
A Two-tier Semantic Overlay Network for P2P Search

Tao Gu 1 , Daqing Zhang 1 , Hung Keng Pung 2 ,
1 Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore

2 National University of Singapore, 3 Science Drive 2, Singapore
tgu@i2r.a-star.edu.sg, daqing@i2r.a-star.edu.sg, punghk@comp.nus.edu.sg

Abstract – This paper proposes a two-tier semantic
peer-to-peer network that facilitates efficient search for
context information in wide-area networks. Context
data with the same semantics are grouped together into
a one-dimensional semantic ring space in the upper-tier
network. This is achieved by applying an ontology-
based semantic clustering technique and dedicating
part of node identifiers to correspond to their data
semantics. In the lower-tier network, peers in each
semantic cluster are organized as Chord identifier
space. Thus, all the nodes in the same semantic cluster
know which node is responsible for storing context
data triples they are looking for, and context queries
can be efficiently routed to those nodes. Through the
simulation studies, we demonstrate the effectiveness of
our proposed scheme.

Keywords – Semantic Peer-to-Peer Network; Context
Ontology; Context Search

1 INTRODUCTION
In recent years, the use of context information has

attracted a lot of attention from researchers and industry
participates. Users and applications are often interested
in searching and utilizing widespread context
information. Context information is characterized as an
application's environments or situations [1]. With the
vast amount of context information spreaded over
multiple context spaces and the increasing needs of
cross-domain context-aware applications, how to
provide an efficient context search mechanism is
challenging in the context-aware research community.

One approach is to use a centralized search engine
to store context data and resolve search requests.
Although this approach can provide fast responses to a
context query, it has limitations such as scalability, a
single processing bottleneck and a single point of
failure. Peer-to-peer (P2P) approaches, on the other
hand, have been proposed to overcome these obstacles
and are gaining popularity in recent years. P2P systems
such as Gnutella [2] and Freenet [3] allow nodes to
interconnect freely and have low maintenance
overhead, making it easy to handle the dynamic
changes of peers and their data. The past years have
seen an increased focus on decentralized P2P systems
[24-28]. However, a query has to be flooded to all the

nodes in a network including the nodes that do not have
relevant data. The fundamental problem that makes
search in these systems difficult is that data are
randomly distributed in the network with respect to
their semantics. Given a search request, the system
either has to search a large number of nodes or run a
risk of missing relevant data. Other P2P systems such
as Chord [4], CAN [5], Pastry [6] and Tapestry [7]
typically implement distributed hash tables (DHTs) and
use hashed keys to direct a search request to the specific
nodes by leveraging a structured network. In these
systems, a data object is associated with a key which
can be produced by hashing the object name. A node is
assigned with an identifier which shares the same space
as the keys. Each node is responsible for storing a range
of keys and corresponding objects. When a search
request is issued from a node, the search message is
routed through the network to the node responsible for
the key. They can guarantee to complete search in a
logarithmic number of steps. Over years, many
applications have been developed, such as file sharing
[8] and content distribution [9].

In this paper, we propose a two-tier semantic P2P
network to search for context information in wide-area
networks. The basic idea is to construct a two-level
semantic P2P network based on metadata (i.e., context
ontologies), which is essentially a semantic approach,
to facilitate efficient search. In this system, context data
are represented by a collection of RDF [10] triples.
Peers with the same semantics are grouped together
into a semantic cluster in the upper-tier network. All the
semantic clusters are constructed as a one-dimensional
semantic ring space. This is achieved by dedicating part
of hashed node identifiers to correspond to their data
semantics. Data semantic is extracted according to a set
of schemas. Peers in each semantic cluster can be
organized as a structured P2P network such as Chord
identifier space in the lower-tier network. Thus, all the
nodes in the same semantic cluster know which node is
responsible for storing context data triples they are
looking for, and context queries can be efficiently
routed to those nodes.

The rest of the paper is organized as follows.
Section 2 presents the detail of the two-tier semantic
P2P network. Section 3 evaluates the performance of
our system using simulation and presents the results.

978-1-4244-1890-9/07/$25.00 ©2007 IEEE

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:52:15 UTC from IEEE Xplore. Restrictions apply.

