
A Peer-to-Peer Overlay for Context Information Search

Tao Gu
2,1
, Hung Keng Pung

1
School of Computing, National University of Singapore

3 Science Drive 2, Singapore
{gutao, punghk}@comp.nus.edu.sg

Daqing Zhang
2 Institute for Infocomm Research

21 Heng Mui Keng Terrace, Singapore
daqing@i2r.a-star.edu.sg

Abstract - The widespread use of context information necessitates
an efficient wide-area lookup service in pervasive computing. In
this paper, we present Semantic Context Space (SCS), a semantic
overlay network that facilitates efficient search for context
information in distributed environments. Peers in SCS are
grouped based on the semantics of their local data and self-
organized into a one-dimensional ring space. Context search
requests are only routed to the appropriate semantic clusters,
reducing unnecessary search cost on peers that have irrelevant
context data, and increasing the chances that the context data
will be found quickly. By exploring parallelism in a semantic
cluster, search request can be found quickly. Our simulation
studies demonstrate the effectiveness of SCS.

Keywords - Peer-to-Peer, Distributed Context Search, Semantic
Clustering, Routing, Algorithms

1. INTRODUCTION

In recent years, the use of context information has attracted a
lot of attention from researchers and industry participates.
Users and applications are often interested in searching and
utilizing widespread context information. Context information
is characterized as an application's environments or situations
[1]. With the vast amount of context information, how to
provide an efficient context searching service is challenging in
the context-aware research community. One approach is to use
a centralized search engine to store context data and resolve
search requests. Although this approach can provide fast
responses to a context query, it has limitations such as
scalability, processing bottlenecks and single points of failure.
Peer-to-Peer (P2P) approaches, on the other hand, have been
proposed to overcome these obstacles and are gaining
popularity recently. P2P systems such as Chord [3], CAN [4],
Pastry [5] and Tapestry [6] typically implement distributed
hash tables and use hashed keys to direct a lookup request to
the specific nodes by leveraging on a structured overlay
network. However, data placement in these systems is tightly
controlled based on the distributed hash function; and
updating the relevant information on peer joining/leaving and
content changes may introduces a high maintenance overhead.
When dealing with context data, it is more efficient that
context data is stored close to a node where it is generated and
where it is likely to be used. For example, when a person
comes back home, a location sensor detects his/her presence.
It is more efficient to store his/her location data in a node at

his/her home rather than a hashed node which may be far
away from its source. As context information exhibits the
dynamic characteristics [2], peers may join or leave the system
frequently and context data stored in the peers may be
changed rapidly. These characteristics imply that higher
maintenance overheads may occur in the DHT-based overlay
networks. Other P2P systems such as Gnutella [7] allow nodes
to interconnect freely and do not impose any structure on the
resources that are stored. These systems have low maintenance
overhead. However, a query has to be flooded to all nodes in
the network, which may include many nodes that do not
contain the relevant data. The fundamental problem that
makes search in these systems difficult is that data are
randomly distributed in the overlay network with respect to
their semantics. Given a search request, the system either has
to search a large amount of nodes or run a risk of missing
relevant data.

In this paper, we present Semantic Context Space (SCS), a
one-dimensional semantic space where context data are stored
and retrieved according to their semantics. Context data which
are semantically similar are "tied" together in SCS so that they
can be retrieved by a context query which has the same
semantics. As a result, the system is able to forward a query to
nodes which are likely to contain the relevant context data.
This can potentially lead to a lower network load and a better
search performance. The basic idea has been presented in our
earlier work - ContextBus [8]. However, when the number of
semantic clusters increases, the maintenance cost becomes
very expensive. In this paper, we propose the SCS overlay
network to overcome the drawbacks of the ContextBus
architecture. The rest of the paper is organized as follows. We
describe related work in Section 2. We then describe Semantic
Context Space in Section 3. We present the simulation results
in Section 4, and finally conclude the work in Section 5.

2. RELATED WORK

Cai et al. [9] proposed a distributed RDF repository that stores
each triple at three places in a multi-attribute addressable
network which extends Chord by applying a globally known
hash function. Queries can then be efficiently routed to those
nodes in the network where the triples in question are known
to be stored if they exist. However, their solution is based on
DHT and is thus unsuitable for context lookup as we have
discussed in the previous section. Schema-based P2P networks

3950-7803-9428-3/05/$20.00 ©2005 IEEE.

