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Abstract – This paper proposes a two-tier semantic 
peer-to-peer network that facilitates efficient search for 
context information in wide-area networks. Context 
data with the same semantics are grouped together into 
a one-dimensional semantic ring space in the upper-tier 
network. This is achieved by applying an ontology-
based semantic clustering technique and dedicating 
part of node identifiers to correspond to their data 
semantics. In the lower-tier network, peers in each 
semantic cluster are organized as Chord identifier 
space. Thus, all the nodes in the same semantic cluster 
know which node is responsible for storing context 
data triples they are looking for, and context queries 
can be efficiently routed to those nodes. Through the 
simulation studies, we demonstrate the effectiveness of 
our proposed scheme. 

Keywords – Semantic Peer-to-Peer Network; Context 
Ontology; Context Search 

1  INTRODUCTION  
In recent years, the use of context information has 

attracted a lot of attention from researchers and industry 
participates. Users and applications are often interested 
in searching and utilizing widespread context 
information. Context information is characterized as an 
application's environments or situations [1]. With the 
vast amount of context information spreaded over 
multiple context spaces and the increasing needs of 
cross-domain context-aware applications, how to 
provide an efficient context search mechanism is 
challenging in the context-aware research community.  

One approach is to use a centralized search engine 
to store context data and resolve search requests. 
Although this approach can provide fast responses to a 
context query, it has limitations such as scalability, a 
single processing bottleneck and a single point of 
failure. Peer-to-peer (P2P) approaches, on the other 
hand, have been proposed to overcome these obstacles 
and are gaining popularity in recent years. P2P systems 
such as Gnutella [2] and Freenet [3] allow nodes to 
interconnect freely and have low maintenance 
overhead, making it easy to handle the dynamic 
changes of peers and their data. The past years have 
seen an increased focus on decentralized P2P systems 
[24-28]. However, a query has to be flooded to all the 

nodes in a network including the nodes that do not have 
relevant data. The fundamental problem that makes 
search in these systems difficult is that data are 
randomly distributed in the network with respect to 
their semantics. Given a search request, the system 
either has to search a large number of nodes or run a 
risk of missing relevant data. Other P2P systems such 
as Chord [4], CAN [5], Pastry [6] and Tapestry [7] 
typically implement distributed hash tables (DHTs) and 
use hashed keys to direct a search request to the specific 
nodes by leveraging a structured network. In these 
systems, a data object is associated with a key which 
can be produced by hashing the object name. A node is 
assigned with an identifier which shares the same space 
as the keys. Each node is responsible for storing a range 
of keys and corresponding objects. When a search 
request is issued from a node, the search message is 
routed through the network to the node responsible for 
the key. They can guarantee to complete search in a 
logarithmic number of steps. Over years, many 
applications have been developed, such as file sharing 
[8] and content distribution [9].    

In this paper, we propose a two-tier semantic P2P 
network to search for context information in wide-area 
networks. The basic idea is to construct a two-level 
semantic P2P network based on metadata (i.e., context 
ontologies), which is essentially a semantic approach, 
to facilitate efficient search. In this system, context data 
are represented by a collection of RDF [10] triples. 
Peers with the same semantics are grouped together 
into a semantic cluster in the upper-tier network. All the 
semantic clusters are constructed as a one-dimensional 
semantic ring space. This is achieved by dedicating part 
of hashed node identifiers to correspond to their data 
semantics. Data semantic is extracted according to a set 
of schemas. Peers in each semantic cluster can be 
organized as a structured P2P network such as Chord 
identifier space in the lower-tier network. Thus, all the 
nodes in the same semantic cluster know which node is 
responsible for storing context data triples they are 
looking for, and context queries can be efficiently 
routed to those nodes.  

The rest of the paper is organized as follows. 
Section 2 presents the detail of the two-tier semantic 
P2P network. Section 3 evaluates the performance of 
our system using simulation and presents the results. 
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Section 4 reviews related works, and finally Section 5 
concludes our work. 

