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Abstract— Data dissemination is a fundamental service offered
by low-power wireless networks. Sender selection is the key to
the dissemination performance and has been extensively studied.
Sender impact metric plays a significant role in sender selection,
since it determines which senders are selected for transmission.
Recent studies have shown that spatial link diversity has a
significant impact on the efficiency of broadcast. However, the
existing metrics overlook such impact. Besides, they consider
only gains but ignore the costs of sender candidates. As a
result, existing works cannot achieve accurate estimation of
the sender impact. Moreover, they cannot well support data
dissemination with network coding, which is commonly used
for lossy environments. In this paper, we first propose a novel
sender impact metric, namely, γ , which jointly exploits link
quality and spatial link diversity to calculate the gain/cost ratio
of the sender candidates. Then, we develop a generic sender
selection scheme based on the γ metric (called γ-component) that
can generally support both types of dissemination using native
packets and network coding. Extensive evaluations are conducted
through real testbed experiments and large-scale simulations.
The performance results and analysis show that γ achieves
far more accurate impact estimation than the existing works.
In addition, the dissemination protocols based on γ-component
outperform the existing protocols in terms of completion time
and transmissions (by 20.5% and 23.1%, respectively).

Index Terms— Sender selection, network coding, data dissem-
ination, low-power wireless network.
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I. INTRODUCTION

LOW power wireless networks have gained increasing
importance for a variety of civil and military applications.

A low power wireless network consists of a large number of
small and inexpensive wireless nodes that integrate sensing,
computation, and wireless communication capabilities [1]–[4].
Bulk data dissemination is used to disseminate a large data
object to all network nodes reliably in a multi-hop manner.
It is one of the key enabling services for software update,
surveillance video distribution, etc. in low power wireless
networks [5]–[7].

Existing dissemination protocols typically divide a large
data object into multiple pages to enable the multi-
hop pipeline transfer, and use the three-way handshake
mechanism (ADV-REQ-DATA) to ensure data consis-
tency. While some protocols [8]–[10] use native packets,
others [11]–[14] use network coding to enhance the dissem-
ination performance. However, the coding/decoding incurs
considerable delay overhead. Network users choose whether
to use coding based protocol or not, according to the wireless
conditions. Specifically, when there is much spatial diversity,
coding based protocols are preferred. Otherwise, native pack-
ets based protocols are preferred.

For both types of dissemination, sender selection plays a
critical role for the transmission/delay performance, and has
attracted much research attention [9], [10], [15]. The underly-
ing principle of sender selection is to choose the best sender
in a neighborhood that is expected to have the most impact
in transmission. The sender impact metric is the key to select
the best sender. MNP [9] uses the number of receivers as the
selection metric. ECD [10] takes a step forward by considering
link quality as well as the number of receivers. UFlood [15],
a dissemination protocol for mesh networks, jointly considers
the number of receivers, link quality and bit rate. When applied
in low power networks, UFlood has the same sender selection
metric with ECD since the bit rate is fixed.

Recent studies [16]–[19] show that packet receptions on
adjacent wireless links much often correlated, which is differ-
ent from the long held assumption of independent receptions.
We observe that link correlation implicitly plays an important
role on the efficiency of a sender’s transmission by affecting
the reception statuses at receivers. Consider that a sender
transmits a page of packets to multiple receivers. In case
that the sender’s outbound links are strongly correlated, the

1063-6692 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



ZHAO et al.: ACCURATE AND GENERIC SENDER SELECTION FOR BULK DATA DISSEMINATION 949

receivers will exhibit similar reception statuses (i.e., if one
receiver receives a packet, others are more likely to receive it,
and vice versa). Consequently, re-transmission will be more
efficient as the receivers are likely to request the same packets.
In contrast, in case of weak link correlation, a sender should
re-transmit more packets since each receiver may request
different packets. Considering the lossy nature of low power
wireless links, the re-transmission overhead is a critical criteria
for sender’s efficiency. Although the use of network coding can
partially reduce the negative impact of weak link correlation,
we observe that the impact on node reception statuses still
greatly affects the transmission efficiency (Section III.B).

Unfortunately, the existing sender selection mechanisms
overlook the impact of link correlation, resulting in inaccurate
sender selection and inefficient dissemination. In this paper,
we exploit link correlation to design a novel sender selection
scheme. We first propose a novel sender selection metric,
named γ factor (γ for its sharp emission lines), which formally
models the expected packet-level gain/cost ratio for each
potential sender. We utilize the reception statuses in REQ
messages received by a sender to extract link correlation and
transmission progress information. The information, combined
with link quality, is then used to estimate the utility of
each requested packet to send, i.e., the number of successful
receptions per packet transmission. This is different from the
existing designs since they consider only the expected recep-
tions but overlook the total number of transmissions. Under
this estimation, γ is able to achieve accurate sender selection
consistently with various link conditions, while the existing
metrics of MNP, ECD and UFlood can achieve the same accu-
racy only under special conditions with weak link correlation.

We then propose a generic sender selection scheme
based on the γ factor, named γ-component, which can
be easily adopted in the existing dissemination protocols
for accurate sender selection. We incorporate γ-component
with two popular dissemination protocols—Deluge [8] and
Rateless Deluge [11], and conduct extensive experiments
to evaluate the effect of γ factor. The results show that
1) γ yields more accurate sender selection by 155.2%, 36.1%
and 29.2% compared to the metrics used in Deluge, MNP, and
ECD/UFlood, respectively. 2) By incorporating γ-component
into Deluge and Rateless Deluge, the number of transmis-
sions and completion time are reduced by 20.5% and 23.1%,
respectively.

The major contributions of this paper include:
• An accurate sender selection metric (i.e., γ) is proposed

for efficient bulk data dissemination. The new metric
takes into account both link quality and link correlation.

• A lightweight and generic sender selection scheme based
on γ, namely γ-component, is developed and incorpo-
rated into data dissemination for improving the protocol
performance.

• Extensive testbed and simulations studies are conducted.
The performance results demonstrate that γ is a more
accurate sender selection metric and γ-based protocols
outperform the existing protocols.

