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a b s t r a c t

Real-time activity recognition in body sensor networks is an important and challenging
task. In this paper, we propose a real-time, hierarchical model to recognize both simple
gestures and complex activities using a wireless body sensor network. In this model, we
first use a fast and lightweight algorithm to detect gestures at the sensor node level,
and then propose a pattern based real-time algorithm to recognize complex, high-level
activities at the portable device level.We evaluate our algorithms over a real-world dataset.
The results show that the proposed systemnot only achieves goodperformance (an average
utility of 0.81, an average accuracy of 82.87%, and an average real-timedelay of 5.7 seconds),
but also significantly reduces the network’s communication cost by 60.2%.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Sensor-based human activity recognition has recently attractedmuch attention in pervasive computing. In this paradigm,
various sensors are typically attached to a human body or embedded in the environment. Observations are collected in the
form of a continuous sensor data stream, and the data stream is then interpreted by a recognition system. The computation
usually involves two phases: (1) observations are used to train an activity model; (2) the trained model will then be used to
predict activities for new observations.

Sensor-based activity recognition hasmany potential applications, including health care [1], assisted living [2], and sports
coaching [3]. In the past few years, many efforts have been devoted to this task in various domains by researchers and
industrial participants. However, we have not seen any real application being deployed in real life. A number of important
and challenging issues still remain unsolved. First, a practical system should be able to recognize activities in real time.
The real-time requirement demands a one-pass algorithm over sensor data with short real-time delay. Multiple passes
are usually not possible due to the large volume of data arriving continuously at a processing server. Second, most of the
wireless body sensor networks typically use star topology in which data generated from each sensor node are transmitted
to a centralized server for processing. The network communication can be very costly due to the high sampling rate of the
accelerometer. Third, processing sensor data at a fix server may not be practical since humans often move from one place to
another in their daily lives. In this case, mobile and portable devices are more suitable for the task, and hence a lightweight
and portable solution is highly desired.

To address the above challenges, in this paper we propose a hierarchical model to recognize human activities in real
time, which we first identify gestures at the sensor node level, and then recognize complex, high-level activities at the
portable device level. Our motivation is that a high-level activity typically includes a sequence of physical gestures and
ambulation in the execution. For example, the household cleaning activity can be better derived from a sequence of hand
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gestures (i.e., wiping and mopping patterns), body gestures (i.e., up and down patterns), and ambulation. In addition, the
hierarchical model enables us to distribute the computation from a centralized server to individual sensor nodes so that the
network’s communication cost can be significantly reduced. In this work, we first design a wireless body sensor network,
consisting of a number of sensor nodes attached to a subject for collecting observations. We then design our real-time
recognition algorithms which operate in the following two stages. First, acceleration data are processed immediately at
each sensor node by a fast, lightweight, gesture recognition algorithm to detect the gestures of a subject. This is done
by discovering a template for each gesture using an unsupervised method, and then matching acceleration data with an
appropriate template based on the minimum distance which is computed using Dynamic Time Warping (DTW) [4]. This
algorithm outputs the gestures of both hands (i.e., moving hand up and down) and body (i.e., walking and running). Second,
the recognized gestures and other sensor readings (i.e., tagged object and location) will be transmitted over wireless links to
a centralized device for further processing.Wepropose a real-time, discriminative pattern based approach to recognize high-
level, complex activities. We adapt an off-line, Emerging Pattern based algorithm [5] which is capable of recognizing both
simple and complex activities (i.e., interleaved [6] and concurrent activities [7])—to meet the real-time requirement in this
work.We use a real-world dataset and develop a real-time simulator to evaluate our proposed algorithms. Our experimental
studies show that the proposed system is promising in recognizing both gestures and activities in real time.

In summary, the paper makes the following contributions:
• To the best of our knowledge, this paper presents the first formal study of a real-time, hierarchical model to recognize

both physical, simple gestures and high-level, complex activities using a body sensor network.
• The proposed algorithms are designedwith not only a real-time constraint, but also a lightweight constraint for practical

deployment.
• We conduct comprehensive experiments, and the results show that our algorithms achieve good performance in

recognition accuracy and real-time delay, and better communication efficiency.

The rest of the paper is organized as follows. Section 2 discusses the related work. In Section 3, we present our body
sensor network and provide a system overview. We present our algorithm for gesture recognition in Section 4, followed by
the algorithm for activity recognition in Section 5. Section 6 reports our empirical study, and finally Section 7 concludes the
paper.