2 THE TWO-TIER SEMANTIC P2P NETWORK  
In this section, we first present an overview of the 

two-tier semantic P2P network, followed by a 
description of technical details. For ease of discussion, 
we use the terms node and peer interchangeably for the 
rest of the paper. 

2.1 Overview 
In this network, a large number of nodes storing 

context data are grouped and self-organized into a two-
tier semantic P2P network, in accordance with their 
semantics. A node can act as producer, consumer or 
both. Producers provide various context data for 
sharing whereas consumers obtain context data by 
submitting their context queries and receiving results. 
Each node maintains a local data repository which 
supports RDF-based query using RDQL [11]. Upon 
creation, each producer will first go through the 
ontology-based semantic mapping process to extract the 
semantics of its local data. It will then join a semantic 
cluster by applying the SHA1 hash function to the 
semantics of its main data. These semantic clusters 
logically form the upper-tier network and all the nodes 
are interconnected as a one-dimensional semantic ring 
space based on the small world network model [12]. In 
the lower-tier network, nodes in each semantic cluster 
are organized as Chord for storing context data and 
routing context queries in a logarithmic number of 
hops. Upon receiving a context query, the node first 
pre-processes it to obtain the semantic cluster 
associated with the query, and then routes it to an 
appropriate semantic cluster. In the lower-tier, the node 
routes the query using its finger table. Nodes that 
receive the query do a local search, and return results.  

2.2 Ontology-based Semantic Clustering 
In this section, we describe how to use ontology-

based metadata to extract the semantics of both RDF 
data and queries. In our system, context data are 
described as RDF triples based on a set of context 
ontologies. We adopt a two-level hierarchy in the 
design of context ontologies. The upper ontology 
defines common concepts in a computing domain, e.g., 
context-aware computing, and it is shared by all peers. 
Each peer can define its own concepts in its lower 
ontologies. Different peers may store different sets of 
lower ontologies based on their application needs.  

 

Figure 1.  An example of context ontology  

We illustrate the mapping process using an example 
of context ontology as shown in Figure 1. All the leaf 
nodes in the upper ontology are used as semantic 
clusters, and denoted as set E = {Service, Application, 
Device, ...}. The mapping computation is done locally 
at each peer. For the mapping of RDF data, a peer 
needs to define a set of lower ontologies and store them 
locally. Upon joining the network, a peer first obtains 
the upper ontology and merges it with its local lower 
ontologies. Then it creates instances (i.e., RDF data) 
and adds them into the merged ontology to form its 
local knowledge base. A peer's local data may be 
mapped into one or more semantic clusters by 
extracting the subject, predicate and object of an RDF 
data triple. Let SCnsub , SCnpred  and SCnobj where n = 1, 
2, ... denote the semantic clusters extracted from the 
subject, predicate and object of a data triple 
respectively. Unknown subjects/objects (which are not 
defined in the merged ontology) or variables are 
mapped to E. If the predicate of a data triple is of type 
ObjectProperty, we obtain the semantic clusters using 
(SC1predU  SC2pred U  ... SCnpred ) I  (SC1objU  SC2obj U  
... SCnobj). If the predicate of a data triple is of type 
DatatypeProperty, we obtain the semantic clusters 
using (SC1sub U  SC2sub U  ... SCnsub ) I  (SC1pred U  
SC2pred U  ... SCnpred). Examples 1 and 2 in Figure 2a 
show the RDF data triples about the location and light 
level in a bedroom provided by a producer peer. In 
Example 2, we first obtain the semantic clusters from 
both the subject and predicate, and then intersect their 
results to get the final semantic cluster – IndoorSpace. 
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Figure 2.  An example of semantic cluster mapping 