Section 4 reviews related works, and finally Section 5
concludes our work.

2 THE TWO-TIER SEMANTIC P2P NETWORK
In this section, we first present an overview of the

two-tier semantic P2P network, followed by a
description of technical details. For ease of discussion,
we use the terms node and peer interchangeably for the
rest of the paper.

2.1 Overview
In this network, a large number of nodes storing

context data are grouped and self-organized into a two-
tier semantic P2P network, in accordance with their
semantics. A node can act as producer, consumer or
both. Producers provide various context data for
sharing whereas consumers obtain context data by
submitting their context queries and receiving results.
Each node maintains a local data repository which
supports RDF-based query using RDQL [11]. Upon
creation, each producer will first go through the
ontology-based semantic mapping process to extract the
semantics of its local data. It will then join a semantic
cluster by applying the SHA1 hash function to the
semantics of its main data. These semantic clusters
logically form the upper-tier network and all the nodes
are interconnected as a one-dimensional semantic ring
space based on the small world network model [12]. In
the lower-tier network, nodes in each semantic cluster
are organized as Chord for storing context data and
routing context queries in a logarithmic number of
hops. Upon receiving a context query, the node first
pre-processes it to obtain the semantic cluster
associated with the query, and then routes it to an
appropriate semantic cluster. In the lower-tier, the node
routes the query using its finger table. Nodes that
receive the query do a local search, and return results.

2.2 Ontology-based Semantic Clustering
In this section, we describe how to use ontology-

based metadata to extract the semantics of both RDF
data and queries. In our system, context data are
described as RDF triples based on a set of context
ontologies. We adopt a two-level hierarchy in the
design of context ontologies. The upper ontology
defines common concepts in a computing domain, e.g.,
context-aware computing, and it is shared by all peers.
Each peer can define its own concepts in its lower
ontologies. Different peers may store different sets of
lower ontologies based on their application needs.

Figure 1. An example of context ontology

We illustrate the mapping process using an example
of context ontology as shown in Figure 1. All the leaf
nodes in the upper ontology are used as semantic
clusters, and denoted as set E = {Service, Application,
Device, ...}. The mapping computation is done locally
at each peer. For the mapping of RDF data, a peer
needs to define a set of lower ontologies and store them
locally. Upon joining the network, a peer first obtains
the upper ontology and merges it with its local lower
ontologies. Then it creates instances (i.e., RDF data)
and adds them into the merged ontology to form its
local knowledge base. A peer's local data may be
mapped into one or more semantic clusters by
extracting the subject, predicate and object of an RDF
data triple. Let SCnsub , SCnpred and SCnobj where n = 1,
2, ... denote the semantic clusters extracted from the
subject, predicate and object of a data triple
respectively. Unknown subjects/objects (which are not
defined in the merged ontology) or variables are
mapped to E. If the predicate of a data triple is of type
ObjectProperty, we obtain the semantic clusters using
(SC1predU SC2pred U ... SCnpred) I (SC1objU SC2obj U
... SCnobj). If the predicate of a data triple is of type
DatatypeProperty, we obtain the semantic clusters
using (SC1sub U SC2sub U ... SCnsub) I (SC1pred U
SC2pred U ... SCnpred). Examples 1 and 2 in Figure 2a
show the RDF data triples about the location and light
level in a bedroom provided by a producer peer. In
Example 2, we first obtain the semantic clusters from
both the subject and predicate, and then intersect their
results to get the final semantic cluster – IndoorSpace.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:52:15 UTC from IEEE Xplore. Restrictions apply.

