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Abstract - The widespread use of context information necessitates 
an efficient wide-area lookup service in pervasive computing. In 
this paper, we present Semantic Context Space (SCS), a semantic 
overlay network that facilitates efficient search for context 
information in distributed environments. Peers in SCS are 
grouped based on the semantics of their local data and self-
organized into a one-dimensional ring space. Context search 
requests are only routed to the appropriate semantic clusters, 
reducing unnecessary search cost on peers that have irrelevant 
context data, and increasing the chances that the context data 
will be found quickly. By exploring parallelism in a semantic 
cluster, search request can be found quickly. Our simulation 
studies demonstrate the effectiveness of SCS. 
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1. INTRODUCTION 

In recent years, the use of context information has attracted a 
lot of attention from researchers and industry participates. 
Users and applications are often interested in searching and 
utilizing widespread context information. Context information 
is characterized as an application's environments or situations 
[1]. With the vast amount of context information, how to 
provide an efficient context searching service is challenging in 
the context-aware research community. One approach is to use 
a centralized search engine to store context data and resolve 
search requests. Although this approach can provide fast 
responses to a context query, it has limitations such as 
scalability, processing bottlenecks and single points of failure. 
Peer-to-Peer (P2P) approaches, on the other hand, have been 
proposed to overcome these obstacles and are gaining 
popularity recently. P2P systems such as Chord [3], CAN [4], 
Pastry [5] and Tapestry [6] typically implement distributed 
hash tables and use hashed keys to direct a lookup request to 
the specific nodes by leveraging on a structured overlay 
network. However, data placement in these systems is tightly 
controlled based on the distributed hash function; and 
updating the relevant information on peer joining/leaving and 
content changes may introduces a high maintenance overhead. 
When dealing with context data, it is more efficient that 
context data is stored close to a node where it is generated and 
where it is likely to be used. For example, when a person 
comes back home, a location sensor detects his/her presence. 
It is more efficient to store his/her location data in a node at 

his/her home rather than a hashed node which may be far 
away from its source. As context information exhibits the 
dynamic characteristics [2], peers may join or leave the system 
frequently and context data stored in the peers may be 
changed rapidly. These characteristics imply that higher 
maintenance overheads may occur in the DHT-based overlay 
networks. Other P2P systems such as Gnutella [7] allow nodes 
to interconnect freely and do not impose any structure on the 
resources that are stored. These systems have low maintenance 
overhead. However, a query has to be flooded to all nodes in 
the network, which may include many nodes that do not 
contain the relevant data. The fundamental problem that 
makes search in these systems difficult is that data are 
randomly distributed in the overlay network with respect to 
their semantics. Given a search request, the system either has 
to search a large amount of nodes or run a risk of missing 
relevant data.  

In this paper, we present Semantic Context Space (SCS), a 
one-dimensional semantic space where context data are stored 
and retrieved according to their semantics. Context data which 
are semantically similar are "tied" together in SCS so that they 
can be retrieved by a context query which has the same 
semantics. As a result, the system is able to forward a query to 
nodes which are likely to contain the relevant context data. 
This can potentially lead to a lower network load and a better 
search performance. The basic idea has been presented in our 
earlier work - ContextBus [8]. However, when the number of 
semantic clusters increases, the maintenance cost becomes 
very expensive. In this paper, we propose the SCS overlay 
network to overcome the drawbacks of the ContextBus 
architecture. The rest of the paper is organized as follows. We 
describe related work in Section 2. We then describe Semantic 
Context Space in Section 3. We present the simulation results 
in Section 4, and finally conclude the work in Section 5. 