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:13:27 UTC from IEEE Xplore. Restrictions apply.

such as Edutella [10] that combine P2P computing and the
Semantic Web are potential candidates for distributed context
lookup systems. These systems build upon peers that use
explicit schemas to describe their contents. However, current
schema-based P2P networks still have some shortcomings,
e.g., queries still have to be flooded to every node in the
network, making it difficult for the system to scale. Crespo et
al. [11] proposed Semantic Overlay Networks (SONs) which
queries are only routed to the appropriate SONs, increasing
the chances that matching objects will be found quickly and
reducing the search load. Kleinberg [12] proposed a two-
dimensional grid where every node maintains for links to each
of its closest neighbors and one long distance link to a node
chosen from a probability function.

3. SEMANTIC CONTEXT SPACE

3.1 Overview

In SCS, a large number of nodes are arranged and self-
organized into a semantic overlay network, in accordance with
their semantics. Upon creation, peers will be grouped
according to their data semantics and mapped into a semantic
cluster in SCS. Each peer is responsible for managing its own
context data corresponding to a semantic cluster and
publishing their data indices to peers in other clusters. These
indices serve as node pointers which provide location
references regarding to where context data is physically
stored. Upon receiving a context query, a peer first pre-
processes the query and obtains the semantic cluster
information associated with the query, and then route the
query to an appropriate cluster in SCS. When the query
reaches the designated cluster, it floods to all peers within this
cluster. Peers that receive a query do a local search and report
the results if available. Each peer maintains a local context
data repository which supports RDF-based semantic query
using RDQL [13].

There are several critical issues need to be addressed in the
design of SCS. First, how to extract the semantics from both
context data and queries efficiently and precisely, and how to
cluster peers in accordance with their data semantics are
critical in the first place. We propose to use ontologies as
metadata to extract data semantics. The formal design of
context ontologies minimizes the problems of synonyms and
polysemy. Secondly, how to facilitate efficient navigation and
search while minimizing maintenance cost in SCS? To enable
navigation and search between clusters, an intuitive solution is
to construct k-dimensional semantic clusters by connecting
each peer to all dimensions of the corresponding clusters such
as in the ContextBus architecture. However, for a high-
dimensional semantic space, this approach makes maintenance
costly. To address this problem, we propose a one-
dimensional ring structure which enables the mapping of the
clusters in k-dimensional space to one-dimensional space.
Thirdly, how does the overlay resolve the issues related to the

scalability, load balancing and fault tolerance? To address
these issues, we propose a cluster encoding scheme which
allows sub-clustering in a semantic cluster. The system can
self-adapt to the number of peers by the operations of cluster
splitting and merging. This scheme also enables us to search
context data in a parallel fashion.

3.2 Ontology-based Semantic Clustering

In this section, we describe how to use ontology to extract the
semantics of both data and queries. The semantics of context
data are represented by schema, i.e. context ontology. Various
context data are structured and classified according to these
ontologies. This ontological structure is also exploited to
extract the query semantics and formulate context query. We
adopt a two-tier hierarchy in the ontology design. The upper
ontology which defines common concepts is shared by all
peers. Each peer can define its own concepts in its low-layer
ontologies. Different peers may store different sets of low-
layer ontologies based on their applications' needs. An
example of ontological structure is shown in Figure 1.

pa
rti

cip
at

eI
n

Figure 1. An example of ontological structure

The leaf nodes in the upper ontology are used as semantic
clusters to cluster peers, and denoted as a set E = {Service,
Application, Devices, . . .}. Each of these pre-defined semantic
clusters will be assigned with a unique ID upon their presence
in SCS. The mapping computation is done locally at each
peer. For the mapping of RDF data, a peer needs to define a
set of low-layer ontologies and store them locally. Upon
joining SCS, a peer first obtains the upper ontology and
merges it with its local low-layer ontology. Then it creates
instances (i.e. RDF data) and adds them into the merged
ontology to form its local knowledge base. A peer can map its
local data into one or more semantic clusters by extracting the
predicates of its RDF triples. For example, we can map
predicate 'locatedIn' into semantic cluster 'IndoorSpace' by
checking its rdfs:range if the predicate is of type
ObjectProperty. If the predicate is of type DataTypeProperty,
for example, 'lightLevel', we will check its rdfs:domain to get
the class - 'Location'. As 'Location' is not a leaf node in the
upper ontology, we need to find out its subclasses/superclasses

396

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:13:27 UTC from IEEE Xplore. Restrictions apply.

until the leaf nodes are reached. Finally 'lightLevel' is mapped
into both 'IndoorSpace' and 'OutdoorSpace' semantic clusters.