2. Related work

In pervasive computing, researchers are recently interested in recognizing activities using wearable sensor networks.
In such a network, various sensors are used to directly measure a user’s movements (e.g., accelerometer), the living
environment (e.g., temperature, humidity and light sensors), object use (e.g., wrist-worn RFID sensor) and user location
(e.g., indoor location sensor).

Most of the existing work [8,9,6,7,10,11] has been done in an off-line manner. There are some recent works focusing on
real-time activity recognition. Tapia et al. [12] proposed a real-time algorithm based on a decision tree for physical activities
(i.e., gestures) recognition. The sensor readings from 3-axis accelerometers are transmitted wirelessly to a laptop computer
for processing. A C4.5 classifier is first trained, and then used to recognize gymnasium activities in real time. Krishnan
et al. [13] proposed an AdaBoost algorithm based on decision stumps for real-time classification of gestures (i.e., walking,
sitting and running) using 3-axis accelerometer sensors. He et al. [14] presented a Hidden Markov Model for real-time
activity classification using acceleration data collected from wearable sensors. The model is used to classify a number of
gestures such as standing, sitting, and falling.

Some recent work has been done to recognize gestures or activities in real time on resource-constraint devices.
Györbíró [15] presented a real-time mobile activity recognition system consisting of wireless body sensors, a smartphone,
and a desktop workstation. A sensor node contains an accelerometer, a magnetometer, and a gyroscope. They proposed
a recognition model based on feed-forward back-propagation neural networks which are first trained at a desktop
workstation, and then run at the smartphone to recognize six different gestures. Liu et al. [16] proposed an efficient gesture
recognition method based on a single accelerometer using DTW. They first define a vocabulary of known gestures based on
training, then use these pre-defined templates to recognize hand gestures.

Different from the above works which use a single layer model (i.e., a single point for data processing) for activity
recognition, we propose a distributed approach in which the computation is divided to gesture recognition at sensor node
and high-level activity recognition at a mobile device. Similar to the DTW-based hand gesture recognition algorithm [16],
we use a similar approach to compute the distance of a test instance and a gesture template. However, their pre-defined
templates are obtained by a training process in a supervised manner whereas we obtain various hand and body gesture
templates using an unsupervised method. The evaluation of existing activity recognition systems mainly focused on
accuracy and real-time performance. In addition to these measurements, we evaluate the communication efficiency and
the portability of our system which are important for real-life deployment.

3. Body sensor network design and system overview

We design a wireless body sensor network as shown in Fig. 1. It consists of five sensor nodes—three IMOTE2 motes
and two RFID reader motes. An IMOTE2 mote is located on each wrist and the body of a subject to capture hand and body
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Fig. 1. Our body sensor network, (a) an IMOTE2 mote, (b) an RFID reader mote.

Fig. 2. Overview of our real-time, hierarchical recognition model.

movement; it consists of an IPR2400 processor/radio board and an ITS400 sensor board with a 3-axis accelerometer, as
shown in Fig. 1(a). An RFID reader mote is located on each hand to capture object use; it consists of a MICA2Dot mote and
a coin-size, short-range RFID reader, as shown in Fig. 1(b). An RFID reader mote is able to detect the presence of a tagged
object within a few centimeters. In addition, detecting the user’s location at room-level granularity is done in a simple way
that an UHF RFID reader is located in each room to sense the proximity of a subject wearing a UHF tag. The sensor data
captured by these motes can be transferred to sink nodes and logged in servers.

Fig. 2 gives an overview of our real-time recognition system. The system operates in two stages—gesture recognition at
the sensor node and activity recognition at amobile device. First, each IMOTE2mote processes its acceleration data to recog-
nize gestures by a fast, lightweight template matching algorithm. This is done by first obtaining a specific template for each
gesture pattern using an unsupervised method, then matching a test instance obtained by applying a sliding window over
the data stream with each possible template. A match is found when the distance between the test instance and a template
is a minimum, and then the test instance will be assigned with the corresponding template label. We compute the distance
using Dynamic Time Warping which is an efficient, lightweight algorithm to match two time series samples. Next, recog-
nized gestures, tagged objects and user locations from each node will be transmitted over a wireless link to a centralized
device. The data will be synchronized and processed to generate a discrete vector stream. We then apply a discriminative
pattern based approach to discover complex, high-level activities in real time. A bitmap is used to temporarily hold the data
before they can be recognized. When examining a new vector, we map items in the vector into the bitmap. Given a window
size of l sensing periods, the algorithm periodically computes the score between the input data kept in the bitmap and dis-
criminative patterns mined for each class Ci. If the score of one class exceeds a predefined threshold, it outputs that class as
the recognized activity and clear the bitmap; otherwise, it waits for new input data until one activity class is recognized.
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Fig. 3. Gesture recognition using DTW.