2. RELATED WORK 

Cai et al. [9] proposed a distributed RDF repository that stores 
each triple at three places in a multi-attribute addressable 
network which extends Chord by applying a globally known 
hash function. Queries can then be efficiently routed to those 
nodes in the network where the triples in question are known 
to be stored if they exist. However, their solution is based on 
DHT and is thus unsuitable for context lookup as we have 
discussed in the previous section. Schema-based P2P networks 
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such as Edutella [10] that combine P2P computing and the 
Semantic Web are potential candidates for distributed context 
lookup systems. These systems build upon peers that use 
explicit schemas to describe their contents. However, current 
schema-based P2P networks still have some shortcomings, 
e.g., queries still have to be flooded to every node in the 
network, making it difficult for the system to scale. Crespo et 
al. [11] proposed Semantic Overlay Networks (SONs) which 
queries are only routed to the appropriate SONs, increasing 
the chances that matching objects will be found quickly and 
reducing the search load. Kleinberg [12] proposed a two-
dimensional grid where every node maintains for links to each 
of its closest neighbors and one long distance link to a node 
chosen from a probability function. 

3. SEMANTIC CONTEXT SPACE 

3.1 Overview 

In SCS, a large number of nodes are arranged and self-
organized into a semantic overlay network, in accordance with 
their semantics. Upon creation, peers will be grouped 
according to their data semantics and mapped into a semantic 
cluster in SCS. Each peer is responsible for managing its own 
context data corresponding to a semantic cluster and 
publishing their data indices to peers in other clusters. These 
indices serve as node pointers which provide location 
references regarding to where context data is physically 
stored. Upon receiving a context query, a peer first pre-
processes the query and obtains the semantic cluster 
information associated with the query, and then route the 
query to an appropriate cluster in SCS. When the query 
reaches the designated cluster, it floods to all peers within this 
cluster. Peers that receive a query do a local search and report 
the results if available. Each peer maintains a local context 
data repository which supports RDF-based semantic query 
using RDQL [13]. 

There are several critical issues need to be addressed in the 
design of SCS. First, how to extract the semantics from both 
context data and queries efficiently and precisely, and how to 
cluster peers in accordance with their data semantics are 
critical in the first place. We propose to use ontologies as 
metadata to extract data semantics. The formal design of 
context ontologies minimizes the problems of synonyms and 
polysemy. Secondly, how to facilitate efficient navigation and 
search while minimizing maintenance cost in SCS? To enable 
navigation and search between clusters, an intuitive solution is 
to construct k-dimensional semantic clusters by connecting 
each peer to all dimensions of the corresponding clusters such 
as in the ContextBus architecture. However, for a high-
dimensional semantic space, this approach makes maintenance 
costly. To address this problem, we propose a one-
dimensional ring structure which enables the mapping of the 
clusters in k-dimensional space to one-dimensional space. 
Thirdly, how does the overlay resolve the issues related to the 

scalability, load balancing and fault tolerance? To address 
these issues, we propose a cluster encoding scheme which 
allows sub-clustering in a semantic cluster. The system can 
self-adapt to the number of peers by the operations of cluster 
splitting and merging. This scheme also enables us to search 
context data in a parallel fashion.  

3.2 Ontology-based Semantic Clustering  

In this section, we describe how to use ontology to extract the 
semantics of both data and queries. The semantics of context 
data are represented by schema, i.e. context ontology. Various 
context data are structured and classified according to these 
ontologies. This ontological structure is also exploited to 
extract the query semantics and formulate context query. We 
adopt a two-tier hierarchy in the ontology design. The upper 
ontology which defines common concepts is shared by all 
peers. Each peer can define its own concepts in its low-layer 
ontologies. Different peers may store different sets of low-
layer ontologies based on their applications' needs. An 
example of ontological structure is shown in Figure 1.  
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Figure 1.  An example of ontological structure  