3.3 One-dimensional Ring Structure

Peer Placement: Upon joining the network, a peer needs to
obtain the semantics from its local context data and place itself
into an appropriate semantic cluster. The computation is done
locally at each peer and requires global information (i.e. a set
of domain context ontologies) to function. Each of the domain
ontologies corresponds to a unique Semantic ID (described in
the next sub-section) which will be assigned dynamically. As
a peer may obtain multiple semantics extracted from its
context data, we choose the semantic cluster corresponding to
the largest set (i.e. majority) of context data to place the peer.
In order for a query to reach all nodes that provide the same
semantics, we adopt index publishing. Other than the semantic
cluster a peer joins, the peer selects a node in each of the rest
semantic clusters and publishes its index to these nodes. For
example, Peer 1 publishes its index to semantic cluster SC1 by
putting its index to Peer 3 in cluster C4 which is selected in
random within SC1. As a result, a semantic cluster can be
viewed as a set of interconnected nodes separated by clusters
and a collection of references stored in these nodes which
point to the other nodes where context data is physically
stored. While we assume single cluster joint point here, multi-
cluster joint points can be used as well.

Figure 2. One-dimensional ring structure

Cluster Naming Scheme: In SCS, we distinguish the concepts
of cluster and semantic cluster. A cluster refers to a partition
which consists of a set of nodes bundled together such as
cluster C0 and C1 in Figure 2. A semantic cluster, on the other
hand, refers to a set of clusters corresponding to the same
semantics. For example, cluster C0, C1, C2, and C3 belongs to
semantic cluster SC0; cluster C20 and C22 belongs to
semantic cluster SC5. We propose our cluster encoding
scheme as follows. A Cluster ID which is represented by an k-
bit binary string (where k = m + n) is an unique ID that
identifies a cluster. The first m-bit binary string (we call it
Semantic Cluster ID) is used to identify a semantic cluster
which corresponds to one particular domain context ontology.
Hence, a SCS can have a maximum of 2k clusters and 2m

semantic clusters. An example of a SCS which assumes k = 5

and m = 3 is illustrated in Figure 2. The rational behind this
encoding scheme is that, for a given query, we need to obtain
the appropriate Semantic Cluster ID (rather than Cluster ID) to
match the same semantics of the query and route the query
among semantic clusters. Partitioning peers into a set of
clusters within the same semantic cluster also facilitates load
balancing and enables parallel search within the same
semantic cluster.

Ring Construction: In SCS, each node maintains a set of node
entries in its routing table for the purpose of both intra-cluster
routing and inter-cluster routing. A node, say x, decides which
semantic cluster to participate based on its context data and
randomly picks a cluster within this semantic cluster to join. It
joins the cluster by connecting to and keeping track of a
number of nodes in the cluster. The nodes within this cluster
are interconnected just like a Gnutella-like overlay network.
These node entries (called x's neighbors in its own cluster) will
be maintained in x's routing table as intra-cluster routing
information. Node x also maintains two node entries in each of
its adjacent clusters. We call these two nodes x's neighbors in
its adjacent clusters. For example, in Figure 2, Peer 1 keeps
track of a node in its own cluster C0 and another two nodes in
its adjacent clusters - C1 and C28 respectively. Each node who
wishes to join the network performs this operation; resulting
all the clusters are linked linearly in a ring fashion. With this
ring structure, a k-dimensional semantic space can be
linearized; and hence it significantly reduces the
dimensionality of the semantic space. Maintaining two
neighbors in the adjacent clusters for every node in SCS also
ensures that a query generated at any node will be able to
reach any other cluster by navigating the ring space. However,
queries have to be passed around the ring linearly either
clockwise or anticlockwise until the destination cluster is
reached. To accelerate search across clusters, node x maintains
a set of nodes in other semantic clusters except the two
adjacent clusters. These nodes provide shortcuts for node x to
route a query to other semantic clusters quickly. For example,
in Figure 2, node x creates and keeps track of two shortcuts: -
one points to Peer 5 and the other points to Peer 6. When a
new semantic cluster is inserted into the ring space or in the
process of cluster splitting/merging, a node needs to update
the neighboring nodes in both its own cluster and its adjacent
clusters. However, a node only needs to update its shortcuts
upon the insertion or deletion of a semantic cluster as a
shortcut points to an appropriate semantic cluster rather than a
cluster.