4. Gesture recognition

This section describes how we process acceleration data at the sensor node level to recognize the gestures of a
subject.

4.1. Sensor data collection

In our body sensor network, we use three IMOTE2 motes with 3-axis accelerometers—one on each wrist to capture the
hand motion patterns; one on the body to capture the body motion patterns. An acceleration data stream is generated at
each node with a constant sampling rate, the data format is shown as follows:

[time_stamp]⟨sensor_id⟩⟨x⟩⟨y⟩⟨z⟩

where time_stamp denotes time stamp, sensor_id denotes sensor node ID, x, y and z are acceleration readings on the three
different directions and they can be decoded in a 12-bit resolution ranging from −2g to +2g . The data can be transformed
to a three-dimensional stream of integers containing the readings of the three axes using a simple parser. A sample taken
from the data stream we collected is shown as follows:

[12/08/2008 13 : 22 : 24 : 765] 163 −664 −306 612. (1)

In this example, 163 represents the sensor ID on the subject’s right hand.

4.2. Gesture templates

To recognize gestures over acceleration data, we first need to define a set of gesture templates for left hand, right hand
and body, respectively. A commonway to obtain these templates is based on supervised learning, e.g., thework done in [16].
Using this method, the training data for different hand and body gestures is collected and assigned with proper labels, and
will then be used to define a template for each gesture. However, in real deployment, labeling such training data can be
very time consuming since an annotator has to analyze the video record for each gesture, and sometime it is not possible if
hand motions are blocked from the video camera. In addition, the accuracy of labeling remains uncertain because there is
no common vocabulary for all the gestures performed in real life.

In this work, we propose an unsupervised method to discover gesture patterns. We use a K -Medoids clustering method
to discover these template gestures. This method finds the k representative instances which best represent the clusters. The
number of clusters is set to five for body gestures and ten for each hand in our study. The intuition behind this choice is
that there are typically ten patterns for hand movements including moving forward, backward, left, right, left and up, left
and down, right and up, right and down. Similarly for body gestures, there are typically five patterns, i.e., moving up, sitting
down (contain both a moving down and moving backwards), moving left, right and forward.

4.3. Identifying gestures

Based on the templates we obtained above, we apply a template matching algorithm to identify gestures. To get test
instances, we use a sliding window with a fixed length of 1 s to segment the data stream. For each instance obtained, we
match the instance with the pre-defined templates using DTWwhich is a classic dynamic programming based algorithm to
match two time series with temporal dynamics. We use the Euclidean distance to compute the distance between two time
samples. A match is found when the distance between the test instance and a gesture template is a minimum, and then
the test instance will be assigned with the corresponding template label. The template matching algorithm is illustrated
in Fig. 3.
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4.4. Complexity analysis

We now analyze the time and space complexities for the template matching algorithm. Let S[1 . . .M] and T [1 . . .N]

denote two time series, n denotes the number of templates stored. The time and space complexities of matching S and T are
both O(M · N). The total time complexity of recognition is thus O(n · M · N), the space complexity is O(M · N).

5. Real-time activity recognition

The recognized gestures, tagged objects and user locations from each node will be transmitted to a centralized device
for recognizing complex, high-level activities. We adapt an offline, Emerging Pattern based algorithm [5] to real-time
requirements in this work. In this section, we first give the background of the Emerging Pattern, and then describe how
to use the Emerging Pattern to recognize complex, high-level activities in real time.

5.1. Background of emerging pattern

Emerging Pattern (EP) describes significant differences between different classes of data [17]. An EP is a set of items, and
it occurs frequently in one class and rarely in all the other classes. The class in which an EP occurs the most frequently is
called the class of the EP. An EP can be viewed as a representative pattern of its class. If an instance contains an EP, then it is
very likely that the instance belongs to the class of the EP.

Formally, an EP is defined as follows. Let D = {t1, t2, . . . , tn} be a dataset containing a set of instances, and each instance
is a set of items. In our case, an item can be a user gesture, an object touched by users or the location of the user. Each
instance has a class label which indicates the activity of the user. Let C = {C1, C2, . . . , Ck} be the set of classes labels.
A pattern X is an itemset, and its support in D is defined as the proportion of instances in D that contain it, denoted as
suppD(X) = |{t|X ⊆ t, t ∈ D}|/|D|. The discriminative power of an EP X is measured by the ratio of the support of the EP in
its class to the support of the EP in all the other classes, denoted as GrowthRateD(X) =

0, if suppDc (X) = 0
∞, if suppDc (X) > 0 and

suppD(X) = suppDc (X)
suppDc (X)

suppD(X) − suppDc (X)
, otherwise

where c is the class of X , and Dc is the set of instances belonging to class c.