A context query follows the same procedure to 
obtain its semantic cluster(s), but it needs all the sets of 
lower ontologies. In real applications, users may create 
duplicate properties in their lower ontologies which 
conflict with the ones in the upper ontology. For 
example, the upper ontology defines the rdfs:range of 
predicate locatedIn as Location whereas the lower 
ontology defines its rdfs:range as IndoorSpace. To 
resolve this issue, we create two merged ontologies, 
one for clustering peers and the other for clustering 
queries. If such a conflict occurs, we select the affected 
properties defined in the lower ontology to generate the 
merged ontology for clustering peer and select the 
affected properties defined in the upper ontology to 
generate the merged ontology for clustering queries. 
With this scheme, a peer can extract the semantics of its 

data triples more precisely without losing generality for 
context queries. For example, predicate locatedIn may 
have the rdfs:range of  IndoorSpace in the merged 
ontology for clustering peers (see Figure 2a) and have 
the rdfs:range of Location in the merged ontology for 
clustering queries (see Figure 2b). Data triple 
<socam:John socam:locatedIn socam:Bedroom> will 
be mapped to IndoorSpace; and query <socam:John 
socam:locatedIn ?x> will be mapped to both 
IndoorSpace and OutdoorSpace rather than only 
IndoorSpace. This is most likely the case of real life 
applications. 

2.3 The Upper-tier Network  
In this section, we describe the process of 

constructing the two-tier semantic P2P network. After 
obtaining the semantics from its local context data, a 
node needs to participate in the network. It will first 
join an appropriate semantic cluster in the upper-tier 
network, and then store its data triples and participate in 
the lower-tier network. As a node may obtain multiple 
semantics from its local data, we choose the semantic 
cluster corresponding to the largest set of data to place 
the node. We call this semantic cluster the major 
semantic cluster of this node. The remaining semantic 
clusters which a node's data corresponds to are called 
minor semantic clusters of this node. 

A node is assigned with an ID upon joining the 
network. We use SHA1 hash function to generate 
nodes' identifier space. To incorporate semantic 
information associated with a node, we dedicate part of 
hashed node identifiers to correspond to the semantic 
cluster. More specifically, in a k-bits identifier space, 
we allocate m-bits for semantic cluster information and 
n-bits for its IP address, where k = m + n. An example 
of a node's ID generated by hashing its semantic cluster 
Person and its IP address "137.132.81.235" is given 
below. 
node id = 

[hashm("Person")][hashn("137.132.81.235")] 

With this encoding scheme, we are able to construct 
the two-tier network and identify a node in the network, 
i.e., the first m-bits of a node's ID (called semantic 
cluster ID or sid in short) corresponds to the semantic 
cluster in the upper-tier and the last n-bits represents the 
node's ID in the lower-tier.  

We follow the small world network model to 
construct the upper-tier network. The small network 
model is characterized as small average path length 
between two nodes in the network and large cluster 
coefficient defined as the probability that two neighbors 
of a node are neighbors themselves. Studies show that 
searches can be efficiently routed in small world 
networks when: Each node in the network knows its 
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local neighbors (called short range contacts); and each 
node knows a small number of randomly chosen distant 
nodes (called long range contacts), with probability 
proportional to 1/d where d is the distance [12]. The 
constant number of contacts and small average path 
length serve as the motivation for us to build the upper-
tier network using the small world network model. 

 

Figure 3.  The construction of the upper-tier network 
(note: the sign "+" represents appending) 