Cluster Splitting and Merging: If a cluster size exceeds M (the
maximum cluster size), the splitting process is invoked to split
the cluster into two. Each node maintains a parameter called
CurrentLoad which measures the current load of the node in
terms of the number of triples and data indices it stores. When
a node, say x, joins the network, it sends a join request
message to an existing node, says y. If y falls into the same
semantic cluster x wishes to join, x joins the cluster by

397

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:13:27 UTC from IEEE Xplore. Restrictions apply.

connecting to y provided the cluster size is below M.
Otherwise, y performs a search to direct the request to a node,
say z, in the semantic cluster x wishes to join, and then x
connects to z if the cluster does not exceed M. If the cluster
size exceeds M, the node (i.e. y or z, we call an initial node)
will initial the splitting process. The initial node first obtains a
sorted list of all the nodes according to their CurrentLoads by
polling. Then it assigns these nodes to the two sub-clusters
alternatively. After the splitting, we obtain two clusters with
relatively equal load. The initial node is also responsible for
generating a new cluster ID for each of the two sub-clusters.
To obtain a new cluster ID, each node maintains a bit split
pointer which indicates the next bit to be split in the n-bit
binary string (where n = k - m). For example, assuming m = 3,
n = 2, and there exists a cluster C4 in the network. Initially,
the bit split pointer points to the most significant bit of the n-
bit string. When a cluster splitting occurs, the bit pointed by
the bit split pointer is split into 0 and 1, and then move the
pointer forwards to the next bit in the n-bit string. Therefore,
we obtain cluster ID - C4 and C6, and both IDs correspond to
the same semantic cluster SC1. Cluster C4 or C6 can be
further split into C4 and C5 or C6 and C7; and finally the bit
split pointer is set to null which indicates no cluster splitting is
allowed. The same mechanism follows for insertion of a new
semantic cluster. After splitting, a node updates its cluster ID,
the bit split pointer, the neighbors list in both its own cluster
and its adjacent clusters. Cluster merging is an inverse process
of cluster splitting, and hence we will not go into the details.

3.4 The Search Algorithm

In SCS, each node, say x, maintains a routing table with a set
of node entries <NodeID, ClusterID> in x's own cluster, two
adjacent clusters and another two semantic clusters. It also
keeps the state information about its own cluster, consisting of
a k-bit ClusterID (where k = m + n) which indicates the cluster
it resides in and ClusterSize which specifies the current size of
its cluster. Each node also maintains a number of indices. The
query routing process involves two steps: inter-cluster routing
and intra-cluster routing. When node x receives a query, a
Semantic Cluster ID is generated based on the semantics of
the query. This ID, denoted as D, is the destination semantic
cluster the query is searching for. Node x will first check
whether D falls into its own semantic cluster by comparing D
against the most significant m-bits of its ClusterID. If that is
the case, x will flood the query to all the nodes in its own
cluster and also forward the query to the nodes in its adjacent
clusters corresponding to D. The first node in each of these
adjacent clusters is always responsible to flood the query in its
cluster and forwarding the query to its adjacent cluster. The
forwarding processes are recursively carried out until all the
clusters corresponding to D are covered. Every node, upon
receiving a query, will check its local data repository and
return the matched context data and indices. For example, as
illustrated in Figure 3a, Peer 1 in C0 forwards the query to C1,
the first node in C1 forwards the query to a node in C2, etc;

also the query is flooded in each of these clusters. If D falls
into x's adjacent semantic cluster, the query will be forwarded
to D and flooded to all the clusters corresponding to D. For
example, in Figure 3a, a query generated at Peer 2 with D =
SC3 will go through C16 and be flooded in C14 and C12. If D
neither falls into x's own cluster nor its adjacent semantic
cluster, x will reply on its shortcuts to route the query across
clusters.

Figure 3. Query routing in SCS

In the design of shortcuts, our approach is based on the
observation of the ring space can be equally divided into
several partitions. Each node maintains two shortcuts that are
used to partition the ring space; a query can be routed to a
semantic cluster which is closer to the destination semantic
cluster quickly with the helps of these shortcuts. Given the
maximum cluster size M, the system can have a total of
M·2m+n-1 nodes when Mmin = 1. Let Cx represent the cluster
where node x resides in and SCx denote the semantic cluster
that Cx corresponds to. SCx can be obtained by truncating Cx
to m bits from the most significant bit. The two semantic
clusters SChalf and SCquarter that x's shortcuts point to are
denoted as (SCx + 2i) mod 2m, where i = m - 1, m - 2. To initial
a search, node x obtains D based on a query and checks which
cluster range partitioned by x's shortcuts D falls into. Then
node x forwards the query to the closer semantic cluster
through its shortcut. If D is closer to SCx, x will forward the
query across its adjacent cluster towards D. For example, as
shown in Figure 3b, Peer 1 generates a query and computes
the destination semantic cluster as SC5. Peer 1 first realizes
that SC5 falls into the interval [SC4, SC0] and SC4 is close to
SC5. Then Peer 1 forwards the query to Peer 5 at C17. As
SC5 falls into [SC4, SC6] and C24 is closer to SC5 as
compared to C17. Hence, Peer 5 forwards the query to SC6
through its quarter shotcuts. Finally, the query reaches SC3
and is then flooded in both C22 and C20.