Definition 1 (Emerging Pattern). Given a labeled dataset D, if suppD(X) > min _sup and GrowthRateD(X) > ρ, then X is
called a ρ −Emerging Pattern, where min _sup is a predefinedminimum support threshold and ρ is a predefinedminimum
growth rate threshold.

5.2. Mining emerging patterns

To use EPs for activity recognition, we first obtain a set of EPs for each activity class. This is done by mining EPs from a
training dataset containing labeled activity instances. For each activity Ci, we mine a set of EPs that occur frequently in Ci,
but rarely in other classes. We denote this set of EPs as EPCi . We discover the EPs by an efficient algorithm described in [18].
An example of an EP for the brushing hair activity is shown as follows.

{object@comb, gesture@body_forward, gesture@right_forward_upward,
gesture@left_forward, location@bathroom, object@detangling_spray}. (2)

There are typically many EPs with different growth rates being discovered for each activity. To reduce the computation
cost, we only select the EPs with the growth rate of +∞ (i.e., the maximum discriminative power) for our recognition
algorithm described in the next section.

5.3. EP-based, real-time activity recognition

The offline recognition algorithm [5] use EPs to recognize activities. Although it is effective, it works off-line and there
are at least two scans over the data stream. As discussed, multiple scans are not possible in real-time activity recognition.
Thus, this algorithm cannot be directly applied in this case. In this work, we design a fast, EP-based algorithm for real-time
activity recognition.

First, gesture, object and location data will be synchronized and processed to generate a discrete vector stream.
A vector has the following form:

⟨body_gesture, left_gesture, right_gesture, left_object, right_object, location⟩. (3)
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We then map each item in a vector to an integer. A bitmap is used to hold the items that have appeared so far. The ith bit
in the bitmap is 1 if item i has appeared, otherwise, it is 0. Initially, all the bits in the bitmap are set to 0. When a new vector
is generated, all the bits corresponding to the items in the vector are set to 1.

Next, given that the bitmap contains an EP, named X , which belongs to activity class Ci, we define a score function to
measure the contribution of X as follows.

Score(Ci, bitmap) =


X⊆bitmap,class(X)=Ci

GrowthRate(X)

GrowthRate(X) + 1
(4)

where class(X) is the class of X . Note that this score is basically the conditional probability that the activity class is Ci given
it contains X [19]. If there exists an activity C such that Score(C, bitmap) is higher than a predefined threshold, then C will
be the output as the recognized activity and the bitmap is reset by clearing all the bits to 0. If the scores for all the possible
activities are below the threshold, then it outputs nothing and waits for a new vector. The computation is done recursively
until the end of the data stream. The entire process is described in Algorithm 1.

Algorithm 1 EP-based Real-time Algorithm
Input: a feature vector sequence V = {v1, v2, ..., vT } with a length of T;

activities {C1, C2, · · · , Cm};
sliding-window size l;

Output: recognized activity sequence.

1: Bitmap bitmap;
2: while t 6 T
3: count = 0;
4: for each item in vt ∼ vt+l
5: bitmap[key(item)] = 1;
6: count = count + 1;
7: end for
8: flag = false;
9: do
10: for i = 1 to m
11: if Score(Ci , bitmap) > threshold then
12: Recognize the current activity as Ci;
13: Set all elements in the bitmap to 0;
14: t = t + count;
15: count = 0;
16: flag = true;
17: end if
18: end for
19: if flag == false
20: for each item in vt+count
21: bitmap[key(item)] = 1;
22: end for
23: count = count + 1;
24: end if
25: while flag == false
26: end for

5.4. Complexity analysis

Let V [1 . . . n] be the input vector sequence generated in the previous step, k be the number of activities in our system.
When examining an input vector, we compute the score for each of the k activities. Let m be the number of EPs and l be
the average number of items contained in an EP. The time complexity of matching EPs with items stored in the bitmap is
O(m · l). After all the EPs have been checked, we check which class has a score not less than the threshold. The cost of this
step, is O(k). Since we only make one pass through the input vector sequence, the time complexity of recognizing the whole
sequence is then O((m · l + k) · n).

Let N be the total number of items. The space cost by holding the bitmap is Θ(N). The space cost for holding the EPs is
Θ(m · l).