The remainder of this paper is organized as follows.
Section II introduces the related work and background.

Section III deserves the motivation of our work. Section IV
presents the γ factor in detail. Section V presents the
γ-component and its incorporation with existing proto-
cols. Section VI evaluates the performance of dissemination
protocols based on γ-component. Finally, Section VII con-
cludes this paper.

II. RELATED WORKS & BACKGROUND

In this section, we first outline an overview of the existing
bulk data dissemination protocols for low power wireless
networks, and then present the details of the most related
works, with a particular focus on sender selection.

We classify the existing bulk data dissemination protocols
into two categories: protocols using native packets and proto-
cols based on network coding. Network users choose whether
to use coding based protocols or not, according to the network
environmental conditions [20]. When there is much spatial
diversity such as indoor environment, complex terrain, etc.,
coding based protocols are preferred. Otherwise, non-coding
protocols are preferred.

Next, we provide more details for the most related works,
with special focus on sender selection.

A. Native Packets Based Dissemination

1) Deluge: Deluge is the standard bulk data dissemination
protocol used in TinyOS [21]. It first segments a large object
into multiple pages, each of which consists of multiple packets.
It then transmits a page in one batch. NACK-based three-way
handshake mechanism is used for ensuring reliability. Each
node periodically broadcasts ADV messages to announce how
many pages it can provide. If a node receives ADV messages
that contain more pages, it randomly selects a sender to
transmit REQ messages. The REQ messages contain bitmaps
indicating the lost packets, such that the senders can transmit
the requested packets. However, considering that different
senders may be largely different in the transmission efficiency,
the random selection may increase the overhead in terms of
transmissions and delay.

2) MNP and ECD: MNP [9] and ECD [10] use a more
accurate sender selection algorithm to improve the dissemina-
tion performance. In MNP, each sender counts for the number
of unique requests it has received (using a reqCtr counter). The
sender with the largest reqCtr will be selected and will start
transmitting data packets. The rationale of MNP is clear: the
sender with the largest reqCtr will likely serve more requesters,
resulting in faster dissemination.

ECD further considers link quality. The sender with a large
number of requesters and good link quality to those requesters
will be favored. ECD selects senders with fewer transmis-
sions compared to MNP. Formally, let u denote a sender,
N req

u denote the set of requesters of u, and quv denote the
link quality from u to v. The sender selection metric used in
MNP is calculated as

εMNP = |N req
u | (1)

while the sender selection metric used in ECD is

εECD =
∑

v∈Nreq
u

quv (2)
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B. Coding Based Dissemination

1) Rateless Deluge and SYNAPSE: Both Rateless
Deluge [11] and SYNAPSE [12] apply network coding to
improve the dissemination performance in lossy environments.
Rateless Deluge employs random linear code while SYNAPSE
employs Fountain code. Instead of transmitting native packets,
Rateless Deluge transmits encoded packets. Upon receiving
a specified number of encoded packets, the receiver can
decode the packets. Due to resource limitation of a low-power
node, both the sender and receiver share the same seed
for generating a sequence of random coefficients so that
the message overhead of the coefficients can be avoided.
Encoding can only be performed on native packets. As such,
the decoding cost may have a large impact on the performance
since a forwarding node must decode a page of packets before
it can prepare encode and transmit packets to the next hop.
The random sender selection algorithm used in both Rateless
Deluge and SYNAPSE is similar to the one in Deluge.

2) UFlood: UFlood [15] is a dissemination protocol com-
bining both network coding and sender selection in wireless
mesh networks. It addresses the problem of reliable dissem-
ination of multiple packets to all network nodes. Different
from Rateless Deluge and SYNAPSE, UFlood can encode
encoded packets (e.g., encoded packet of the 2nd generation,
3rd generation, ...). The additional cost of the design includes
the coefficients into the encoded packets. While it may be
reasonable for wireless mesh nodes, it may not be affordable
for low-power wireless nodes. UFlood uses the following
sender selection metric.

εUFlood =
∑

v∈Nall
u

quv,bu · bu · Iuv (3)

where Nall
u is the set of all neighboring nodes (not only

requesters), bu is the optimal bit rate chosen by u, and Iuv is
the variable indicating whether u’s transmission is useful to v.

It is worth noting that UFlood does not employ the
ADV-REQ-DATA handshake. Instead, each UFlood node peri-
odically exchanges feedback messages containing a bit vector
(only affordable in mesh networks), which indicates its own
received and missing packets. As a result, Iuv plays an
important role to identify whether quv should be accounted
in u’s utility: When node u receives feedback messages from
node v, node u checks whether it has useful packets for node v.
If yes, Iuv is set, and then quv is accounted for u’s utility.
This is equivalent to the case that node v sends an REQ
message to node u such that quv is accounted for u’s utility.
Hence, Eq. (3) essentially calculates the sum of quv,bu · bu for
all requesters. Besides, when applied in low power wireless
networks equipped with 802.15.4 radios, bu can be neglected
since the bit rate cannot be adaptively changed. Therefore, the
metric used in UFlood can be re-written as:

εUFlood =
∑

v∈Nall
u

quv,bu · bu · Iuv

=
∑

v∈Nreq
u

quv,bu · bu

= bu ·
∑

v∈Nreq
u

quv,bu (4)

We can see that εUFlood is essentially bu times of εECD.
When using εUFlood as the sender selection metric, for the
same contending senders, if a sender has the largest impact
value of εUFlood, it will also have the largest impact value
of εECD. The selected sender will be identical for both
metrics. As such, we use εECD to denote both ECD’s and
UFlood’s metrics in the following sections for simplicity.
There are some more recent works [22], [23] that exploit
constructive interference for dissemination. For example, the
work [22] achieves far more efficient dissemination than
Deluge by using both constructive interference and network
coding. The establishment of constructive interference and the
flooding structure may require stringent time synchronization.