The more shortcuts we create, the finer the granularity we get.
If a node maintains its shortcuts that point to every other
semantic cluster, it is identical to the ContextBus architecture.
However, more shortcuts imply higher cost of creating,
updating and maintaining these shortcuts. In SCS, we set the
number of shortcuts to two. To partition the ring space in a

398

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:13:27 UTC from IEEE Xplore. Restrictions apply.

finer granularity when the number of semantic cluster m
increases, we can place the longest shortcut into different
points. The other shortcut always points to the middle
semantic cluster between SCx and the semantic cluster that the
longest shortcut points to. For example, if we place the longest
shortcut to one-quarter of the ring, the ring space is divided by
eight, and so on.

4. EVALUATION

In this section, we use simulations to evaluate SCS. We first
describe our simulation model and the metrics. Then we report
the results from a range of experiments.

4.1 Simulation Model and Metrics

To simulate the performance of SCS in a more realistic
environment, we create two types of network topologies in our
model: physical topology and P2P overlay topology. The
physical topology represents the real-world Internet topology.
The P2P overlay topology is built on top of the physical
topology. All peer nodes are a subset of nodes in physical
topology. We generate these topologies using the AS model
since it has the properties of both the small world and power
law.

The simulation is started by having a pre-existing node in the
network and then performing a series of join operations
invoked by new coming nodes. A node joins a semantic
cluster based on its local context data and publishes its data
indices. If a semantic cluster exceeds the maximum size M, it
will be split into two and this operation may continue until the
number of sub-clusters reaches 2n. After the network reaches a
certain size, a mixture of node joining and leaving are invoked
to simulate the dynamic characteristic of the overlay network.
Context data are randomly replicated on nodes at a fraction α.
A query is selected randomly among different semantic
dimensions. In our simulation study, we use a Gnutella
overlay network to organize nodes within a cluster. The
average outgoing degree in a cluster is set to 4 and shortcuts
are set to the half and quarter of the ring space. To measure
the effectiveness of SCS, we use the following performance
metrics:

Fraction of nodes contacted per query is the average fraction
of nodes contacted for a query. It captures the efficiency of a
lookup system.

Search path length is the average number of hops traversed by
a query to the destination.

Search cost is the average number of query messages incurred
during a lookup operation in the network.

Maintenance cost is the average number of messages incurred
when a node joins or leaves the network. It consists of the
costs of node joining and leaving, cluster splitting/merging
and index publishing. We measured these costs in terms of
number of messages.

In the following sections, we will report the effects of parallel
search and clustering. The results for fraction of nodes
contacted per query, search path length and search cost are
omitted due to the space limit.

4.2 The Effect of Parallel Search

In SCS, we explore the parallel search mechanism within a
semantic cluster. We evaluated the parallel search effect by
comparing SCS and ContextBus. We set up a network with m
= 4 and varied the network size from 210 to 213. We set n = 2
and 3 respectively for SCS, as a result a semantic cluster will
be split into two when the size exceeds N/25and N/26. Hence a
search can be performed in parallel among these sub-clusters.
Figure 4 shows that the parallelism in SCS effectively reduces
the search path length as compared to ContextBus.

 0

 50

 100

 150

 200

 250

 300

 1024 2048 4096 8192

se
ar

ch
 p

at
h

le
ng

th

of nodes

ContextBus
SCS (n=2)
SCS (n=3)

Figure 4. The effect of parallel search in SCS

4.3 Clustering Effects

We evaluate the effect of clustering in SCS by varying the
cluster size M from 20 to 210. We first evaluate the effect of
cluster size on search path length by setting a network of size
N = 210. We turn off the parallel search within a semantic
cluster by setting n = 0, and ensure no data duplication in SCS.
Hence all clusters are semantic clusters. Figure 5 plots the
search path length in SCS when M increases from 20 to 210.
The search path length across clusters increases while the
search path length within clusters decreases with larger cluster
sizes (note that there are 210 clusters in the network when M =1
and only one cluster when M = 210). This is because that with
a fixed network size, the total number of clusters in SCS

399

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:13:27 UTC from IEEE Xplore. Restrictions apply.

