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Abstract—Recognizing human activities from sensor readings has recently attracted much research interest in pervasive computing

due to its potential in many applications, such as assistive living and healthcare. This task is particularly challenging because human

activities are often performed in not only a simple (i.e., sequential), but also a complex (i.e., interleaved or concurrent) manner in real

life. Little work has been done in addressing complex issues in such a situation. The existing models of interleaved and concurrent

activities are typically learning-based. Such models lack of flexibility in real life because activities can be interleaved and performed

concurrently in many different ways. In this paper, we propose a novel pattern mining approach to recognize sequential, interleaved,

and concurrent activities in a unified framework. We exploit Emerging Pattern—a discriminative pattern that describes significant

changes between classes of data—to identify sensor features for classifying activities. Different from existing learning-based

approaches which require different training data sets for building activity models, our activity models are built upon the sequential

activity trace only and can be applied to recognize both simple and complex activities. We conduct our empirical studies by collecting

real-world traces, evaluating the performance of our algorithm, and comparing our algorithm with static and temporal models. Our

results demonstrate that, with a time slice of 15 seconds, we achieve an accuracy of 90.96 percent for sequential activity, 88.1 percent

for interleaved activity, and 82.53 percent for concurrent activity.

Index Terms—Human activity recognition, pattern analysis, emerging pattern, classifier design and evaluation.

Ç

1 INTRODUCTION

WITH the rapid advances of sensors and wireless
networks, recognizing human activity based on

sensor readings has recently drawn much research interest
in pervasive computing. Different from video-based activity
recognition systems leveraging on video camera, in this
paradigm, physical sensors are typically deployed to collect
observations. Observations are used to train an appropriate
activity model; the trained model can then be used to assign
new observations with activity labels. A typical application
is monitoring Activities of Daily Living (ADLs) [1] for the
elderly and cognitively impaired people, and providing
them with proactive assistance.

Human activity recognition is generally done at three

different levels—action, ADL, and high level. At the action

level, the physical actions of a user such as walking, sitting

and running [2], [5], [9] are of concern. At the ADL level, the

focus is on ADLs1 and most of the existing work [5], [6], [7],

[8], [10], [12], [13], [14], [15], [16], [17], [18], [20], [22], [23],

[24], [25], [26] is done at this level. At the high level, ADLs
are merged into several coarse-grained categories, such as
Information/Leisure, Personal and Cleaning [16], [21]. The
work reported in this paper concerns recognizing activities
at the ADL level.

Humans usually perform ADLs in a sequential manner
(i.e., one activity after another in a timeline), such as brushing
teeth followed by washing face, and preparing a meal
followed by eating the meal. However, in real life, there exist
many complex situations since people often multitask when
performing their activities. Such multitasking may occur in
an interleaved (i.e., switching between the steps of two or
more activities) or concurrent (i.e., performing two or more
activities simultaneously) manner. Interleaved activities can
be, e.g., while eating a meal in the dining room, a user may go
to the living room to answer a phone call and come back to
resume the meal; and concurrent activities can be, e.g., a user
may drink coffee while watching TV. Recognizing activities
in such a complex situation has a practical implication to real-
life applications and motivates this work.

Activity recognition can be typically viewed as a
classification problem where many traditional machine
learning techniques can be applied to. Most of the existing
work apply machine learning models to recognize only
sequential activities in different settings [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [20],
[24], [25], [26]. Little work has been done in addressing
complex issues rise in recognizing sequential, interleaved,
and concurrent activities.

Aiming to recognize both simple and complex activities2

in a unified framework, in this paper, we propose a novel
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1. We use ADLs, daily activities, and activities interchangeable
throughout the paper.

2. We refer simple activity to sequential activity, complex activity to
interleaved and concurrent activity in this paper.
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Emerging-Patterns-based approach to recognize sequential,
interleaved, and concurrent activities. We formulate activity
recognition as a pattern-based classification problem and
build our activity models based on Emerging Pattern [43]—a
discriminative pattern that describes significant changes
between two classes of data. We apply Emerging Patterns to
mine a set of unique, contrast sensor features for each activity
class, and use these sets of features to recognize activities.
Our interleaved and concurrent activity models are built
directly from the sequential model, eliminating the training
process; hence, it has a great flexibility and applicability for
real-life applications. We also propose a novel trace
segmentation algorithm based on the concept of feature
relevance to segment the boundary of any two adjacent
activities. We conduct a real-world trace collection done by
four volunteers in a smart home. Through comprehensive
experimental studies, we demonstrate both the effectiveness
and flexibility of our proposed algorithms.

In summary, the paper provides the following con-
tributions.