C. Short Summary

Existing sender selection metrics evaluate a sender by cal-
culating the expected number of receivers of the sender. There
are two factors that introduce errors to these metrics: (i) They
only consider the gain (i.e., the number of receivers) without
considering the cost (i.e., the number of transmissions by the
sender). A sender that have many neighboring nodes with
weak links can be selected by these metrics, as the sum of its
outbound link qualities can be large. However, such a sender’s
transmissions may not be efficient as it may require a large
number of transmissions to cover its neighbors. (ii) They fail
to consider link correlation or reception statuses at receivers.
As to be demonstrated in Section III, link correlation greatly
affects the transmission efficiency of a sender by impacting the
reception statuses at receivers. In contrast, γ can (i) essentially
calculate the gain/cost ratio of a sender and (ii) effectively
make use of node reception statuses to exploit link correlation
when evaluating a sender’s effectiveness. Moreover, γ consis-
tently achieves accurate sender selection in various conditions
while other metrics can achieve the same accuracy only under
special conditions. Besides, γ can be used for dissemination in
both radio-always-on networks [8]–[10] and low-duty-cycled
networks [24].

III. MOTIVATING EXAMPLES

In this section, we use two examples to clearly present the
motivation of our works.

A. Dissemination Protocol Using Native Packets

Figure 1 shows an example in which S1 and S2 are two
potential senders while N1, N2 and N3 are three receivers.
S1 and S2 intend to cover N1, N2 and N3 with a page
of 10 packets. The quality for each directional link is indicated
using a percentage. The percentages below S1 and S2 indicate
the corresponding link correlation: the link correlation between
S1→N1 and S1→N2 is 100%, indicating that when the
transmission over S1→N1 fails, the transmission over S1→N2
also fails. The link correlation between S2→N2 and S2→N3
is 0, indicating that when the transmission over S2→N2 fails,
the transmission over S2→N3 can succeed.
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Fig. 1. A motivating example with native packets.

In each transmission round, the senders transmit all missing
packets of the receivers in a batch. For example, if S1 intends
to cover N1, it will transmit all N1’s missing packets according
to the received REQ from N1. At the end of the first round
transmission, the reception statuses of the receivers in a given
page are indicated by the blocks below, where a black block
denotes a missing packet and a white block denotes a received
packet. We can see that due to the impact of link correlation,
N1 and N2 have the same missing packets while N2 and N3
have no common missing packets. The receivers respond with
request (REQ) messages (carrying bit vectors indicating the
reception statuses) for the missing packets.

We examine the performance of the existing sender selection
metrics. Using εECD, S2 will be first selected as the sender.
This is because the impact of S2 (εECD(S2) = 0.9 +
0.5 = 1.4) is larger than the impact of S1 (εECD(S1) =
0.5+0.5 = 1). After selected as a sender, S2 starts transmitting
the requested data packets to N2 and N3. The expected number
of transmissions to cover N2 and N3 is 1

0.9 + 5
0.5 = 11.1. Note

that we call a node covered only when it has received the
whole page of packets. When N2 and N3 are both covered,
N1 still has missing packets. To cover N1, S1 needs 5

0.5 = 10
transmissions. The total number of transmissions to cover all
the receivers is 10+11.1=21.1.

When the random selection algorithm and MNP’s metric
are used, we cannot decide the sending priority of S1 and S2.
Because both S1 and S2 have 2 receivers such that εMNP = 2
for both senders. Actually, S1 is the better one to be first
selected. When S1 is selected, as N1 and N2 are requesting
the same five packets, the expected number of transmissions
to cover N1 and N2 is 5

0.5 = 10. Then N3 still needs 1 packet
and S2 needs to cover N3 with 1

0.9 = 1.1 transmissions. The
total number of transmissions to cover all the receivers is
10+1.1=11.1 < 21.1.

With this example, we conclude that considering link quality
alone cannot accurately estimate a sender’s impact.

B. Dissemination Protocols Using Network Coding

Figure 2 shows a similar example in which S1 and S2 are
two potential senders while N1, N2 and N3 are three receivers.
When network coding is used, an encoded packet transmission
is useful to a node as long as the node did not receive a
sufficient number of encoded packets (i.e., 10 encoded packets
in the example) [11], [12]. As a result, the reception statuses
of the receivers are indicated by the number of missing

Fig. 2. A motivating example with network coding.

packets, instead of a request bit vector. The numbers inside
the rectangles indicate how many encoded packets are needed
by the corresponding receiver to recover a given page. Another
difference is that the number of transmissions by the sender
is decided by the worst link from the sender to the receivers.

After the first round of transmission, the receivers receive
some packets while still needing a certain number of packets
to decode an entire page.

We also examine the performance of the existing sender
selection algorithms. Using ECD’s metric (or UFlood’s met-
ric), S2 will be first selected as a sender. This is because the
impact of S2 (εECD(S2) = 0.5+0.9 = 1.4) is larger than that
of S1 (εECD(S2) = 0.5 + 0.5 = 1). As a packet transmission
is useful to a node as long as the node has not received a
sufficient number of packets, the number of transmissions is
decided by the worst link, i.e., S2→N2. The expected number
of transmissions of S2 to cover both N2 and N3 is 5

0.5 = 10.
After that, N1 still needs five encoded packets. To cover N1,
S1 should transmit 5

0.5 = 10 packets. In total, the number of
transmissions to cover N1, N2 and N3 is 10+10=20.

Similarly, both the random selection algorithm and MNP’s
metric cannot decide the sending priority of S1 and S2 in this
example. Actually, S1 is the better one to be first selected.
When S1 is selected, as N1 and N2 both request five packets,
the expected number of transmissions to cover N1 and N2
is 5/0.5=10. After that, S2 needs only 1

0.9 = 1.1 trans-
missions to cover N3. The total number of transmissions is
10+1.1=11.1 < 20.

From both case studies, we conclude that link correlation
affects the performance of bulk data dissemination protocols
by affecting the reception statuses of receivers and it should
be incorporated into the metric design in the sender selec-
tion algorithm for evaluating the effectiveness of a sender’s
broadcast.