The leaf nodes in the upper ontology are used as semantic 
clusters to cluster peers, and denoted as a set E = {Service, 
Application, Devices, . . .}. Each of these pre-defined semantic 
clusters will be assigned with a unique ID upon their presence 
in SCS. The mapping computation is done locally at each 
peer. For the mapping of RDF data, a peer needs to define a 
set of low-layer ontologies and store them locally. Upon 
joining SCS, a peer first obtains the upper ontology and 
merges it with its local low-layer ontology. Then it creates 
instances (i.e. RDF data) and adds them into the merged 
ontology to form its local knowledge base. A peer can map its 
local data into one or more semantic clusters by extracting the 
predicates of its RDF triples. For example, we can map 
predicate 'locatedIn' into semantic cluster 'IndoorSpace' by 
checking its rdfs:range if the predicate is of type 
ObjectProperty. If the predicate is of type DataTypeProperty, 
for example, 'lightLevel', we will check its rdfs:domain to get 
the class - 'Location'. As 'Location' is not a leaf node in the 
upper ontology, we need to find out its subclasses/superclasses 
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until the leaf nodes are reached. Finally 'lightLevel' is mapped 
into both 'IndoorSpace' and 'OutdoorSpace' semantic clusters. 

3.3 One-dimensional Ring Structure 

Peer Placement: Upon joining the network, a peer needs to 
obtain the semantics from its local context data and place itself 
into an appropriate semantic cluster. The computation is done 
locally at each peer and requires global information (i.e. a set 
of domain context ontologies) to function. Each of the domain 
ontologies corresponds to a unique Semantic ID (described in 
the next sub-section) which will be assigned dynamically. As 
a peer may obtain multiple semantics extracted from its 
context data, we choose the semantic cluster corresponding to 
the largest set (i.e. majority) of context data to place the peer. 
In order for a query to reach all nodes that provide the same 
semantics, we adopt index publishing. Other than the semantic 
cluster a peer joins, the peer selects a node in each of the rest 
semantic clusters and publishes its index to these nodes. For 
example, Peer 1 publishes its index to semantic cluster SC1 by 
putting its index to Peer 3 in cluster C4 which is selected in 
random within SC1. As a result, a semantic cluster can be 
viewed as a set of interconnected nodes separated by clusters 
and a collection of references stored in these nodes which 
point to the other nodes where context data is physically 
stored. While we assume single cluster joint point here, multi-
cluster joint points can be used as well.  

 
Figure 2.  One-dimensional ring structure 

Cluster Naming Scheme: In SCS, we distinguish the concepts 
of cluster and semantic cluster. A cluster refers to a partition 
which consists of a set of nodes bundled together such as 
cluster C0 and C1 in Figure 2. A semantic cluster, on the other 
hand, refers to a set of clusters corresponding to the same 
semantics. For example, cluster C0, C1, C2, and C3 belongs to 
semantic cluster SC0; cluster C20 and C22 belongs to 
semantic cluster SC5. We propose our cluster encoding 
scheme as follows. A Cluster ID which is represented by an k-
bit binary string (where k = m + n) is an unique ID that 
identifies a cluster. The first m-bit binary string (we call it 
Semantic Cluster ID) is used to identify a semantic cluster 
which corresponds to one particular domain context ontology. 
Hence, a SCS can have a maximum of 2k clusters and 2m 

semantic clusters. An example of a SCS which assumes k = 5 

and m = 3 is illustrated in Figure 2. The rational behind this 
encoding scheme is that, for a given query, we need to obtain 
the appropriate Semantic Cluster ID (rather than Cluster ID) to 
match the same semantics of the query and route the query 
among semantic clusters. Partitioning peers into a set of 
clusters within the same semantic cluster also facilitates load 
balancing and enables parallel search within the same 
semantic cluster. 