. We formulate activity recognition as a pattern-based
classification problem, and propose an Emerging-Pat-
terns-based approach to recognize both simple and
complex activities in a unified framework. Differing
from existing solutions that require an individual
training process for each activity model, our inter-
leaved and concurrent models are built directly from
the sequential model.

. We propose a novel trace segmentation algorithm based on
feature relevance to segment the boundary of any two
adjacent activities. Our segmentation algorithm oper-
ates locally such that the detection of a boundary
does not affect that of subsequent boundaries. This is
in contrast to segmentation in previous work where
an error in a segmentation process affects the
subsequent ones.

. We conduct a real-world trace collection and evaluate our
algorithms through comprehensive experimental studies.
To the best of our knowledge, comparing to similar
traces collected in [14], [27], our trace contains more
comprehensive cases for studying interleaved and
concurrent activities.

The rest of the paper is organized as follows: Section 2
discusses the related work. In Section 3, we describe our
sensor platform and data preprocessing. Section 4 gives the
background on Emerging Patterns, and the mining of
Emerging Patterns. We then present our activity recognition
algorithm in Section 5. Section 6 reports our empirical
studies, and finally, Section 7 concludes the paper.

2 RELATED WORK

Much work in human activity recognition [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39], [40], [41] has been
done in computer vision. They leverage on video cameras as
passive sensors to recognize people’s actions from video
sequences (i.e., activity recognition is done in the Action
level). These works explore various tracking methods and
spatiotemporal analysis to track moving objects and sense
what a user is doing. A common theme in these works is the

exploration of spatiotemporal video features [28], [31], [37],
[39], [40], [41]. Temporal constraints on actions are usually
addressed using probabilistic models such as Hidden
Markov Models (HMMs) [32], [33], [34], [36], [37], [38] and
Stochastic Context-Free Grammars [30], or explicit temporal
correlation methods [41]. One of the earliest approaches to
recognize human actions via HMMs was proposed by
Yamato et al. [32] where they recognized tennis shots such
as backhand stroke, backhand volley, smash, etc., by
modeling a sequence of background subtracted images as
outputs of class-specific HMMs. Huang et al. [39] used
Dynamic Belief Networks (DBNs) for vision-based traffic
monitoring. DBNs encode more complex conditional depen-
dence relations among several random variables as opposed
to just one hidden variable as in a traditional HMM.

In pervasive computing, researchers are recently inter-
ested in recognizing activities using sensors that directly
measure user’s movement, user location, living environment,
and human-object interaction. Typical sensors can range from
wall-mounted sensors (e.g., switch sensor [3], [4], [7], [11],
[20], [27], infrared motion sensor [4], [11], and pressure sensor
[11]) to wearable sensors (e.g., three-axis accelerometer [2],
[5], [6], [8], [9], [12], [13], [17], [24], wrist-worn RFID sensor [4],
[6], [10], [14], [15], [16], [17], [27], and temperature, humidity,
and light sensors [5], [8], [12], [17], [24]).

There are two major models for recognizing human
activities from artificial intelligence: logic-based approach
and probabilistic approach. Early approaches such as [42]
were based on logic. In this model, activities are described
as a logical inference process of circumscription, and
represented by a set of first-order statements called event
hierarchy. However, logic-based approaches have limita-
tions in distinguishing among consistent plans and have
problems to handle uncertainty and noise in sensor data.

Probabilistic models are more appropriate and gain
popularity as sensor readings are noisy and human activities
are typically performed in a nondeterministic fashion.
Probabilistic models can be generally categorized into static
classification or temporal classification. In static classifica-
tion, a variety of features is first extracted from sensor
readings, and then a static classifier is applied to classify
activities. Typical static classifiers include naı̈ve Bayes used
in [2], [3], [4], [6], decision tree used in [2], [4], [8], k-nearest
neighbor used in [2], [4], [5], [8], and support vector machine
used in [5]. Among these static classifiers, [2], [4] report that
decision tree outperforms the rest. Multiple binary classifiers
can be exploited to recognize interleaved and concurrent
activities; however, this solution may not work properly
because many activities share the common features.

In temporal classification, state-space models are typi-
cally used to enable the inference of hidden states (e.g.,
activity labels) given the observations (i.e., sensor readings).
We name a few examples here: HMMs used in [12], [13],
[14], [15], [16], [17], [18], [20], DBN used in [10], and
Conditional Random Fields (CRFs) used in [18], [19], [20],
[21], [22], [23]. Vail et al. [18] reported that CRFs score
higher or on par with HMMs in terms of classification
accuracy, and also demonstrated CRFs are able to incorpo-
rate features that are difficult to represent in an HMM
model, namely features that link state transitions directly to
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observations. In a different setting, Kasteren et al. reported
that CRFs outperform HMMs in all the cases with respect to
time-slice accuracy, but HMMs achieve the overall highest
class accuracy.