6. Empirical studies

We evaluate our system in this section. We first provide a description of our evaluationmethodology and themetrics we
use. We then evaluate the system in several aspects.

6.1. Metrics

To evaluate the performance of a real-time activity recognition system, two metrics, accuracy and delay, are commonly
used. We propose a new metric—utility, which provides a better trade-off between accuracy and delay.
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Table 1
Activities performed.

Index Activity Duration (min) Index Activity Duration (min)

0 Making coffee 36.7 13 Ironing 32.2
1 Making tea 45.0 14 Eating meal 89.5
2 Making oatmeal 25.8 15 Drinking 17.1
3 Frying eggs 22.8 16 Taking medication 8.7
4 Making a drink 14.2 17 Cleaning a dining table 32.95
5 Applying makeup 38.7 18 Vacuuming 26.2
6 Brushing hair 15.4 19 Taking out trash 6.8
7 Shaving 13.5 20 Using phone 113.3
8 Toileting 22.9 21 Watching TV 62.7
9 Brushing teeth 45.3 22 Watching DVD/movies 24.3

10 Washing hands 22.9 23 Using computer 40.2
11 Washing face 13.4 24 Reading book/magazine 71.1
12 Washing clothes 34.3 25 Listening music/radio 96.2

Delay: The recognition delay δ is defined as the periodwhen the recognition algorithm starts taking new readings until an
activity is recognized. It consists of the time δw spent on waiting for data and the time δr spent on executing the recognition
algorithm.

Accuracy: The recognition accuracy a is defined as the portion of activity labels which are correctly predicted against
those which are performed during the recognition delay. For example, for the recognized activity drinking and the activities
performed during the recognition delaymaking tea and drinking, the recognition accuracy is then 0.5.

Utility: To trade off the accuracy and delay defined above, we propose a utility function which combines both metrics.
We only use the time spent on waiting for data δw as the recognition delay as our preliminary results show that the waiting
time often dominates (over 99% of) the total delay, and it is independent of the platform onwhich the recognition algorithm
executes. We also use the number of sensing periods spent on waiting for data instead of time to exclude the potential
uncertainties caused by different transmission protocols and network conditions.

For each recognized activity, given the recognition accuracy a and the waiting time δw , the utility u is defined as

u = a · v(δw)

where v(δw) is a function that defines the value of a recognition task with respect to its delay. Given two user-defined
deadlines d1 and d2, where d1 is for the deadline of the expected recognition delay and d2 is for the deadline of the longest
acceptable recognition delay, v(δw) is given by

v(δw) =


1, δw 6 d1
d2 − δw

d2 − d1
, d1 < δw < d2

0, δw > d2.

(5)

6.2. Experiment design

We evaluate the performance of our proposed system using the activity dataset collected in our previous work [5]. We
built a real-time simulator to evaluate the performance of our system and compare it with a single-layer approach and the
Hidden Markov Models (HMMs).

For the single-layer approach, we adapt our previous off-line algorithm [5] for on-line execution. For the HMM-based
approach, we use the independent HMM model proposed in [20]. We build one HMM for each activity and compute the
probability of each model over the input window, the one with the highest probability is output as a recognized activity.

6.3. Real-world dataset

The data collection was done by four volunteers in a smart home over two weeks. We select 26 activities as summarized
in Table 1. Each subject was requested to perform these activities at his choice in an order which is close to his daily
practice. Each subject followed his own step to perform each activity, in this way the data for each activity was collected
naturalistically.We collected a total number of 532 activity instances, and only the sequential activity instances will be used
for training.

6.4. Real-time simulator

We build a real-time simulator to simulate the operation of each sensor node, e.g., generation of continuous sensor
data stream. There are a total number of six sensor nodes—three accelerometers, two RFID wristband readers and one
location sensor. Each sensor node is simulated by a Java thread on a laptop computer. Each simulated sensor node is
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Table 2
Templates of left hand gestures.

x : ⟨−216, −42, −36⟩ y : ⟨249, −48, 0⟩ z : ⟨815, 985, 988⟩
x : ⟨66, −95⟩ y : ⟨1008, 1001⟩ z : ⟨145, −82⟩
x : ⟨605, 455, 442, 389⟩ y : ⟨710, 555, 442, 442⟩ z : ⟨566, 782, 796, 719⟩
x : ⟨241, 92, 658⟩ y : ⟨−269, −395, −70⟩ z : ⟨862, 749, 717⟩
x : ⟨−141, −169⟩ y : ⟨736, 828⟩ z : ⟨−668, −562⟩
x : ⟨−922, −972⟩ y : ⟨283, 38⟩ z : ⟨284, 220⟩
x : ⟨80, −40, −87⟩ y : ⟨491, 665, 905⟩ z : ⟨852, 812, 580⟩
x : ⟨901, 879, 935⟩ y : ⟨146, −5, 44⟩ z : ⟨458, 316, 372⟩
x : ⟨871, 905, 880, 853, 802⟩ y : ⟨469, 489, 495, 565, 572⟩ z :