To construct the upper-tier network, each node 
maintains a set of short range contacts to a peer in its 
neighboring semantic clusters and a number of long 
range contacts. As shown in Figure 3, Peer 1 maintains 
Peer 2 as its left short range contact and Peer 3 as its 
right short range contact; and that results all the 
semantic clusters are linked linearly in a ring fashion. 
The long range contacts are obtained by randomly 
choosing a node in the upper-tier based on a 
distribution function with its probability proportional to 
1/d, where d is the semantic distance (e.g., can be 
represented as Euclidean distance). The long range 
contacts aim at providing shortcuts to reach other 
semantic clusters quickly. Via short range and long 
range contacts, search in the upper-tier network can be 
guided greedily by comparing sids of the destination 
and the traversed nodes. In addition, if a peer has 
context data corresponding to its minor semantic 
clusters, it needs to register the indices of these data to a 
random node in each of its minor semantic clusters, 
e.g., Peer 1 registers its data indices to a random node – 
Peer 5 in SC2 since it has data corresponding to 
semantic cluster – OutdoorSpace. This ensures that a 
context query is able to reach all the relevant nodes that 
store the keys responsible for the query. The 
registration process of data indices is similar to the 
storing process of data triples in the lower-tier network, 
and it will be described in the next section.   

2.4 The Lower-tier Network  
In the lower-tier network, peers in each semantic 

cluster are organized as Chord for storing data triples 

and routing context queries. This approach divides the 
one-dimensional Chord identifier space into multiple 
Chord identifier spaces. The number of neighbors 
maintained per node is logarithmic to the number of 
nodes in its semantic cluster. Hence, the maintenance 
cost can be reduced as compared to the original Chord. 

A peer is organized into Chord based on the 
randomly chosen node identifier by applying the SHA1 
hash function to its IP address. To facilitate efficient 
context query, we build distributed indices for each data 
triple. Each data triple is in the form of subject, 
predicate, and object. Since the predicate of the triple is 
always given in a context query, we store each data 
triple two times in Chord. We apply the hash function 
to the <sub pred> and <pred obj> pairs to generate the 
keys for storing each data triple. Each data triple will be 
stored at the successor nodes of the hashed key values 
of <sub pred> and <pred obj> pairs. We define the 
Store procedure to perform the above storing process 
for each data triple. Figure 4 illustrates the process that 
node N2 stores the following data triples in a 3-bit 
Chord identifier space of 6 nodes.  

<socam:John socam:homeAddress “XYZ”> 

<socam:John socam:age “30”> 

<socam:John socam:favoriteSport 

 socam:baseball> 

 

Figure 4.  An example of 3-bit Chord identifier 
space of 6 nodes (could hold up to 8 nodes) for the 
illustrating of storing data triples and query routing. 

To register the indices of data corresponding to the 
minor semantic cluster(s), a node first sends a Register 
message to a random node in each of its minor semantic 
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clusters, and then it follows the same procedure as 
above to store the indices.  

2.5 Query Routing 
The query routing process involves two steps: inter-

cluster routing and intra-cluster routing. A context 
query will be first forwarded to the appropriate 
semantic cluster and routed to destination peers in the 
lower-tier network. When a node receives a context 
query, the destination semantic cluster can be extracted 
from the query using the ontology-based semantic 
mapping technique (described in Section 2.2). First, we 
obtain the search key by hashing the destination 
semantic cluster. We then compare the search key with 
the most significant m-bits of its neighbors' identifiers, 
and forward the query to the closest neighboring node. 
This forwarding process is recursively carried out until 
the destination semantic cluster is reached. 

When the query reaches a node in the destination 
semantic cluster, the node will use its finger table to 
route the query in the lower-tier network. An example 
of the finger table of node N5 is shown in Figure 4. If a 
context query in the form of SELECT ?x WHERE 
(<socam:John> <socam:homeAddress> ?x) reaches 
node N5, node N5 will look up the hashed <sub pred> 
pair using its fingers. Finally, node N6 and the result 
<socam:John socam:homeAddress "XYZ"> will be 
returned. 

For a given network with N nodes and M semantic 
clusters, a query can be first routed to any semantic 

cluster in O( s
1

log2M) hops where s is the total 
number of long range contacts, and then routed to the 
destination in log(N/M) hops. 

3 EVALUATION  
We move on to evaluate our system using 

simulation and compare its performance to the original 
Chord. We first describe our simulation model and the 
performance metrics. Then we report the results from a 
range of experiments.  