IV. THE γ FACTOR

Based on the above observation, we design γ, an accurate
sender selection metric incorporating both link quality and
reception statuses (i.e., bit vectors in REQ messages). The key
idea of γ is to utilize the node reception statuses to accurately
estimate the expected gain/cost ratio of a potential sender
(i.e., the average expected number of receptions for each
requested packet transmission). γ favors senders with the
better link quality and stronger link correlation.

In general, γ can be calculated as follows:

γi =
Gi

Ci
(5)
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where Gi is the gain (i.e., the expected packet receptions) of
node i, and Ci is the cost (i.e., the number of transmissions)
of node i. Next, we present the calculation of γ for both non-
coding and coding based dissemination.

A. Notations

The notations are listed as follows.
• μ[i] denotes the reception utility of the i-th packet.
• γu denotes node γ value of u.
• Nall

u denotes the set of neighboring nodes of node u.
• N req

u denotes the set of nodes who have sent requests to
node u.

• |Nu| denotes the size of Nu, i.e., the number of nodes
that have sent requests to node u.

• quv denotes the link quality from node u to node v.
• Rvu denotes the request vector from node v to node u.
• |Rvu| denotes the length of Rvu. For example,

|Rvu| = 48 in Deluge since a default Deluge page
consists of 48 packets.

• Rvu[i] denotes the i-th bit of Rvu. The value 1 denotes
the corresponding packet is lost at v and needs to be
retransmitted by u and 0 denotes the corresponding
packet is correctly received at v.

• Ru denotes the combined request vector at node u.
• |Ru| denotes the length of Ru.
• Ru[i] = ∨v∈NuRvu[i]. If Ru[i] = 1, the i-th packet in

the current page needs to be (re-)transmitted.
• nv denotes the number of missing packets of node v

within the receiving page.

B. Description of γ

We describe the calculation of γ in detail for both native
packets and network coding based dissemination. When a
potential sender receives requests from its receivers, we cal-
culate γ to evaluate the effectiveness of the sender. A larger γ
indicates a more effective sender, of which the transmissions
are likely to be more efficient.

1) γ for Dissemination With Native Packets: We first cal-
culate the expected number of receptions for each requested
packet of a sender, and then calculate γ for the sender.

Intuitively, when a packet is useful to more receivers, the
packet’s transmission is more beneficial. Hence, we define the
utility of a packet to be the expected number of the receptions
at all the neighboring nodes that need the packet. Suppose
the i-th packet in the current page is requested, the reception
utility is

μ[i] =
∑

v∈Nu

Rvu[i] · quv (6)

It is worth noting that only receptions at receivers who have
requested the i-th packet (i.e., Rvu[i] = 1) are included in
the calculation since other receivers have already received the
packet (Rvu[i] = 0) and thus the packet is useless to those
receivers.

As sender u needs to transmit each packet i with
Ru[i] = 1, the total number of transmissions is

M =
∑|Ru|

i=1 Ru[i]. We define the average number of recep-
tions for each packet transmission as γ to reflect the gain/cost
ratio as follows:

γu =
∑|Ru|

i=1 Ru[i] · μ[i]
M

(7)

The cost is the number of transmissions M , and the benefit
is the sum of utilities of all requested packets. It is obvious that
a larger γ value means a more effective potential sender with
higher gain/cost ratio. We revisit the example in Figure 1, with
Eq. (7), γS1 = 1 and γS2 = 0.57 < γS1. Hence, the better
sender S1 is selected with γ.

2) γ for Dissemination With Network Coding: γ works the
same way for network coding based protocols, i.e., the average
utility of each packet transmission. The key difference is that
when network coding is used, a packet is useful for more
receivers as compared to that with native packets, which partly
reduces the impact of link correlation. This significantly affects
the calculation of γ for dissemination with network coding.

When network coding is employed, a packet is useful to
a receiver as long as the receiver did not receive sufficient
number of linear-independent encoded packets. As a result, a
sender needs to send a total number of M = max(v∈Nreq

u ) nv

packets, which are the cost of the sender.
Now we estimate the gain of the M transmissions. For

each transmission, we consider the following two cases
for the transmission utility of the i-th packet transmission
(1 ≤ i ≤ M ).

(1) For receiver k with nk ≥ i (i.e., the number of the
missing packets of node k is larger than that of i, which
means the i-th packet is useful to node k if the packet is
linear-independent with the received packets), the utility of
packet to k is quk × (1−pl), where pl denotes the probability
that the encoded packet is linear-dependent with the received
packets and can be calculated according to [11]. When using
the default setting of random linear code in Rateless Deluge,
pl = 0.00392.

Hence, the utility to all these receivers with nk ≥ i is:

μ1[i] =
∑

k:nk≥i

quk(1 − pl) (8)

(2) For receiver k with nk < i, the i-th packet is useful
to node k only if k has not received nk packets during
the previous i-1 transmissions. We denote Pi−1(k) as the
probability that node k has not received nk packets after
i-1 transmissions. It is the sum of probabilities that k receives
0 up to nk − 1 packets.

Pi−1(k) =
nk−1∑

m=0

(
i − 1
m

)
· qm

uk · (1 − quk)i−1−m (9)

The utility to all these receivers with nk < i is:

μ2[i] =
∑

k:nk<i

Pi−1(k) · quk(1 − pl) (10)

Hence, the utility of the i-th packet is the sum of utilities
to both the above kinds of receivers:

μ[i] = μ1[i] + μ2[i] (11)
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According to the definition of γ, we calculate γ as follows:

γu =
∑M

i=1 μ[i]
M

(12)

Let us revisit the example shown in Figure 2, with Eq. (12),
γS1 = 1 and γS2 = 0.699998 ≈ 0.7 < γS1, and the better
sender S1 is selected with γ.

We can see that γ does not directly exploit link correlation
for impact modeling. Instead, it uses the reception statuses
at receivers to estimate the expected number of receptions
for each requested packet. While link correlation provides an
estimation of the number of common missing packets, the
reception statuses directly provide the ground truth of the
number of common missing packets (which is affected by
link correlation). Hence, our calculation based on the reception
statuses is reasonable and more accurate. As a result, γ favors
the senders with strong correlated outbound links.