I

I

U

IU U

Figure 2. An example of semantic cluster mapping

A context query follows the same procedure to
obtain its semantic cluster(s), but it needs all the sets of
lower ontologies. In real applications, users may create
duplicate properties in their lower ontologies which
conflict with the ones in the upper ontology. For
example, the upper ontology defines the rdfs:range of
predicate locatedIn as Location whereas the lower
ontology defines its rdfs:range as IndoorSpace. To
resolve this issue, we create two merged ontologies,
one for clustering peers and the other for clustering
queries. If such a conflict occurs, we select the affected
properties defined in the lower ontology to generate the
merged ontology for clustering peer and select the
affected properties defined in the upper ontology to
generate the merged ontology for clustering queries.
With this scheme, a peer can extract the semantics of its

data triples more precisely without losing generality for
context queries. For example, predicate locatedIn may
have the rdfs:range of IndoorSpace in the merged
ontology for clustering peers (see Figure 2a) and have
the rdfs:range of Location in the merged ontology for
clustering queries (see Figure 2b). Data triple
<socam:John socam:locatedIn socam:Bedroom> will
be mapped to IndoorSpace; and query <socam:John
socam:locatedIn ?x> will be mapped to both
IndoorSpace and OutdoorSpace rather than only
IndoorSpace. This is most likely the case of real life
applications.

2.3 The Upper-tier Network
In this section, we describe the process of

constructing the two-tier semantic P2P network. After
obtaining the semantics from its local context data, a
node needs to participate in the network. It will first
join an appropriate semantic cluster in the upper-tier
network, and then store its data triples and participate in
the lower-tier network. As a node may obtain multiple
semantics from its local data, we choose the semantic
cluster corresponding to the largest set of data to place
the node. We call this semantic cluster the major
semantic cluster of this node. The remaining semantic
clusters which a node's data corresponds to are called
minor semantic clusters of this node.

A node is assigned with an ID upon joining the
network. We use SHA1 hash function to generate
nodes' identifier space. To incorporate semantic
information associated with a node, we dedicate part of
hashed node identifiers to correspond to the semantic
cluster. More specifically, in a k-bits identifier space,
we allocate m-bits for semantic cluster information and
n-bits for its IP address, where k = m + n. An example
of a node's ID generated by hashing its semantic cluster
Person and its IP address "137.132.81.235" is given
below.
node id =

[hashm("Person")][hashn("137.132.81.235")]

With this encoding scheme, we are able to construct
the two-tier network and identify a node in the network,
i.e., the first m-bits of a node's ID (called semantic
cluster ID or sid in short) corresponds to the semantic
cluster in the upper-tier and the last n-bits represents the
node's ID in the lower-tier.

We follow the small world network model to
construct the upper-tier network. The small network
model is characterized as small average path length
between two nodes in the network and large cluster
coefficient defined as the probability that two neighbors
of a node are neighbors themselves. Studies show that
searches can be efficiently routed in small world
networks when: Each node in the network knows its

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:52:15 UTC from IEEE Xplore. Restrictions apply.

local neighbors (called short range contacts); and each
node knows a small number of randomly chosen distant
nodes (called long range contacts), with probability
proportional to 1/d where d is the distance [12]. The
constant number of contacts and small average path
length serve as the motivation for us to build the upper-
tier network using the small world network model.

Figure 3. The construction of the upper-tier network
(note: the sign "+" represents appending)

To construct the upper-tier network, each node
maintains a set of short range contacts to a peer in its
neighboring semantic clusters and a number of long
range contacts. As shown in Figure 3, Peer 1 maintains
Peer 2 as its left short range contact and Peer 3 as its
right short range contact; and that results all the
semantic clusters are linked linearly in a ring fashion.
The long range contacts are obtained by randomly
choosing a node in the upper-tier based on a
distribution function with its probability proportional to
1/d, where d is the semantic distance (e.g., can be
represented as Euclidean distance). The long range
contacts aim at providing shortcuts to reach other
semantic clusters quickly. Via short range and long
range contacts, search in the upper-tier network can be
guided greedily by comparing sids of the destination
and the traversed nodes. In addition, if a peer has
context data corresponding to its minor semantic
clusters, it needs to register the indices of these data to a
random node in each of its minor semantic clusters,
e.g., Peer 1 registers its data indices to a random node –
Peer 5 in SC2 since it has data corresponding to
semantic cluster – OutdoorSpace. This ensures that a
context query is able to reach all the relevant nodes that
store the keys responsible for the query. The
registration process of data indices is similar to the
storing process of data triples in the lower-tier network,
and it will be described in the next section.