3.1 Simulation Model and Metrics 
We use the AS model to generate network 

topologies as previous studies [13] have shown that 
P2P topologies follow both small world and power law 
properties. The simulation starts with having a pre-
existing node in the network and then performing a 
series of join operations invoked by new coming nodes. 
A node joins its major semantic cluster based on its 
local data, and then stores its data triples and registers 
its data indices. After the network reaches a certain 
size, a mixture of node joining and leaving operations is 
invoked to simulate the dynamic characteristic of the 
network. Each node is assigned with a query generation 

rate, which is the number of queries that it generates per 
unit time. In our experiments, each node generates 
queries at a constant rate. If a node receives queries at a 
rate that exceeds its capacity to process them, the 
excess queries are queued in its buffer until the node is 
ready to read the queries from the buffer. Queries are 
selected randomly among various semantic clusters. We 
set the same number of nodes for each semantic cluster 
in our experiments; however, in reality they can be 
different. 

We use the following metrics to measure the 
performance of our system: the search path length 
measured as the average number of hops traversed by a 
query to the destination; the cost of node 
joining/leaving measured as the average number of 
messages incurred when a node joins or leaves the 
network.  

3.2 Simulation Results  
First, we evaluate the efficiency of query routing in 

our system and compare it to Chord. We built the two-
tier network by defining a number of semantic clusters 
in the upper-tier. In this experiment, we fix the number 
of semantic clusters to 16 and vary network size from 
25 to 213. Hence, each semantic cluster in the lower-tier 
has a number of nodes ranged from 2 to 29. Figure 5 
plots the average search path length of our system with 
1 to 5 long range contacts on a logarithmic scale in 
comparison with Chord. The result shows that the two-
tier network with 2 or more long range contacts has 
shorter search path as compared to Chord for a network 
size of 213 nodes or less. It also shows that the search 
path length of the two-tier network is logarithmic to the 
number of nodes with a fixed number of semantic 
clusters.  
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Figure 5.  Average search path length vs. number 
of nodes for the various numbers of long range 
contacts  

In this experiment, we evaluate the impact of 
semantic clustering in our system. We fix the semantic 
cluster size to 8 (i.e., 8 nodes in each semantic cluster) 
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and vary the number of semantic clusters in the upper-
tier from 24 to 211. Since the number of nodes in each 
semantic cluster is fixed in this experiment, the average 
search path length in the lower-tier is a constant. Figure 
6 plots search path length vs. number of semantic 
clusters in our system in the various settings of numbers 
of long range contacts. The result shows that increasing 
the number of long range contacts reduces search path 
length significantly. Figure 6 also reveals that search 
path length in the upper-tier matches the small world 
phenomenon.  
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Figure 6.  Average search path length vs. number of 
semantic clusters in the various settings of numbers 
of long range contacts 

We compare the cost of node joining and leaving 
between our system and Chord in this experiment. We 
vary network size from 25 to 214. In reality, the number 
of semantic clusters may increase when the network 
size increases. To simulate this behavior, we increase 
the number of semantic clusters with proportional to 
network size by making the number of semantic 
clusters equal to the number of nodes in each semantic 
cluster. Figure 7 plots the average number of messages 
incurred when a node joins or leaves the network. The 
results show that our system reduces the cost of node 
joining/leaving significantly as compared to Chord 
whose update cost of node joining/leaving is O(log2N), 
where N is the total number of nodes in the network. 
This is also the effect of clustering, i.e., the number of 
nodes in a semantic cluster is much smaller than the 
number of nodes in the whole network. Hence, each 
node needs maintain a smaller size of finger table in our 
system as compared to Chord.  
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Figure 7.  Cost of node joining/leaving 

4 RELATED WORK 
Centralized RDF repositories and lookup systems, 

such as RDFStore [14] and Jena [15], have been 
implemented to support the storing and querying of 
RDF documents. These systems are simpler to design 
and reasonably fast for low to moderate number of 
triples. However, they have the common limitations of 
centralized approaches, such as single processing 
bottlenecks and single points of failure.  