V. THE γ-COMPONENT

In this section, we present γ-component, a generic sender
selection scheme for bulk data dissemination. We first present
the designs of two essential modules to enable γ based sender
selection: γ estimation and transmission contention. We then
integrate these two modules into γ-component (i.e., sender
selection implementation based on γ). Finally, we apply
γ-component to both Deluge and Rateless Deluge (namely
γ-Deluge and γ-Rateless Deluge).

A. γ Estimation

Before each round of transmission during the dissemination,
the γ values of potential senders are updated for sender
selection. According to Eq. (7) and Eq. (12), a sender needs
to collect reception statuses and link quality information for γ
estimation. We first discuss how to obtain these information.

(1) Obtaining Rvu and nv. We get Rvu and nv in the
REQ message sent by uncovered nodes when missing packets
are detected. There are two differences between γ’s REQ
mechanism and Deluge’s REQ mechanism. First, multiple
potential senders overhear the REQ message and may be
responsible for sending requested packets in REQ that is
not designated for them. This enlarges the set of potential
senders so that we select the best one. Second, we note that in
Deluge [8], a REQ message may be suppressed if another REQ
message for the same page is overheard. This mechanism,
however, will lead to biased estimation in our protocol design.
For this reason, we require that the uncovered nodes send REQ
messages unless there is an ongoing page transmission.

The setting of the estimation period for sending and receiv-
ing REQ messages depends on the time window during which
nodes randomize the transmissions of REQ messages (as will
be discussed in Section V.A.3). If the time window is too
small, the probability of REQ collisions will increase. On the
other hand, if the time window is too large, it will cause a
long dissemination delay. In this paper, we set the estimation
period to be consistent with Deluges default settings in order
for a fair comparison.

(2) Obtaining quv. To estimate link quality, we incorporate
the LEEP link estimation protocol [25] into our design. LEEP
is a passive link estimation protocol that can be invoked in
proactive protocols to update neighbors’ link quality. It has
shown to be effective in many protocols [10], [26], [27]

We attach the LEEP header (containing a seqno) to ADV,
REQ, and DATA messages. Each node uses these messages
to estimate the inbound link quality from neighboring nodes.
Note that DATA messages are broadcasted in a batch to all
neighboring nodes and can be used for inbound link estima-
tion. This process effectively calibrates estimated link quality
via control-plane messages. Moreover, we attach the LEEP
footer (containing node IDs and their inbound link quality) to
ADV messages. Therefore, the outbound link quality can be
obtained by periodically exchanging the inbound link quality
encompassed in the ADV messages.

Combining the requests sent by uncovered nodes and the
link quality to the requesters, we can estimate a sender’s
impact according to Eq. (7) when using native packets or
Eq. (12) when using network coding.

(3) REQ collection. The requirement that all uncovered
nodes send REQ messages may lead to REQ collisions,
especially in dense networks. The impact of REQ collisions
is two-fold:

• For γ estimation, the REQ collisions will lead to incom-
plete feedback collection, which will lead to inaccurate
sender impact estimation and sender selection.

• The REQ collisions may cause large delay, which
might balance the reduced transmission delay by sender
selection.

Density aware REQ mechanism
To deal with the REQ collisions, we propose a density

aware REQ mechanism. The key idea is to adjust the REQ
timer according to the network density to keep the collision
probability under a threshold. We first model the relation-
ship between REQ timer and the collision probability as
follows.

Suppose there are N contending nodes in a neighborhood,
and we denote the REQ timer as TREQ. According to [28],
the REQ attempt probability is Pa = 2

TREQ+1 . The probability
of a successful transmission of N contending nodes in a timer
duration is the probability that only one node attempts to send
an REQ in the timer period,

Ps = NPa(1 − Pa)N−1 (13)

The probability that no nodes attempt to send an REQ in the
timer duration is,

Pn = (1 − Pa)N (14)

With the above probabilities, we can calculate the collision
probability in the timer duration as follow.

Pc = 1 − Ps − Pn (15)

We can see that the collision probability increases along
with the network density. Then, we set the collision proba-
bility Pc to be under a threshold Cthr, and we can get the
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relationship between number of contending nodes and the
timer duration as follows.

N · 2
1 + TREQ

· (1 − 2
1 + TREQ

)N−1 + (1 − 2
1 + TREQ

)N

= 1 − Cthr (16)

When we set Cthr to be a constant, e.g., 0.5%, the REQ
backoff timer can be obtained according to the network density
with Eq. (16).

We also set a threshold Threq for the REQ timer to avoid
too large timer delay in very dense networks. As a result, the
REQ backoff timer is min(Threq, TREQ).

Another challenge for γ estimation is how to align the
estimation periods of different nodes within a neighborhood.
If the senders’ estimations start at different time, the result
would be unfair. To address this problem, we adopt a similar
approach as in [10]. We attach a pendingPktNum field to
each data packet, indicating the number of remaining packets
that the sender intends to transmit. With this information and
the expected transmission time for a single packet, we can
estimate the end time of the ongoing page transmission.

B. Transmission Contention

All nodes that overhear the REQ messages and have the
requested page are potential senders. We should select the best
sender in the potential senders, which has the largest γ value.

There are two alternatives for transmission contention:
active contention and passive contention. (1) In active con-
tention, potential senders exchange control messages to inform
each other about the impact values. A node fails the contention
if it detects a larger impact, and starts data transmission oth-
erwise. Active contention requires multiple rounds of control
message exchanges, which incurs considerable transmission
and delay overhead. (2) In passive contention, each potential
sender starts a back-off timer according to its own impact.
A node starts transmission if its timer fires. If a node receives
data packets before the back-off timer fires, it fails the con-
tention and stops its own timer. The benefit is that it incurs
no control message exchanges. The drawback is that it may
fail to select the most effective sender if the back-off is not
carefully designed.