Recent work showed that Skip-Chain Conditional Ran-
dom Field (SCCRF) [20], [21]—a variant of CRF—and
Interleaved Hidden Markov Model (IHMM) [23]—a variant
of HMM—can be used to model interleaved activities, and
Factorial Conditional Random Field (FCRF) [19]—another
variant of CRF—can be used to model concurrent activities.
However, like other machine-learning-based techniques,
they require predicting instances must have their models
presented in the training data set. On one hand, this implies
that the training data set has to be large enough to build the
complete models for interleaved and concurrent activities.
On the other hand, in real life, since there exists a great
variety of ways in which activities can be interleaved and
performed concurrently, it may not be possible to construct
a complete model through the training process. Hence, the
applicability and flexibility of these solutions [19], [20], [21],
[23] remain questionable.

A different attempt to recognize activities is time-series-
based classification, in which an activity is modeled as a
sequence of discrete events [25], [26]. Activities are recog-
nized through discovering and matching the Motif which is
defined as the subsequences with similar behavior appeared
frequently in time series data. However, this approach is
sensitive to the order of the events as it rigidly models an
activity sequence using its variable-length event subse-
quences over the entire continuum of their temporal scales.

Our approach is fundamentally different from the above
because we use a discriminative knowledge pattern. The
Emerging-Patterns-based classifier uses a set of multiattri-
bute tests for each class, while most previous classifiers
consider only one test on one attribute at a time. Different
from the time-series-based classifier concerning the mining
of regularities, we mine the abnormal growth among classes.

3 SENSOR PLATFORM AND DATA PREPROCESSING

In this section, we first present our wireless sensor platform,
then describe data preprocessing.

3.1 Our Sensor Platform

We built our wireless sensor platform as shown in Fig. 1. It
senses the four types of information—user’s movement,
environmental information, user location, and human-
object interaction.

In this platform, a subject wears an iMote2 set on each
hand and his waist. Each iMote2 set, as shown in Fig. 1b,
consists of an IPR2400 processor/radio board and an ITS400
sensor board, capable of measuring motion data using a
three-axis accelerometer, the temperature, humidity, and
light level of the environment. A subject also wears an RFID
wristband reader (Fig. 1c) on each hand. The wristband is
custom-built and it incorporates a SkyeTek M1-mini RFID
reader, a Mica2Dot module, and a rechargeable battery. The
RFID reader is able to detect the presence of a tag within the
range of 6 to 8 cm. HF RFID tags are attached to objects such
as cups and spoons. In the case of metal objects, e.g., kettle,
we tagged on its plastic handle. In the case of liquid objects,

e.g., water, we tagged on the faucet with a special plastic
handle to sense the use. Fig. 1d shows a screenshot of
tagged objects in a kitchen. In addition, detecting user
location is done in a simple way that an UHF RFID reader is
located in each room to sense the proximity of a user
wearing an UHF tag.

When a subject performs activities, the sensor readings
from the three iMote2 sets are collected and transferred
wirelessly to a local server. When a subject handles a tagged
object, the wristband scans the tag ID and sends it wirelessly
to another server that can map the ID to an object name. These
sensor readings are recorded by the two servers separately,
and will be merged into a single text file as the activity trace.

3.2 Feature Extraction

After obtaining the activity trace, we first extract appro-
priate sensor features from various sensor readings. We
describe feature extraction for each type of sensors as
follows:

For acceleration data, we compute features such as DC,
variance, energy, frequency-domain entropy, and correla-
tion. DC is the mean acceleration value. Variance is used to
characterize the stability of a signal. Energy captures data
periodicity, and it is calculated as the sum of the squared
discrete FFT component magnitudes of a signal. Frequency-
domain entropy helps to discriminate activities with similar
energy values, and it is calculated as the normalized
information entropy of the discrete FFT component magni-
tudes of a signal. Correlation is calculated between every
two axes of each accelerometer reading and between all
pairwise combinations of axes on different accelerometers.
This feature aims to find out the correlation among the
different axes of the three accelerometers. For temperature,
humidity, and light level readings, we compute the mean
value for each reading. For RFID and location readings, we
use object name and location name as features. If no RFID
reading is observed or in the presence of a corrupted tag ID,
the feature value will be set to NULL.