Schema-based P2P networks, such as Edutella [16], 
are proposed to combine P2P computing and the 
Semantic Web. These systems build upon peers that use 
explicit schemas to describe their contents. They use 
super-peer based topologies, in which peers are 
organized in hypercubes to route queries. However, 
current schema-based P2P networks still have some 
shortcomings: queries have to be flooded to every node 
in the network, making the system difficult to scale. 
Crespo et al. [17] proposed the concept of Semantic 
Overlay Networks (SONs) in which peers are grouped 
by semantic relationships of documents they store. 
Each peer stores additional information about content 
classification and route queries to the appropriate 
SONs, increasing the chances that matching objects 
will be found quickly and reducing the search load. 
However, queries still need to be flooded in each 
overlay network resulting in redundant query messages 
in the network. Cai et al. [18] proposed a scalable and 
distributed RDF repository called RDFPeers based on a 
structured P2P system. RDFPeers organize into a multi-
attribute addressable network (MAAN) [19] which 
extends Chord to efficiently answer multi-attribute and 
range queries. When an RDF triple is inserted into the 
network, it will be stored three times by applying a 
globally-known hash function to its subject, predicate, 
and object. We take a similar approach to deploy Chord 
as the substrate for the lower-tier network, however, we 
store the <sub pred> and <pred obj> pairs for each 
data triple as the predicate is always known in a context 
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query. Thus, the cost of inserting RDF triples into the 
network can be reduced. In addition, the identifier space 
of the lower-tier in our network is much smaller than 
the one in RDFPeers. Hence, the maintenance cost is 
lower as compared to RDFPeers since each peer 
maintains fewer neighbors. Tang et al. [20] applied 
classical Information Retrieval techniques to P2P 
systems and built a decentralized P2P information 
retrieval system called pSearch. The system makes use 
of a variant of CAN to build the semantic overlay and 
uses Latent Semantic Indexing (LSI) [21] to map 
documents into term vectors in the space. Li et al. [22] 
built a semantic small world network in which peers are 
clustered based on term vectors computed using LSI. 
They proposed an adaptive space linearization 
technique for constructing link structures. While we 
take the semantic approach which is conceptually 
similar to [20] and [22], we propose the use of schema-
based metadata to extract data semantics. The formal 
design of ontologies minimizes the problems of 
synonyms and polysemy incurred by VSM, and incurs 
a lower overhead than LSI does. Kleinberg [12] 
proposed the small world network model where every 
node maintains four links to each of its closest 
neighbors and one long distance link to a node chosen 
from a probability function. He has shown that a query 
can be routed to any node in O(log2n) hops, where n is 
the total number of nodes in the network. We build the 
upper-tier network based on the small world network 
model. The small world model has many advantages, 
such as it is easy to construct and the number of state 
information that each node maintains is fixed and not 
proportional to the number of semantic clusters. In our 
earlier work [23], we have proposed a semantic P2P 
network for context search by using a Gnutella-like 
network as the substrate. However, the flooding-based 
routing mechanism is not very efficient in terms of 
search path and scalability. This paper proposes a more 
efficient and scalable semantic network based on a 
structured P2P network (i.e., Chord). 

5 CONCLUSION 
In this paper, we present a two-tier semantic P2P 

network for searching context information in wide-area 
networks. The preliminary results have shown that our 
system has good search efficiency and low cost of node 
joining and leaving, and our system can scale to a large 
number of peers.  

We would like to perform further experiments 
measuring the correlation of the number of semantic 
clusters and cluster sizes, and to study the load 
balancing characteristics in our system. We also plan to 
develop a working prototype to demonstrate how it 
works for real-life applications. Finally, the use of our 
system is not limited to context-aware computing; in 

fact, it applies to any P2P searching system where 
schemas are explicitly defined.  
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