2.4 The Lower-tier Network
In the lower-tier network, peers in each semantic

cluster are organized as Chord for storing data triples

and routing context queries. This approach divides the
one-dimensional Chord identifier space into multiple
Chord identifier spaces. The number of neighbors
maintained per node is logarithmic to the number of
nodes in its semantic cluster. Hence, the maintenance
cost can be reduced as compared to the original Chord.

A peer is organized into Chord based on the
randomly chosen node identifier by applying the SHA1
hash function to its IP address. To facilitate efficient
context query, we build distributed indices for each data
triple. Each data triple is in the form of subject,
predicate, and object. Since the predicate of the triple is
always given in a context query, we store each data
triple two times in Chord. We apply the hash function
to the <sub pred> and <pred obj> pairs to generate the
keys for storing each data triple. Each data triple will be
stored at the successor nodes of the hashed key values
of <sub pred> and <pred obj> pairs. We define the
Store procedure to perform the above storing process
for each data triple. Figure 4 illustrates the process that
node N2 stores the following data triples in a 3-bit
Chord identifier space of 6 nodes.

<socam:John socam:homeAddress “XYZ”>

<socam:John socam:age “30”>

<socam:John socam:favoriteSport

 socam:baseball>

Figure 4. An example of 3-bit Chord identifier
space of 6 nodes (could hold up to 8 nodes) for the
illustrating of storing data triples and query routing.

To register the indices of data corresponding to the
minor semantic cluster(s), a node first sends a Register
message to a random node in each of its minor semantic

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:52:15 UTC from IEEE Xplore. Restrictions apply.

clusters, and then it follows the same procedure as
above to store the indices.

2.5 Query Routing
The query routing process involves two steps: inter-

cluster routing and intra-cluster routing. A context
query will be first forwarded to the appropriate
semantic cluster and routed to destination peers in the
lower-tier network. When a node receives a context
query, the destination semantic cluster can be extracted
from the query using the ontology-based semantic
mapping technique (described in Section 2.2). First, we
obtain the search key by hashing the destination
semantic cluster. We then compare the search key with
the most significant m-bits of its neighbors' identifiers,
and forward the query to the closest neighboring node.
This forwarding process is recursively carried out until
the destination semantic cluster is reached.

When the query reaches a node in the destination
semantic cluster, the node will use its finger table to
route the query in the lower-tier network. An example
of the finger table of node N5 is shown in Figure 4. If a
context query in the form of SELECT ?x WHERE
(<socam:John> <socam:homeAddress> ?x) reaches
node N5, node N5 will look up the hashed <sub pred>
pair using its fingers. Finally, node N6 and the result
<socam:John socam:homeAddress "XYZ"> will be
returned.

For a given network with N nodes and M semantic
clusters, a query can be first routed to any semantic

cluster in O(s
1

log2M) hops where s is the total
number of long range contacts, and then routed to the
destination in log(N/M) hops.

3 EVALUATION
We move on to evaluate our system using

simulation and compare its performance to the original
Chord. We first describe our simulation model and the
performance metrics. Then we report the results from a
range of experiments.

3.1 Simulation Model and Metrics
We use the AS model to generate network

topologies as previous studies [13] have shown that
P2P topologies follow both small world and power law
properties. The simulation starts with having a pre-
existing node in the network and then performing a
series of join operations invoked by new coming nodes.
A node joins its major semantic cluster based on its
local data, and then stores its data triples and registers
its data indices. After the network reaches a certain
size, a mixture of node joining and leaving operations is
invoked to simulate the dynamic characteristic of the
network. Each node is assigned with a query generation

rate, which is the number of queries that it generates per
unit time. In our experiments, each node generates
queries at a constant rate. If a node receives queries at a
rate that exceeds its capacity to process them, the
excess queries are queued in its buffer until the node is
ready to read the queries from the buffer. Queries are
selected randomly among various semantic clusters. We
set the same number of nodes for each semantic cluster
in our experiments; however, in reality they can be
different.

We use the following metrics to measure the
performance of our system: the search path length
measured as the average number of hops traversed by a
query to the destination; the cost of node
joining/leaving measured as the average number of
messages incurred when a node joins or leaves the
network.