⟨−260, −260, −183, −255, −202⟩
x : ⟨−4, −21, −18, 82, −175, 7⟩ y : ⟨−896, −1103, −1054, −1168, −963, −1114⟩ z :

⟨96, 138, 133, 93, 52, 82⟩
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Fig. 4. Traces of templates for left hand gestures.

able to generate sensor readings at an adjustable sampling rate. We implemented the gesture recognition algorithm at
each accelerometer sensor node using the simulator. The recognized gestures together with objects and locations will
be transferred continuously through a wireless link to a real mobile device in which the EP-based, real-time recognition
algorithm runs. The mobile device we use is HTC G7, with 1 GHz CPU and 512 MB RAM, running Android 2.2.

6.5. Gesture recognition performance

To evaluate the gesture recognition algorithm, Table 2 shows the gesture templates we discovered from the acceleration
data stream of a subject’s left hand using this clustering method. To visualize the gesture templates obtained in Table 2, we
show the traces of the left-handmovements in a 3-D space in Fig. 4, assuming the initial position of the hand is at the origin of
the coordinate system. Through 3-D visualization, it will be easily to figure out what each template represents in a physical
world. These templates represent the different directions of left-hand movement in a physical space. Gestures 1, 3, 4 and 7
basically represent that the hand moves upward. By taking a closer look, gesture 1 represents moving straight up, gesture 7
representsmoving up and right, gesture 4 representsmoving up and left (i.e., opposite to gesture 7), and gesture 3 represents
moving up and forward. Gestures 8 and 9 basically represent that the handmoves forward.While gesture 8 representsmoving
forward and left, gesture 9 represents moving forward. The rest of gestures are quite obvious, gesture 2 represents moving
right, gesture 10 represents moving left and gesture 6 represents moving back. Gesture 5 represents putting down in which
the hand movement patterns involve bothmoving down andmoving back. It matches the natural pattern well since our arm
is actually turning around the shoulder rather than going straight down when we put down our hands. Similarly for the
right hand, as shown in Fig. 5, gestures 1 and 8 basically represent moving up and left. Gesture 7 represents moving forward
and left. Gestures 9 and 10 represent moving up and back. Gesture 2 represents moving back. Gesture 5 represents putting
down. Gesture 4 represents the hand movement of moving up. Gesture 3 represents moving up and right. Finally, Gesture 6
representsmoving up and forward.

We obtain similar results for the templates of body gestures, as visualized in Fig. 6. Obviously, gestures 1–5 represent
body moving up, moving left, sitting down, moving forward and moving right, respectively. It is interesting to analyze gesture
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Fig. 6. Traces of templates for body gestures.

3 which involves two directions of body movement, i.e., both backward and downward. Such a movement pattern is likely
to happen when we sit down. In that case, our body not only goes downward, but also goes backward when we lean our
knees towards a chair.

6.6. Real-time performance evaluation

We evaluate the real-time performance of our proposed algorithm and compare it with both the EP-based single-layer
approach and the HMM-based approach. Since the sliding-window size may affect both the recognition delay and accuracy,
to draw a fair comparison, we first conduct extensive tests on different sliding-window sizes. We then compare the real-
time performance of each approach by choosing its optimal window size. We define d1 = 1 and d2 = 90, implying that
the recognition system should respond as fast as possible and making the user wait for over 90 s is unacceptable. A similar
setting can be found in [21] for real-time physical activity recognition. We use ten-fold cross-validation for our evaluation.
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Table 3
Real-time performances with optimal window size.

EP two-layer EP single-layer HMMs

Optimal window size 1 1 2
Accuracy 82.87% 46.78% 46.41%
Delay 5.7 19.8 2.0
Utility 0.81 0.43 0.47

Fig. 7. Average utility gained under different window size.

Fig. 8. Average recognition accuracy under different window size.

6.6.1. Choosing the optimal sliding-window size
We tested the performance of each algorithm by choosing the sliding-window size from 1 to 50 s. The average utility

gained by each algorithm is shown in Fig. 7, the recognition accuracy is shown in Fig. 8, and the recognition delay is shown
in Fig. 9.