Ring Construction: In SCS, each node maintains a set of node 
entries in its routing table for the purpose of both intra-cluster 
routing and inter-cluster routing. A node, say x, decides which 
semantic cluster to participate based on its context data and 
randomly picks a cluster within this semantic cluster to join. It 
joins the cluster by connecting to and keeping track of a 
number of nodes in the cluster. The nodes within this cluster 
are interconnected just like a Gnutella-like overlay network. 
These node entries (called x's neighbors in its own cluster) will 
be maintained in x's routing table as intra-cluster routing 
information. Node x also maintains two node entries in each of 
its adjacent clusters. We call these two nodes x's neighbors in 
its adjacent clusters. For example, in Figure 2, Peer 1 keeps 
track of a node in its own cluster C0 and another two nodes in 
its adjacent clusters - C1 and C28 respectively. Each node who 
wishes to join the network performs this operation; resulting 
all the clusters are linked linearly in a ring fashion. With this 
ring structure, a k-dimensional semantic space can be 
linearized; and hence it significantly reduces the 
dimensionality of the semantic space. Maintaining two 
neighbors in the adjacent clusters for every node in SCS also 
ensures that a query generated at any node will be able to 
reach any other cluster by navigating the ring space. However, 
queries have to be passed around the ring linearly either 
clockwise or anticlockwise until the destination cluster is 
reached. To accelerate search across clusters, node x maintains 
a set of nodes in other semantic clusters except the two 
adjacent clusters. These nodes provide shortcuts for node x to 
route a query to other semantic clusters quickly. For example, 
in Figure 2, node x creates and keeps track of two shortcuts: - 
one points to Peer 5 and the other points to Peer 6. When a 
new semantic cluster is inserted into the ring space or in the 
process of cluster splitting/merging, a node needs to update 
the neighboring nodes in both its own cluster and its adjacent 
clusters. However, a node only needs to update its shortcuts 
upon the insertion or deletion of a semantic cluster as a 
shortcut points to an appropriate semantic cluster rather than a 
cluster.   

Cluster Splitting and Merging: If a cluster size exceeds M (the 
maximum cluster size), the splitting process is invoked to split 
the cluster into two. Each node maintains a parameter called 
CurrentLoad which measures the current load of the node in 
terms of the number of triples and data indices it stores. When 
a node, say x, joins the network, it sends a join request 
message to an existing node, says y. If y falls into the same 
semantic cluster x wishes to join, x joins the cluster by 
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connecting to y provided the cluster size is below M. 
Otherwise, y performs a search to direct the request to a node, 
say z, in the semantic cluster x wishes to join, and then x 
connects to z if the cluster does not exceed M. If the cluster 
size exceeds M, the node (i.e. y or z, we call an initial node) 
will initial the splitting process. The initial node first obtains a 
sorted list of all the nodes according to their CurrentLoads by 
polling. Then it assigns these nodes to the two sub-clusters 
alternatively. After the splitting, we obtain two clusters with 
relatively equal load. The initial node is also responsible for 
generating a new cluster ID for each of the two sub-clusters. 
To obtain a new cluster ID, each node maintains a bit split 
pointer which indicates the next bit to be split in the n-bit 
binary string (where n = k - m). For example, assuming m = 3, 
n = 2, and there exists a cluster C4 in the network. Initially, 
the bit split pointer points to the most significant bit of the n-
bit string. When a cluster splitting occurs, the bit pointed by 
the bit split pointer is split into 0 and 1, and then move the 
pointer forwards to the next bit in the n-bit string. Therefore, 
we obtain cluster ID - C4 and C6, and both IDs correspond to 
the same semantic cluster SC1. Cluster C4 or C6 can be 
further split into C4 and C5 or C6 and C7; and finally the bit 
split pointer is set to null which indicates no cluster splitting is 
allowed. The same mechanism follows for insertion of a new 
semantic cluster. After splitting, a node updates its cluster ID, 
the bit split pointer, the neighbors list in both its own cluster 
and its adjacent clusters. Cluster merging is an inverse process 
of cluster splitting, and hence we will not go into the details.  