0

10

20

30

40

50

1 2 4 8 16 32 64 128 256 512 1024

cluster size M

se
ar

ch
 p

at
h

le
ng

th

search path length w ithin semantic clusters
search path length across semantic clusters

0

10

20

30

40

50

1

10

100

1000

10000

1 2 4 8 16 32 64 128 256 512 1024

cluster size M

se
ar

ch
 c

os
t

search cost w ithin semantic clusters
search cost across semantic clusters

1

10

100

1000

10000

 10

 20

 30

 40

 50

 1 2 4 8 16 32 64 128 256 512 1024co
st

 o
f n

od
e

jo
in

in
g/

le
av

in
g,

cl
us

te
r

sp
lit

tin
g/

m
er

gi
ng

cluster size M

Figure 5. Search path length vs. cluster
size M

Figure 6. Search cost vs. cluster size M Figure 7. The cost of node
joining/leaving and cluster

splitting/merging vs. cluster size M

decreases with larger cluster sizes.

With the same setting as in the previous experiment, we
evaluated the search cost and its breakdown within clusters
and across clusters with various cluster sizes. From Figure 6,
we observe that the search cost in SCS increases rapidly from
a point where M =16. This is due to the effect of blind
flooding within a cluster.

We plot the cost of node joining/leaving and cluster
splitting/merging over different cluster sizes in Figure 7. As
there are lesser clusters in SCS with larger cluster sizes, a new
node requires a smaller number of hops to join the network.
Therefore the cost of joining/leaving decreases with respect to
M. With a larger cluster size, cluster splitting and merging
occur less frequently, resulting in a lower cluster
splitting/merging cost.

5. CONCLUSION

In this paper, we have proposed SCS - a semantic overlay
network for searching context information in distributed
environments. Our simulations show that SCS works
effectively. We believe that SCS can make a significant
practical impact on building large-scale, schema-based P2P
systems. Encouraged by our simulation results, we are
currently building a working prototype to demonstrate how
SCS can work effectively in real life.

6. REFERENCES

[1] R.Hull, P.Neaves and J. Bedford-Roberts. Towards Situated
Computing. In Proceedings of the 1st International Symposium
on Wearable Computers, Cambridge, October 1997.

[2] T. Gu, H. K. Pung, and D. Q. Zhang. A Service-Oriented
Middleware for Building Context-Aware Services. Journal of
Network and Computer Applications, Vol. 28, Issue 1, pp. 1-18,
January 2005.

[3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.
Balakrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of ACM SIGCOMM, 2001.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content addressable network. In Proceedings of ACM
SIGCOMM, 2001.

[5] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems.
Lecture Notes in Computer Science, 2218:161–172, November
2001.

[6] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz. Tapestry: A resilient global-scale overlay for
service deployment. IEEE Journal on Selected Areas in
Communications, 22(1):41–53, January 2004.

[7] Gnutella, http://gnutella.wego.com

[8] T. Gu, E. Tan, H. K. Pung, and D. Zhang. A Peer-to-Peer
Architecture for Context Lookup. In Proceedings of the
International Conference on Mobile and Ubiquitous Systems:
Networking and Services (MobiQuitous), San Diego, California,
July 2005.

[9] Min Cai, Martin Frank. RDFPeers: A Scalable Distributed RDF
Repository based on A Structured Peer-to-Peer Network. In
Proceedings of the 13th International World Wide Web
Conference, New York, May 2004.

[10] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I.
Brunkhorst, and A. Lser. Super-peer-based routing and
clustering strategies for RDF-based peer-to-peer networks. In
Proceedings of the 12th World Wide Web Conference, May
2003.

[11] A. Crespo and H. Garcia-Molina. Semantic overlay networks for
P2P systems. Technical report, Stanford University.

[12] J. Kleinberg. The small-world phenomenon: an algorithm
perspective. In Proceedings of the 32nd ACM Symposium on
Theory of Computing, 2000.

[13] RDQL, http://www.w3.org/Submission/2004/SUBM-RDQL-
20040109/

400

Authorized licensed use limited to: RMIT University Library. Downloaded on January 10,2021 at 17:13:27 UTC from IEEE Xplore. Restrictions apply.