3.2 Simulation Results
First, we evaluate the efficiency of query routing in

our system and compare it to Chord. We built the two-
tier network by defining a number of semantic clusters
in the upper-tier. In this experiment, we fix the number
of semantic clusters to 16 and vary network size from
25 to 213. Hence, each semantic cluster in the lower-tier
has a number of nodes ranged from 2 to 29. Figure 5
plots the average search path length of our system with
1 to 5 long range contacts on a logarithmic scale in
comparison with Chord. The result shows that the two-
tier network with 2 or more long range contacts has
shorter search path as compared to Chord for a network
size of 213 nodes or less. It also shows that the search
path length of the two-tier network is logarithmic to the
number of nodes with a fixed number of semantic
clusters.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 100 1000 10000

av
er

ag
e

se
ar

ch
 p

at
h

le
ng

th

of nodes

Chord
2-Tier with 1 long contact
2-Tier with 2 long contact

2-Tier with 3 long contacts
2-Tier with 5 long contacts

Figure 5. Average search path length vs. number
of nodes for the various numbers of long range
contacts

In this experiment, we evaluate the impact of
semantic clustering in our system. We fix the semantic
cluster size to 8 (i.e., 8 nodes in each semantic cluster)

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:52:15 UTC from IEEE Xplore. Restrictions apply.

and vary the number of semantic clusters in the upper-
tier from 24 to 211. Since the number of nodes in each
semantic cluster is fixed in this experiment, the average
search path length in the lower-tier is a constant. Figure
6 plots search path length vs. number of semantic
clusters in our system in the various settings of numbers
of long range contacts. The result shows that increasing
the number of long range contacts reduces search path
length significantly. Figure 6 also reveals that search
path length in the upper-tier matches the small world
phenomenon.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 16 32 64 128 256 512 1024 2048

av
er

ag
e

se
ar

ch
 p

at
h

le
ng

th

of semantic clusters

2-Tier with 1 long contact
2-Tier with 3 long contacts
2-Tier with 5 long contacts
2-Tier with 7 long contacts

Figure 6. Average search path length vs. number of
semantic clusters in the various settings of numbers
of long range contacts

We compare the cost of node joining and leaving
between our system and Chord in this experiment. We
vary network size from 25 to 214. In reality, the number
of semantic clusters may increase when the network
size increases. To simulate this behavior, we increase
the number of semantic clusters with proportional to
network size by making the number of semantic
clusters equal to the number of nodes in each semantic
cluster. Figure 7 plots the average number of messages
incurred when a node joins or leaves the network. The
results show that our system reduces the cost of node
joining/leaving significantly as compared to Chord
whose update cost of node joining/leaving is O(log2N),
where N is the total number of nodes in the network.
This is also the effect of clustering, i.e., the number of
nodes in a semantic cluster is much smaller than the
number of nodes in the whole network. Hence, each
node needs maintain a smaller size of finger table in our
system as compared to Chord.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 64 128 256 512 1024 2048 4096 8192 16384

co
st

 o
f n

od
e

jo
in

in
g/

le
av

in
g

of nodes

Chord
2-Tier with 7 long contacts
2-Tier with 5 long contacts
2-Tier with 3 long contacts
2-Tier with 1 long contact

Figure 7. Cost of node joining/leaving

4 RELATED WORK
Centralized RDF repositories and lookup systems,

such as RDFStore [14] and Jena [15], have been
implemented to support the storing and querying of
RDF documents. These systems are simpler to design
and reasonably fast for low to moderate number of
triples. However, they have the common limitations of
centralized approaches, such as single processing
bottlenecks and single points of failure.