From the figureswe conclude that the optimal sliding-window size for both EP-based algorithms is onewhile the optimal
window size for the HMM-based algorithm is two. The average recognition delay of our proposed algorithm is 5.7 sensing
periods, the average recognition accuracy is 82.87%, and the average utility gained is 0.81. Table 3 summarizes the real-time
performances of different algorithms by using the optimal window sizes. The results shows that the EP-based two-layer
algorithm outperforms the other two algorithms by over 70% in utility gained.
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Fig. 9. Average recognition delay under different window size.

Fig. 10. Confusion matrix for the EP-based two-layer algorithm.

6.6.2. Accuracy and delay analysis
To reveal the accuracy of each activity, we present the confusion matrix as shown in Fig. 10. The columns show the

predicted activities, and the rows show the ground-truth activities. The last row shows the percentage of instances that are
miss detected. From the confusion matrix, we observe two main cases illustrated as follows.

Miss detection: This is the case which an activity instance performed by a subject is not detected. For example, formaking
coffee (i.e., activity 0 in the table), only 4.3% of the instances are correctly recognized while 84.8% of them are missed. This
leads to a low accuracy for this activity. By analyzing the ground truth, we found that making coffee is often performed
with another activity such as making tea or using phone in an interleaved manner. For example, a case in the dataset shows
the phone rang in the middle of making coffee, and the subject then paused making coffee and went to pick up the phone.
When the system recognizes the using phone activity, it clears the bitmap resulting in a loss of the initial data for making
coffee. Hence, when the subject came back for making coffee again, the systemmay no long recognize it since some data are
lost.

False detection: This is the case which an activity is recognized as another activity. For example, for frying eggs, 48.2% of
the instances are recognized as making oatmeal. It probably can be explained as follows. These two activities share many
common features, i.e., they are performed using similar objects, with similar gestures and in the same location. With the
existing sensor features, it is difficult to discriminate these twoactivities. Onepossible solution is tomakeuse of the sequence
information of hand and body gestures and objects which we leave for our future work.
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Fig. 11. Confusion matrix for the EP-based single-layer algorithm.

Fig. 12. Confusion matrix for the HMM-based algorithm.

We also present the confusion matrix for the EP-based single-layer approach (Fig. 11) and the HMM-based approach
(Fig. 12). From the results we observe that the former one suffers from severe miss detection but has a higher accuracy on
some activities such as applying makeup and cleaning a dining table; the latter one has a lower miss rate and also a lower
accuracy.

We present the distribution of recognition delay for each algorithm in Fig. 13. For our proposed approach, about 83% of
the predicted activities are recognized in one sensing period and over 90% of the predicted activities are recognized within
8 sensing periods. For the EP-based single-layer approach, only 38% of them are done in one sensing period and about 90%
of them are recognized within 50 sensing periods. For the HMM-based approach, the algorithm is guaranteed to produce
one activity for any given input data, hence its recognition delay is always two sensing periods. To this sense, the HMM-
based approach outperforms our proposed approach and the EP-based single-layer approach. This result suggests that, our
proposed approach sacrifices recognition delay for higher recognition accuracy. Compared with the other twomethods, our
algorithm still achieves the best real-time performance due to the highest utility gained.

6.7. Feature selection

In this experiment, we are interested to know how different features affect the recognition. We conduct a series of
experiments by removing one of the features, and plot the result in Fig. 14. By removing the object and location the utility
drops to 0.61 and 0.58 respectively, indicating that these two features are the two most important features. By removing
all the gestures, the utility drops to 0.65 (approximately 19% of performance loss), which suggests the gestures also play an



L. Wang et al. / Pervasive and Mobile Computing 8 (2012) 115–130 127

Fig. 13. The distribution of recognition delay.

Fig. 14. Utility gained by different feature sets.

important role; similar results are observed when only one of the three gestures is removed, the utility is 0.73, 0.71, 0.71 by
removing the body, left hand, and right hand gestures, respectively.

6.8. Real deployment and measurement

In this section, we report the measurement results from real deployment. The gesture recognition algorithm is
implemented using C# and deployed on real IMOTE2 sensor nodes, while the high-level, complex activity recognition
algorithm is implemented in Java and deployed on a smart phone as described in Section 6.4.

We first test the gesture recognition algorithm on the sensor nodes. By simulating different sampling rate of a 3-D
accelerometer, Fig. 15 plots its execution time on IMOTE2 with different sampling rates. The blue dotted line shows the
curve of a function that belongs to Θ(n2). This result perfectly matches with our previous analysis on the time complexity
in Section 4.4.

