han Ding, Shaojie Tang, Jizhong Zhao, and Panlong

Yang. 2016. VADS: Visual attention detection with a smartphone. In Proceedings of the IEEE International Conference

on Computer Communications. IEEE, 1–9.

[22] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document

recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

[23] Zhenjiang Li, Mo Li, Prasant Mohapatra, Jinsong Han, and Shuaiyu Chen. 2017. iType: Using eye gaze to enhance

typing privacy. In Proceedings of the IEEE International Conference on Computer Communications. IEEE, 1–9.

[24] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. 2009. uWave: Accelerometer-based personal-

ized gesture recognition and its applications. Perv. Mobile Comput. 5, 6 (2009), 657–675.

[25] Zhihan Lv, Alaa Halawani, Shengzhong Feng, Shafiq Ur Réhman, and Haibo Li. 2015. Touch-less interactive aug-

mented reality game on vision-based wearable device. Person. Ubiq. Comput. 19, 3–4 (2015), 551–567.

[26] Abhinav Parate, Meng-Chieh Chiu, Chaniel Chadowitz, Deepak Ganesan, and Evangelos Kalogerakis. 2014. Risq:

Recognizing smoking gestures with inertial sensors on a wristband. In Proceedings of the 12th International Conference

on Mobile Systems, Applications, and Services. ACM, 149–161.

[27] Zheheng Rao, Chunyan Zeng, Minghu Wu, Zhifeng Wang, Nan Zhao, Min Liu, and Xiangkui Wan. 2018. Research on

a handwritten character recognition algorithm based on an extended nonlinear kernel residual network. KSII Trans.

Internet Inform. Syst. 12, 1 (2018).

[28] Frédéric Rayar, Seiichi Uchida, and Masanori Goto. 2017. CNN training with graph-based sample preselection: Ap-

plication to handwritten character recognition. Retrieved from: arXiv preprint arXiv:1712.02122 (2017).

[29] Sheng Shen, He Wang, and Romit Roy Choudhury. 2016. I am a smartwatch and I can track my user’s arm. In Pro-

ceedings of the 14th International Conference on Mobile Systems, Applications, and Services. ACM, 85–96.

[30] Jonathon Shlens. 2014. A tutorial on principal component analysis. Retrieved from: arXiv preprint arXiv:1404.1100

(2014).

[31] Edison Thomaz, Irfan Essa, and Gregory D. Abowd. 2015. A practical approach for recognizing eating moments with

wrist-mounted inertial sensing. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous

Computing. ACM, 1029–1040.

[32] Jeen-Shing Wang, Yu-Liang Hsu, and Jiun-Nan Liu. 2010. An inertial-measurement-unit-based pen with a trajectory

reconstruction algorithm and its applications. IEEE Trans. Industr. Electron. 57, 10 (2010), 3508–3521.

[33] Yandao Huang, Xinyu Zhang, Lu Wang, Rukhsana Ruby, Kaishun Wu, Wenqiang Chen, and Lin Chen. 2019. Taprint:

Secure text Input for commodity smart wristbands. Retrieved from: https://sigmobile.org/mobicom/2019/accepted.

php.

[34] Lei Xie, Xu Dong, Wei Wang, and Dawei Huang. 2017. Meta-activity recognition: A wearable approach for logic

cognition-based activity sensing. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’17).

IEEE, 1–9.

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

https://developer.android.com/guide/topics/sensors/sensors_motion
https://developer.android.com/guide/topics/sensors/sensors_motion
https://sigmobile.org/mobicom/2019/accepted.php
https://sigmobile.org/mobicom/2019/accepted.php

AirContour: Building Contour-based Model for In-Air Writing Gesture Recognition 44:25

[35] Chao Xu, Parth H. Pathak, and Prasant Mohapatra. 2015. Finger-writing with smartwatch: A case for finger and hand

gesture recognition using smartwatch. In Proceedings of the 16th International Workshop on Mobile Computing Systems

and Applications. ACM, 9–14.

[36] Songbin Xu and Yang Xue. 2016. Air-writing characters modelling and recognition on modified CHMM. In Proceedings

of the IEEE International Conference on Systems, Man, and Cybernetics (SMC’16). IEEE, 001510–001513.

[37] Lei Yang, Yi Guo, Xuan Ding, Jinsong Han, Yunhao Liu, Cheng Wang, and Changwei Hu. 2015. Unlocking smart

phone through handwaving biometrics. IEEE Trans. Mobile Comput.5 (2015), 1044–1055.

[38] Yafeng Yin, Lei Xie, Yuanyuan Fan, and Sanglu Lu. 2017. Tracking human motions in photographing: A context-aware

energy-saving scheme for smart phones. ACM Trans. Sensor Netw. 13, 4 (2017), 29.

[39] Shiqi Zhang, Chun Yuan, and Yan Zhang. 2008. Handwritten character recognition using orientation quantization

based on 3D accelerometer. In Proceedings of the 5th International Conference on Mobile and Ubiquitous Systems: Com-

puting, Networking, and Services. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering), 54.

[40] Hongyang Zhao, Shuangquan Wang, Gang Zhou, and Daqing Zhang. 2017. Gesture-enabled remote control for

healthcare. In Proceedings of the IEEE/ACM International Conference on Connected Health: Applications, Systems and

Engineering Technologies (CHASE’17). IEEE, 392–401.

[41] Tianming Zhao, Jian Liu, Yan Wang, Hongbo Liu, and Yingying Chen. 2018. PPG-based finger-level gesture recogni-

tion leveraging wearables. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’18). IEEE,

1457–1465.

[42] Huiyu Zhou and Huosheng Hu. 2005. Inertial motion tracking of human arm movements in stroke rehabilitation. In

Proceedings of the IEEE International Conference on Mechatronics and Automation, Vol. 3. IEEE, 1306–1311.

[43] Huiyu Zhou and Huosheng Hu. 2007. Upper limb motion estimation from inertial measurements. Int. J. Inform. Tech-

nol. 13, 1 (2007), 1–14.

[44] Huiyu Zhou, Huosheng Hu, and Yaqin Tao. 2006. Inertial measurements of upper limb motion. Med. Bio. Eng. Comput.

44, 6 (2006), 479–487.

[45] Hongzi Zhu, Jingmei Hu, Shan Chang, and Li Lu. 2017. ShakeIn: Secure user authentication of smartphones with

single-handed shakes. IEEE Trans. Mobile Comput. 10 (2017), 2901–2912.

Received December 2018; revised June 2019; accepted July 2019

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 44. Publication date: October 2019.