Schema-based P2P networks, such as Edutella [16],
are proposed to combine P2P computing and the
Semantic Web. These systems build upon peers that use
explicit schemas to describe their contents. They use
super-peer based topologies, in which peers are
organized in hypercubes to route queries. However,
current schema-based P2P networks still have some
shortcomings: queries have to be flooded to every node
in the network, making the system difficult to scale.
Crespo et al. [17] proposed the concept of Semantic
Overlay Networks (SONs) in which peers are grouped
by semantic relationships of documents they store.
Each peer stores additional information about content
classification and route queries to the appropriate
SONs, increasing the chances that matching objects
will be found quickly and reducing the search load.
However, queries still need to be flooded in each
overlay network resulting in redundant query messages
in the network. Cai et al. [18] proposed a scalable and
distributed RDF repository called RDFPeers based on a
structured P2P system. RDFPeers organize into a multi-
attribute addressable network (MAAN) [19] which
extends Chord to efficiently answer multi-attribute and
range queries. When an RDF triple is inserted into the
network, it will be stored three times by applying a
globally-known hash function to its subject, predicate,
and object. We take a similar approach to deploy Chord
as the substrate for the lower-tier network, however, we
store the <sub pred> and <pred obj> pairs for each
data triple as the predicate is always known in a context

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:52:15 UTC from IEEE Xplore. Restrictions apply.

query. Thus, the cost of inserting RDF triples into the
network can be reduced. In addition, the identifier space
of the lower-tier in our network is much smaller than
the one in RDFPeers. Hence, the maintenance cost is
lower as compared to RDFPeers since each peer
maintains fewer neighbors. Tang et al. [20] applied
classical Information Retrieval techniques to P2P
systems and built a decentralized P2P information
retrieval system called pSearch. The system makes use
of a variant of CAN to build the semantic overlay and
uses Latent Semantic Indexing (LSI) [21] to map
documents into term vectors in the space. Li et al. [22]
built a semantic small world network in which peers are
clustered based on term vectors computed using LSI.
They proposed an adaptive space linearization
technique for constructing link structures. While we
take the semantic approach which is conceptually
similar to [20] and [22], we propose the use of schema-
based metadata to extract data semantics. The formal
design of ontologies minimizes the problems of
synonyms and polysemy incurred by VSM, and incurs
a lower overhead than LSI does. Kleinberg [12]
proposed the small world network model where every
node maintains four links to each of its closest
neighbors and one long distance link to a node chosen
from a probability function. He has shown that a query
can be routed to any node in O(log2n) hops, where n is
the total number of nodes in the network. We build the
upper-tier network based on the small world network
model. The small world model has many advantages,
such as it is easy to construct and the number of state
information that each node maintains is fixed and not
proportional to the number of semantic clusters. In our
earlier work [23], we have proposed a semantic P2P
network for context search by using a Gnutella-like
network as the substrate. However, the flooding-based
routing mechanism is not very efficient in terms of
search path and scalability. This paper proposes a more
efficient and scalable semantic network based on a
structured P2P network (i.e., Chord).

5 CONCLUSION
In this paper, we present a two-tier semantic P2P

network for searching context information in wide-area
networks. The preliminary results have shown that our
system has good search efficiency and low cost of node
joining and leaving, and our system can scale to a large
number of peers.

We would like to perform further experiments
measuring the correlation of the number of semantic
clusters and cluster sizes, and to study the load
balancing characteristics in our system. We also plan to
develop a working prototype to demonstrate how it
works for real-life applications. Finally, the use of our
system is not limited to context-aware computing; in

fact, it applies to any P2P searching system where
schemas are explicitly defined.

REFERENCES
[1] Dey, A. and Abowd, G., "Towards a Better

Understanding of Context and Context-
Awareness", Workshop on the what, who, where,
when and how of context-awareness at CHI
2000, April 2000.

[2] Gnutella, http://gnutella.wego.com
[3] Freenet website. http://freenet.sourceforge.net.
[4] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and

H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. In
Proc. of ACM SIGCOMM, 2001.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A Scalable Content Addressable
Network. In Proc. of ACM SIGCOMM, 2001.

[6] A. Rowstron and P. Druschel, Pastry: Scalable.
Distributed Object Location and Routing for
Large-scale Peer-to-Peer Systems. Lecture Notes
in Computer Science, 2218:161–172, November
2001.

[7] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea,
A. D. Joseph, and J. D. Kubiatowicz. Tapestry: A
Resilient Global-scale Overlay for Service
Deployment. IEEE Journal on Selected Areas in
Communications, 22(1):41–53, January 2004.