We propose to use a passive approach, employing an impact-
based back-off mechanism. Intuitively, in order to prioritize
the transmissions of the potential senders with larger γ, we
need to assign a short back-off time for a node with a large
γ and a long back-off time for a node with small γ. There
are several ways to correlate the back-off time with γ. Here,
we simply use the reciprocal, Tbackoff (u) = C

γ + Δ, where
C is a constant value and Δ is a small random value to
differentiate the back-off time when γ values are the same.
In our experiments, we found the back-off design is effective
(see Section VI.C). With this back-off time design, the largest
impact node is most likely to transmit first. Other nodes
will cancel the data transmission. It is worth noting that
compared to traditional sender selection approaches, γ brings
only computational overhead (metric calculation). Considering
that in low power network, radio operations (transmitting,
receiving, idle listening) are the dominating source of energy

Fig. 3. The γ-component.

TABLE I

SERIES OF DISSEMINATION PROTOCOLS USING NATIVE PACKETS

TABLE II

SERIES OF DISSEMINATION PROTOCOLS USING NETWORK CODING

(RD:RATELESS DELUGE, γ-RD:γ-RATELESS DELUGE)

consumption [29], [30], the overhead is negligible compared
to the reduction of transmissions (see Section VI).

C. The γ-Component

We abstract γ-component, a general sender selection scheme
based on γ. Estimation and contention are two key interfaces
of γ-component. The estimation interface estimates γ, and it
depends on the LEEP component for estimating link quality.
The contention interface prioritizes transmission according to
the γ value. Figure 3 illustrates the relationship between these
two interfaces.

The benefit of γ-component is two-fold. On one hand,
we can easily incorporate γ into existing data dissemination
protocols such as Deluge, MNP, ECD, and Rateless Deluge.
On the other hand, we can also implement other sender
selection algorithms such as in MNP or ECD for the same
interface in order to compare the effect of different sender
selection algorithms for the same dissemination protocol.

The γ-component abstraction also allows us to generate
a series of different dissemination protocols as illustrated
in Tables I and II.

D. γ-Deluge and γ-Rateless Deluge

Figure 3 shows how we can incorporate γ-component with
Deluge into γ-Deluge. The dark arrows indicate the informa-
tion exchange of Deluge and γ-component.
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Fig. 4. The 8×10 testbed.

γ-Deluge works as follows: When receiving an REQ mes-
sage, Deluge invokes the estimation interface. Combining the
REQ from Deluge and link quality information from LEEP, the
estimation interface updates the γ value. When the estimation
period ends, the updated γ value is delivered to the contention
interface. Based on the γ value, the contention interface starts
a back-off timer. When the timer fires, the contention interface
informs Deluge to start data transmission. If Deluge receives
data messages during the back-off timer period, the contention
fails and the node does not start transmissions.

Similarly, we incorporate γ-component with Rateless
Deluge into γ-Rateless Deluge. The difference lies in that
Rateless Deluge invokes a decoding component when receiv-
ing an entire page.

VI. EVALUATION

We now move to performance evaluation by implement-
ing γ-Deluge and γ-Rateless Deluge in TinyOS 2.1.1 [21].
We first conduct testbed experiments to compare existing
protocols using two key performance metrics, i.e., the number
of transmissions and the completion time of the dissemina-
tion. We then evaluate γ through large scale simulation in
TOSSIM [31] to gain more insights by analyzing the sender
selection behaviors and the impact of link correlation.

A. Methodology

We built a 8×10 testbed with TelosB [32] nodes to form a
multi-hop low power network (shown in Figure 4). We first
measure the link characteristics of the network.

Figure 5(a) shows the CDF of pair-wise link quality. With
the power setting, different links have different link quality.
Figure 5(b) shows the CDF of average outbound link correla-
tion for each node. Both good link correlation and poor link
correlation exist.

In γ-Deluge, we set the page size and packet payload size
using Deluge’s default settings (1034K bytes/page and 23
bytes/packet). In γ-Rateless Deluge, we set the page size and
packet payload size using Rateless Deluge’s default settings
(460K bytes/page and 23 bytes/packet).

We place a sniffer node near the testbed for listening reports
from each node. At the beginning, the sink node broadcasts a
start message at the maximum radio power. Upon receiving
the start message, the sniffer node records the start time of
dissemination. Each node broadcasts a report message once
it has received the whole data object, also in the maximum

radio power. When report messages from all nodes are
collected at the sniffer, we can get the performance metrics
from the sniffer. We also use local logging to record the
interested events at each node in external flash.

We use two key metrics for comparison:
1) Completion time. It is the time from the start of

dissemination to the end of dissemination at each
individual node. The network completion time is the
maximum completion time among all nodes.

2) Number of transmissions. The number of transmissions
include data packet transmissions and control packet
transmissions.

B. Dissemination Performance

We first compare the overall performance of dissemination
protocols with γ-component and their counterparts (both pro-
tocols using native packets and network coding).

1) Comparison With Dissemination Protocols Using Native
Packets: We compare γ-Deluge with Deluge and ECD in terms
of the number of transmissions and the completion time.

Figure 5(c) shows the performances of γ-Deluge, Deluge
and ECD in terms of the number of transmissions. The data
object size ranges from 10, 20 to 40 pages (each page consist-
ing of 1K bytes). For typical low power wireless applications
based on TelosB motes, few data objects are larger than 40K
bytes. We classify three kinds of transmissions according to
the message types (i.e., ADV, REQ, and DATA). Both ADV
and REQ are control-plane messages. (1) For ADV, γ-Deluge
reduces 8.6% and 1.5% transmissions compared to Deluge
and ECD, respectively. The reason is that ADV is broadcasted
periodically by each node, as γ-Deluge has shortest comple-
tion time, it has fewest ADV transmissions. (2) For REQ,
γ-Deluge also reduces transmissions by 6% and 3% compared
to Deluge and ECD, respectively. Although Deluge employs
an REQ message suppression, it generally postpones the REQ
transmission instead of cancelling it (unless it receives all
the missing packets during the postponed period). Hence, its
suppression does not greatly reduce the REQ transmissions.
As good links are selected in γ and ECD, γ and ECD
reduce the number of REQ transmissions. γ also reduces the
REQ transmissions compared with ECD. The reason is that
γ-Deluge considers the reception statuses, which enables the
sender’s data transmissions in γ-Deluge effectively cover
more receivers than that in ECD. More covered receivers
produce fewer REQ transmissions. (3) For DATA, γ-Deluge
reduces transmissions by 20.4% and 16.5% compared to
Deluge and ECD, respectively. The reason is that the selected
senders’ data transmissions in γ-Deluge have more receivers.
We can also see that, the reduction in data transmissions is
larger than control transmissions, and the reduction increases
when the page size increases.