We also compare the execution time of our proposed approach with both the EP-based single-layer approach and the
HMM-based approach. As illustrated in Fig. 16, when the sliding-window size increases from one vector to fifty vectors,
the recognition time for the HMM-based method increases from 10 to 850 ms while the recognition time of EP-based
approaches, both single- and two-layer, remains constantly below 10 ms. This may be explained as follows. The time
complexity of HMMs is linear to the input data size while the time spent on matching the EPs with the items held in the
bitmap remains constant, nomatter howmuch input data are provided. This result brings an important feature for EP-based
approaches, the execution time of the recognition algorithm is constant given any size of input data, which demonstrates the
advantage of our EP-based approach for real-time activity recognition.
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Fig. 15. Execution time of the gesture recognition algorithm.

Fig. 16. Execution time of the EP-based two-layer recognition algorithm.

6.9. Communication cost analysis

In this experiment, we analyze the network communication cost for our hierarchical recognition model. We compare
the recognition model with and without a hierarchical design. In a single layer model, all the sensor readings generated at
each accelerometer nodewill be transferred over wireless links. The total amount of data transmitted on the network in one
second can be computed as follows.

D =

n
i=1


fi · pi
mi


· (mi + oi) (6)

where n is the number of sensor nodes, fi is the sampling rate of the ith sensor node,mi is the designed payload size for each
packet, pi is the size of each reading of the ith sensor and oi is the overhead of sensor node i sending a packet. It is clear that
fi ·pi computes the total size of sensor readings of the ith sensor node that is to be transmitted for each second. By taking the
ceiling of fi·pi

mi
, we get the number of packets that is sent by the ith node in one second. Finally, by multiplying the number of

the packets and the size of each packet, which can be easily computed bymi+oi, we get the total number of bits transmitted
for sending the ith sensor node’s data in one second. Finally, the data transmitted in the entire network in one second is the
sum of the data transmitted for all sensor nodes.

Wehave three accelerometers, twoRFID sensors and one location sensor in our system. ZigBee radio is used by the sensors
for wireless data transmission. The packet header size for ZigBee/IEEE 802.15.4 protocol is 120 bits. Each accelerometer
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Fig. 17. Comparison of communication cost.

reading has a size of three 16-bit integers (i.e., on the three axes) which is 48 bits in total. The packet payload size is set to
be 10 readings which is 480 bits. Each RFID sensor or location sensor has a sampling rate of 1 Hz. Each reading has a size of
64 bits, which is the size of one tag ID. The packet payload size is set to 64 bits. Thus, the total amount of data transmitted
in the entire system in one second is 2352 bits according to Eq. (6).

In our hierarchical recognition model, we only need to transfer 1 byte of data containing a gesture label in every one
second over wireless links since acceleration data are processed immediately by the gesture recognition algorithm. The
total amount of data transmitted for each accelerometer in one second is 128 bits (8 bits for the gesture label and 120 bits
for the packet header). While the RFID and location sensors remain the same, the total amount of bits transmitted in one
second is reduced to 936 bits. Hence, we reduce the total communication cost by 60.2%. Through the above analysis, we
demonstrate that a hierarchical recognition model is more appropriate for real-time activity recognition using a wireless
sensor network which typically has a limited network bandwidth. Fig. 17 shows the comparison result of communication
cost between the single-layer and two-layer approaches.

7. Conclusion

In conclusion, this paper proposes a real-time, hierarchical model based on a wireless body sensor network to recognize
both physical, simple gestures and high-level, complex activities. At the sensor node level, acceleration data are processed
immediately by a fast and lightweight gesture recognition algorithm for recognizing gestures. The recognized gestures,
object and location information will be transferred to a centralized device, and then processed by an EP-based, real-time
algorithm to recognize complex, high-level activities. Our experimental studies show the proposed system achieves not only
good performance in accuracy and real-time recognition delay, but also better communication efficiency.

While our real-time, hierarchical model is promising, the entire system is still premature for real-life deployment. There
are a number of limitationsworth discussing. First, the data collectionwas still done in amock scenariowhich did not reflect
real-life situations. A more natural collection should be conducted in a real home. In addition, the current evaluation does
not focus on subject independence. It is clear that in real life each individualmay perform the same activity in differentways.
Although in principle our system is able to be applied to any subject, it is interesting to study how the performance is affected
by subject independence. We plan to extend our work in several directions. First, we will further develop our proposed
algorithms tomake a hard upper bound on the system’s running timewhich guarantees the system’s real-time performance.
Second, we will deploy our system for real-life trials, and study its real-time behaviors and limitations in a real-life setting.
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