3.4 The Search Algorithm 

In SCS, each node, say x, maintains a routing table with a set 
of node entries <NodeID, ClusterID> in x's own cluster, two 
adjacent clusters and another two semantic clusters. It also 
keeps the state information about its own cluster, consisting of 
a k-bit ClusterID (where k = m + n) which indicates the cluster 
it resides in and ClusterSize which specifies the current size of 
its cluster. Each node also maintains a number of indices. The 
query routing process involves two steps: inter-cluster routing 
and intra-cluster routing. When node x receives a query, a 
Semantic Cluster ID is generated based on the semantics of 
the query. This ID, denoted as D, is the destination semantic 
cluster the query is searching for. Node x will first check 
whether D falls into its own semantic cluster by comparing D 
against the most significant m-bits of its ClusterID. If that is 
the case, x will flood the query to all the nodes in its own 
cluster and also forward the query to the nodes in its adjacent 
clusters corresponding to D. The first node in each of these 
adjacent clusters is always responsible to flood the query in its 
cluster and forwarding the query to its adjacent cluster. The 
forwarding processes are recursively carried out until all the 
clusters corresponding to D are covered. Every node, upon 
receiving a query, will check its local data repository and 
return the matched context data and indices. For example, as 
illustrated in Figure 3a, Peer 1 in C0 forwards the query to C1, 
the first node in C1 forwards the query to a node in C2, etc; 

also the query is flooded in each of these clusters. If D falls 
into x's adjacent semantic cluster, the query will be forwarded 
to D and flooded to all the clusters corresponding to D. For 
example, in Figure 3a, a query generated at Peer 2 with D = 
SC3 will go through C16 and be flooded in C14 and C12. If D 
neither falls into x's own cluster nor its adjacent semantic 
cluster, x will reply on its shortcuts to route the query across 
clusters. 

 

Figure 3.  Query routing in SCS 

In the design of shortcuts, our approach is based on the 
observation of the ring space can be equally divided into 
several partitions. Each node maintains two shortcuts that are 
used to partition the ring space; a query can be routed to a 
semantic cluster which is closer to the destination semantic 
cluster quickly with the helps of these shortcuts. Given the 
maximum cluster size M, the system can have a total of 
M·2m+n-1 nodes when Mmin = 1. Let Cx represent the cluster 
where node x resides in and SCx denote the semantic cluster 
that Cx corresponds to. SCx can be obtained by truncating Cx 
to m bits from the most significant bit. The two semantic 
clusters SChalf and SCquarter that x's shortcuts point to are 
denoted as (SCx + 2i) mod 2m, where i = m - 1, m - 2. To initial 
a search, node x obtains D based on a query and checks which 
cluster range partitioned by x's shortcuts D falls into. Then 
node x forwards the query to the closer semantic cluster 
through its shortcut. If D is closer to SCx, x will forward the 
query across its adjacent cluster towards D. For example, as 
shown in Figure 3b, Peer 1 generates a query and computes 
the destination semantic cluster as SC5. Peer 1 first realizes 
that SC5 falls into the interval [SC4, SC0] and SC4 is close to 
SC5. Then Peer 1 forwards the query to Peer 5 at C17. As 
SC5 falls into [SC4, SC6] and C24 is closer to SC5 as 
compared to C17. Hence, Peer 5 forwards the query to SC6 
through its quarter shotcuts. Finally, the query reaches SC3 
and is then flooded in both C22 and C20.  

The more shortcuts we create, the finer the granularity we get. 
If a node maintains its shortcuts that point to every other 
semantic cluster, it is identical to the ContextBus architecture. 
However, more shortcuts imply higher cost of creating, 
updating and maintaining these shortcuts. In SCS, we set the 
number of shortcuts to two. To partition the ring space in a 
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finer granularity when the number of semantic cluster m 
increases, we can place the longest shortcut into different 
points. The other shortcut always points to the middle 
semantic cluster between SCx and the semantic cluster that the 
longest shortcut points to. For example, if we place the longest 
shortcut to one-quarter of the ring, the ring space is divided by 
eight, and so on.  

4. EVALUATION 

In this section, we use simulations to evaluate SCS. We first 
describe our simulation model and the metrics. Then we report 
the results from a range of experiments. 

4.1 Simulation Model and Metrics  

To simulate the performance of SCS in a more realistic 
environment, we create two types of network topologies in our 
model: physical topology and P2P overlay topology. The 
physical topology represents the real-world Internet topology. 
The P2P overlay topology is built on top of the physical 
topology. All peer nodes are a subset of nodes in physical 
topology. We generate these topologies using the AS model 
since it has the properties of both the small world and power 
law.  