Figure 5(d) shows the CDF of the number of transmissions
for each node in γ-Deluge, Deluge and ECD, respectively.
We can see that γ-Deluge has the lowest transmission over-
head. This is because γ jointly considers link quality and
reception statuses, and thus selects more efficient senders.
We can also see that there are several γ-Deluge nodes that
have more transmissions than the other two protocols. The
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Fig. 5. Performance comparison of Deluge, ECD and γ-Deluge. (a) CDF of Number of Transmissions. (b) CDF of Number of Transmissions. (c) Total
number of transmissions. (d) CDF of number of transmissions. (e) Completion time. (f) CDF of completion time.

Fig. 6. Performance comparison of Rateless Deluge and γ-Rateless Deluge. (a) Total Number of Transmissions. (b) Completion Time. (c) Completion Time.

reason is that with γ-component, the nodes with good links
are almost selected all the time. As a result, there are fewer
senders selected in γ-Deluge, and some senders transmit more
in γ-Deluge than in Deluge.

Figure 5(e) shows the result for the completion time.
ECD has shorter completion time compared to Deluge for its
link quality aware sender selection. γ-Deluge further reduces
the completion time by 20.5% compared to Deluge and 16.1%
compared to ECD, respectively. The reason is two-fold: First,
γ-Deluge exploits the reception statuses, which provides fine-
grained information about link correlation and missing pack-
ets. Thus γ can accurately estimate sender impact and select
senders with lower ETX. Second, the transmission contention
does not incur message exchange, which also reduces the
contention time.

Figure 5(f) shows the CDF of the completion time for
each node in γ-Deluge, Deluge, and ECD, respectively. The
result shows that for each individual node, γ-Deluge has the

shortest completion time. Although the contention module
in γ-component incurs an extra back-off timer compared
to Deluge, it greatly reduces the number of transmissions.
As a result, it still reduces the completion time compared to
Deluge.

2) Comparison With Dissemination Protocols Using
Network Coding: We compare γ-Rateless Deluge with
Rateless Deluge in terms of transmissions and the completion
time.

Figure 6(a) shows the performances of γ-Rateless Deluge
and Rateless Deluge in terms of the number of transmissions.
The result shows that (1) γ-Rateless Deluge reduces the total
number of transmissions by 10.5% compared to Rateless
Deluge. This is because γ-Rateless Deluge employs sender
selection which favors good link quality. (2) The transmission
reduction of γ-Rateless Deluge to Rateless Deluge is less
than that of γ-Deluge to Deluge. Apparently, it is due to the
impact of network coding. By using network coding, a packet
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transmission is useful for more receivers. Hence, Rateless Del-
uge greatly reduces the number of transmissions than Deluge.
However, although γ-Deluge does not use network coding, it
considers the expected reception number of a transmission.
In γ-Rateless Deluge, a packet can also be received by more
receivers than that in γ-Deluge, but the improvement is not as
significant as that of Rateless Deluge to Deluge. As a result,
the reduction of γ-Rateless Deluge to Rateless Deluge is less
than that of γ-Deluge to Deluge.

Figure 6(b) shows the result of the completion time.
γ-Rateless Deluge reduces the completion time by 11.9%
compared to Rateless Deluge. The reduction is less than that
of γ-Deluge to Deluge (γ-Deluge reduces the completion
time by 20.5% compared to Deluge). This is because the
decoding delay in rateless protocols occupies a large fraction
of the completion time. As reported in [16], Rateless Deluge
outperforms Deluge mainly in networks with high link loss.
We envision that the improvement of γ-Rateless Deluge will
be significant in large and lossy networks.

Figure 6(c) shows the CDF of the completion time for each
node in γ-Rateless Deluge and Rateless Deluge, respectively.
We can see that (1) for all nodes, the completion time of
γ-Rateless Deluge is less than that of Rateless Deluge.
(2) The result in γ-Rateless Deluge falls into a small range
(i.e., 230-240), while the result in Rateless Deluge is distrib-
uted in a large range (i.e., 260-290). This may be due to
that γ-Deluge favors the sender with strong outbound link
correlation. Hence, receivers tend to receive the object at the
same time. Rateless Deluge employs random sender selection,
and the completion time is sparsely distributed.

C. System Insights

We conduct both testbed experiments and TOSSIM simula-
tions [31] to gain more system insights of the γ factor. We first
validate whether our metric accurately selects the appropriate
sender for actual data transmission. We then perform corre-
lation studies to examine the characteristics of most selected
senders. Finally, we conduct experiments to explore how link
correlation affects protocol performance.

1) Sender Selection Accuracy: We perform simulation stud-
ies on γ-Deluge, Deluge, MNP and ECD in TOSSIM.

We use the LossyBuilder provided in TinyOS to generate a
topo file containing pair-wise link quality. The topology is
a 10×10 grid with 5 feet inter-node spacing. Link quality
and pair-wise link correlation are both randomly set and
distributed. The sink node starts the dissemination of 10 pages.
We collect over 2000 times of sender selections by repeating
the simulation.

We output each node’s reception statuses using the dbg
statements so that we know the network statuses at any
instant. We define a selection event when a node (is selected
and) starts transmitting data packets. Upon each event, we
judge whether it is the right sender with the smallest ETX
according to the link condition and the reception statuses of all
neighboring nodes. We define the accuracy of sender selection
as the number of correct decisions divided by the total number
of selection events. Correspondingly, we define the error of

TABLE III

SENDER SELECTION ACCURACY

sender selection as the number of wrong decisions divided by
the total number of selection events.