[8] LimeWire,
http://www.limewire.com/english/content/home.s
html

[9] M. Castro, P. Druschel, A.-M. Kermarrec, A.
Nandi, A. Rowstron, and A. Singh. Splitstream:
High-bandwidth content distribution in a
cooperative environment. International
Workshop on Peer-to-Peer Systems (IPTPS
2003), February, 2003.

[10] http://www.w3.org/RDF. World Wide Web
Consortium: Resource Description Framework.

[11] RDQL,
http://www.w3.org/Submission/2004/SUBM-
RDQL-20040109/.

[12] J. Kleinberg. The Small-World Phenomenon: an
Algorithm Perspective. In Proc. of the 32nd
ACM Symposium on Theory of Computing,
2000.

[13] S. Saroiu, P. Gummadi, and S. Gribble. A
Measurement Study of Peer-to-Peer File Sharing
Systems. In Proc. of Multimedia Computing and
Networking, 2002.

[14] RDFStore. http://rdfstore.sourceforge.net.
[15] Jena 2 - A Semantic Web Framework,

http://www.hpl.hp.com/semweb/jena2.htm

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:52:15 UTC from IEEE Xplore. Restrictions apply.

[16] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz,
M. Schlosser, I. Brunkhorst, and A. Lser. Super-
peer-based Routing and Clustering Strategies for
RDF-based Peer-to-Peer Networks. In Proc. of
the12th World Wide Web Conference, May
2003.

[17] A. Crespo and H. Garcia-Molina. Semantic
Overlay Networks for P2P Systems. Technical
report, Stanford University.

[18] Min Cai, Martin Frank. RDFPeers: A Scalable
Distributed RDF Repository based on A
Structured Peer-to-Peer Network. In Proceedings
of the 13th International World Wide Web
Conference, New York, May 2004.

[19] M. Cai, M. Frank, J. Chen, and P. Szekely.
MAAN: A multi-attribute addressable network
for grid information services. In 4th Int’l
Workshop on Grid Computing, 2003.

[20] C. Q. Tang, Z. C. Xu, and S. Dwarkadas. Peer-
to-Peer Information Retrieval Using Self-
Organizing Semantic Overlay Networks. In Proc.
of ACM SIGCOMM 2003, Karlsruhe, Germany,
August 2003.

[21] S. C. Deerwester, S. T. Dumais, T. K. Landauer,
G. W. Furnas, and R. A. Harshman. Indexing by
Latent Semantic Analysis. Journal of the
American Society of Information Science,
41(6):391–407, 1990.

[22] M. Li, W. C. Lee, Anand Sivasubramaniam, and
D. L. Lee. A Small World Overlay Network for
Semantic Based Search in P2P. In Proc. of the
Second Workshop on Semantics in Peer-to-Peer
and Grid Computing, in conjunction with the
World Wide Web Conference, May, 2004.

[23] T. Gu, E. Tan, H. K. Pung, and D. Zhang. A
Peer-to-Peer Architecture for Context Lookup. In
Proceedings of the International Conference on
Mobile and Ubiquitous Systems: Networking and
Services (MobiQuitous 2005), San Diego,
California, July 2005.

[24] J. Han and Y. Liu. Rumor riding: anonymizing
unstructured peer-to-peer systems. In
Proceedings of IEEE ICNP, Santa Barbara, CA,
November 2006.

[25] M. Li, W.-C. Lee, and A. Sivasubramaniam.
DPTree: a balanced tree based indexing
framework for peer-to-peer systems. In
Proceedings of IEEE ICNP, Santa Barbara, CA,
November 2006.

[26] R. Morselli, B. Bhattacharjee, A. Srinivasan, and
M. A. Marsh. Efficient lookup on unstructured
topologies. In Proceedings of ACM PODC, Las
Vegas, NV, USA, July 2005.

[27] Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang.
Location-aware topology matching in P2P
systems. In Proceedings of IEEE INFOCOM,
Hong Kong, China, March 2004.

[28] Y. Liu, Z. Zhuang, L. Xiao, and L. M. Ni. A
distributed approach to solving overlay mismatch
problem. In Proceedings of ICDCS, Tokyo,
Japan, March 2004.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 16:52:15 UTC from IEEE Xplore. Restrictions apply.