The simulation is started by having a pre-existing node in the 
network and then performing a series of join operations 
invoked by new coming nodes. A node joins a semantic 
cluster based on its local context data and publishes its data 
indices. If a semantic cluster exceeds the maximum size M, it 
will be split into two and this operation may continue until the 
number of sub-clusters reaches 2n. After the network reaches a 
certain size, a mixture of node joining and leaving are invoked 
to simulate the dynamic characteristic of the overlay network. 
Context data are randomly replicated on nodes at a fraction α. 
A query is selected randomly among different semantic 
dimensions. In our simulation study, we use a Gnutella 
overlay network to organize nodes within a cluster. The 
average outgoing degree in a cluster is set to 4 and shortcuts 
are set to the half and quarter of the ring space. To measure 
the effectiveness of SCS, we use the following performance 
metrics: 

Fraction of nodes contacted per query is the average fraction 
of nodes contacted for a query. It captures the efficiency of a 
lookup system.  

Search path length is the average number of hops traversed by 
a query to the destination. 

Search cost is the average number of query messages incurred 
during a lookup operation in the network.  

Maintenance cost is the average number of messages incurred 
when a node joins or leaves the network. It consists of the 
costs of node joining and leaving, cluster splitting/merging 
and index publishing. We measured these costs in terms of 
number of messages. 

In the following sections, we will report the effects of parallel 
search and clustering. The results for fraction of nodes 
contacted per query, search path length and search cost are 
omitted due to the space limit. 

4.2 The Effect of Parallel Search  

In SCS, we explore the parallel search mechanism within a 
semantic cluster. We evaluated the parallel search effect by 
comparing SCS and ContextBus. We set up a network with m 
= 4 and varied the network size from 210 to 213. We set n = 2 
and 3 respectively for SCS, as a result a semantic cluster will 
be split into two when the size exceeds N/25and N/26. Hence a 
search can be performed in parallel among these sub-clusters. 
Figure 4 shows that the parallelism in SCS effectively reduces 
the search path length as compared to ContextBus. 
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Figure 4.  The effect of parallel search in SCS 

4.3 Clustering Effects 

We evaluate the effect of clustering in SCS by varying the 
cluster size M from 20 to 210. We first evaluate the effect of 
cluster size on search path length by setting a network of size 
N = 210. We turn off the parallel search within a semantic 
cluster by setting n = 0, and ensure no data duplication in SCS. 
Hence all clusters are semantic clusters. Figure 5 plots the 
search path length in SCS when M increases from 20 to 210. 
The search path length across clusters increases while the 
search path length within clusters decreases with larger cluster 
sizes (note that there are 210 clusters in the network when M =1 
and only one cluster when M = 210). This is because that with 
a fixed network size, the total number of clusters in SCS 
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Figure 5.  Search path length vs. cluster 
size M  

Figure 6.  Search cost vs. cluster size M  Figure 7.  The cost of node 
joining/leaving and cluster 

splitting/merging vs. cluster size M 

decreases with larger cluster sizes.  

With the same setting as in the previous experiment, we 
evaluated the search cost and its breakdown within clusters 
and across clusters with various cluster sizes. From Figure 6, 
we observe that the search cost in SCS increases rapidly from 
a point where M =16. This is due to the effect of blind 
flooding within a cluster.  

We plot the cost of node joining/leaving and cluster 
splitting/merging over different cluster sizes in Figure 7. As 
there are lesser clusters in SCS with larger cluster sizes, a new 
node requires a smaller number of hops to join the network. 
Therefore the cost of joining/leaving decreases with respect to 
M. With a larger cluster size, cluster splitting and merging 
occur less frequently, resulting in a lower cluster 
splitting/merging cost.  

5. CONCLUSION 

In this paper, we have proposed SCS - a semantic overlay 
network for searching context information in distributed 
environments. Our simulations show that SCS works 
effectively. We believe that SCS can make a significant 
practical impact on building large-scale, schema-based P2P 
systems. Encouraged by our simulation results, we are 
currently building a working prototype to demonstrate how 
SCS can work effectively in real life. 
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