Table III shows the selection errors of γ-Deluge, ECD, MNP
and Deluge, respectively. We further classify the errors based
on the causes. (1) Estimation error which means the sender
with the highest estimated metric is not the real best sender.
This may due to insufficient requests are collected or the
request messages are simply lost. (2) Contention error which
means that the sender with the highest estimated metric is the
right one but it loses the contention in the contention phase.

From the results in Table III, the γ factor achieves the
smallest overall selection error. It yields more accurate sender
selection by 155.2%, 36.1% and 29.2% compared with the
metrics used in Deluge, MNP, and ECD. The estimation error
is much smaller than the contention error. The large contention
error is caused by the small fraction of randomness in the
back-off timer based contention design.

For other protocols, the estimation errors are much larger.
The sender selection error rates of ECD, MNP and Deluge are
29.5%, 33.2% and 64.3%, respectively. This is because they
do not take into account the joint impact of link quality and
reception statuses. As Deluge uses a random sender selection
scheme, its expected selection error should be 1 − 1

N , where
N is the average number of the potential senders (neighboring
nodes which receive the requests and stores the page to send).
The selection error of Deluge (64.3%) is consistent with the
above expected value with N=3 in our simulation.

2) Characteristics of Sender Selection: We now investigate
which senders are more likely to transmit more packets.
We perform correlation analysis between the number of
data transmissions and three impact factors, i.e., average
link quality to neighboring nodes, average link correlation
value in the neighborhood, and the hop count from the sink.
We use Pearson correlation coefficients to explore the correla-
tion between the number of transmissions for each node and
various factors that impact the dissemination process.

Table IV shows some facts. First, hop count has strong neg-
ative correlation with the transmission overhead. This is easy
to understand since the sink starts the dissemination process.
Second, in both ECD and γ based protocols (i.e., γ-Deluge
and γ-Rateless Deluge), link quality has positive correlation
with the transmission overhead as all the protocols take link
quality into account. Most importantly, in γ based protocols,
link correlation also has a stronger positive correlation with
the transmission overhead than other protocols.

3) Impact of Link Correlation: Next, we explore the per-
formance of γ in different conditions with different levels of
link correlation. We conduct experiments in our lab with
channels 26 and 16, respectively. Channel 16 is overlapped
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Fig. 7. Comparison of channel 16 and channel 26. (a) CDF of link correlation. (b) Comparing completion time in channel 16. (c) Comparing completion
time in channel 26.

TABLE IV

THE PEARSON’S CORRELATION BETWEEN PROTOCOL

PERFORMANCE AND VARIOUS FACTORS

with the WiFi channel used in the testbed room. As reported
in [16] and our measurement, communications over this
channel is supposed to be interfered with WiFi signals and
experience high link correlation. On the other hand, channel 26
is known to be non-overlapped with any WiFi channels. Hence,
communications over channel 26 will experience lower link
correlation.

Figure 7(a) shows the CDF of link correlation for all
link pairs of a common sender. As expected, channel 16
experiences a higher link correlation than channel 26.

Figure 7(b) shows the completion time of γ-Deluge and
ECD in channel 16. Figure 7(c) shows the completion time
of γ-Deluge and ECD in channel 26. γ-Deluge outperforms
ECD in both channels. However, γ-Deluge’s performance
improvement to ECD at channel 16 is 16.14% while the
performance improvement at channel 26 is only 6.74%. This
can be explained as follows. As analyzed in Section IV.C,
when link quality is similar for the two channels, link
correlation essentially reshapes the missing packets of each
node and affects the number of common missing packets.
At channel 16, there are more cases that receivers have
similar missing packets. As a result, γ-Deluge has more
opportunity to select senders with both good outbound link
quality as well as strong link correlation in the neighbor-
hood. While in channel 26, the link correlation is inherently
weak, and the receivers tend to have random or different
missing packets. There are less opportunity for γ-Deluge
to find neighborhood with strong link correlation. Hence,
γ-Deluge’s performance in channel 16 is better than
channel 26. In contrast, ECD has similar performances in
channel 16 and channel 26. Consequently, the performance
improvement of γ-Deluge to ECD in channel 16 is larger than
that in channel 26.

4) Impact of Density Aware REQ Mechanism: The accuracy
of γ with static REQ timer decreases along with the network
density. Comparatively, γ with density aware REQ timer
consistently achieves accurate sender selection. The accuracy
will start to decrease when the network density is above a
certain threshold. The reason is that in such situation, the
optimal REQ timer has exceeded Thrreq and the timer is
set as Thrreq when network density is above the threshold.
Experimental results on the impact of density aware
REQ mechanism can be found in our technical report.

The discussions on the impact of time-varying link char-
acteristics, the comparison between γ and κ/μ, the situations
where γ is the most benefical and the application of γ to
routing protocols and be found in our technical report at
http://www.emnets.org/dongw/pub/TON-gamma.pdf.

VII. CONCLUSION

In this paper, we first identify that link quality alone is far
from enough for accurate sender selection. Then we propose γ,
an accurate sender selection metric that takes both link quality
and link correlation to accurately calculate the gain/cost ratio
for evaluating each sender’s effectiveness. We further present
γ-component, a generic sender selection scheme based on γ,
which can be easily adopted by most dissemination protocols.
We incorporate γ-component with existing dissemination into
two novel protocols: γ-Deluge and γ-Rateless Deluge.

We implement γ-Deluge and γ-Rateless Deluge in TinyOS
on a TelosB motes testbed. We conduct comprehensive
experiments and large scale TOSSIM simulations. Results
show that: (1) γ achieves more accurate sender estimation
compared to the metrics in MNP and ECD/UFlood. (2) Both
γ-Deluge and γ-Rateless Deluge outperform existing bulk
data dissemination protocols. By large scale simulations, we
confirm that γ favors senders with good link quality and
strong link correlation for both native packets and network
coding based dissemination protocols.
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