In summary, we have a total number of 75 features in
which 72 of them are numeric features and three of them are
nominal features. In a fixed time interval which is set to one
second in our experiments, we generate a 75-dimensional
feature vector. A feature vector consists of many feature items,
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where a feature item refers to a feature-value pair in which a
value can be numeric or nominal. We denote a numeric
feature as numfeaturei. Suppose its range is ½x; y� and an
interval ½a; b� (or in other forms, ða; b�, ½a; bÞ, or ða; bÞ) is
contained in ½x; y�. We call numfeaturei@½a; b� a numeric
feature item, meaning that the value of numfeaturei is
limited inclusively between a and b. We denote a nominal
attribute as nomfeaturej. Suppose its range is v1; v2; . . . ; vn,
we call nomfeaturej@vk a nominal feature item, meaning that
the value of nomfeaturej is vk.

Numeric features will be discretized by the entropy-
based discretization method [48]. The algorithm uses the
class information entropy of candidate partitions to select
binary boundaries, and uses the minimal entropy criteria to
find multilevel cuts for each attribute. As a result,
72 numeric feature values are partitioned into 1,046 disjoint
intervals. We then can directly combine feature name and
its interval into a numeric feature item. For example,
accel body x@ð�737:5-� 614:5� is an example of body
acceleration feature in the x-axis in our training data set.
For nominal feature, a feature name and its value are
combined as a nominal feature item. For left object and
right object features, we merge them into one feature by
computing left object [ right object without losing any
essential object due to user’s handedness. For example, a
nominal feature item can be object@cup or location@bathroom.
In our current sensor setting, we have a total number of
1,133 feature items. They are indexed by a simple encoding
scheme and will be used as inputs to the EPs mining
process described in the next section.

4 MINING EMERGING PATTERNS FOR ACTIVITY

RECOGNITION

4.1 Problem Statement

We formulate the problem of sequential, interleaved, and
concurrent activity recognition as follows: Given a training
data set that consists of a sequence of observations for
sequential activities only (i.e., formally, a training trace O
consists of T observations O ¼ fo1; o2; . . . ; oTg associated
with sequential activity labels fSA1; SA2; . . . ; SAmg, where
there are m sequential activities), our objective is to train a
model that can assign each new observation with the correct
activity label(s) and segment the new activity trace.

4.2 Emerging Pattern and Preliminaries

We provide the background of Emerging Pattern in this
section. Emerging Pattern (EP) is a pattern that describes
significant changes between two classes of data [43]. An EP is
a set of items whose frequency changes significantly from one
data set to another. Like other patterns or rules composed of
conjunctive combinations of elements, EP can be easily
understood and used directly by people. EP has been
successfully used for predicting the likelihood of diseases
[45] and discovering knowledge in gene expression data [46].

We first give some preliminary definitions. Suppose that
a data set D consists of many instances. An instance
contains a set of items (i.e., an item set), where an item is an
attribute-value pair. The support of an item set X,
suppDðXÞ, is countDðXÞ=jDj, where countDðXÞ is the
number of instances in D containing X. A pattern is
frequent if its support is no less than a predefined minimum

support threshold. Unlike frequent pattern, EP is concerned
with two classes of data.

Definition 1. Given two different classes of data sets D1 and D2,
the growth rate of an item set X from D1 to D2 is defined as
GrowthRateðXÞ ¼

0; if supp1ðXÞ ¼ 0 and supp2ðXÞ ¼ 0;

1; if supp1ðXÞ ¼ 0 and supp2ðXÞ > 0;
supp2ðXÞ
supp1ðXÞ ; otherwise:

8><
>:

Emerging Patterns are those item sets with large growth
rates from D1 to D2.

Definition 2. Given a growth rate threshold � > 1, an item set X
is said to be a ��EmergingPattern (or simply EP) from a
background data set D1 to a target data set D2 if
GrowthRateðXÞ � �.

Since an EP has a high support in its target class and a
low support in the contrasting class, it can be used as a
powerful discriminator to differentiate the class member-
ship of instances that contain the EP.

4.3 Mining Emerging Patterns from Sequential
Activity Instances

We use sequential activity instances for training. Note that
the instances of interleaved and concurrent activities are not
used in our mining process. An instance here refers to a
union of all the observations that belong to a sequential
activity during a continuous period of time.

For each sequential activity class SAi, we mine a set of
EPs to contrast its instances, DSAi

, against all other activity
instances D0SAi

, where D0SAi
¼ D�DSAi

and D is the entire
sequential activity data set. We refer EPSAi

as the EPs of
sequential activity SAi. We discover the EPs by an efficient
algorithm described in [47]. The algorithm mines closed
patterns and generators simultaneously under one depth-
first search scheme.

After computation, we get n sets of EPs, one set per
sequential activity class. Table 1 presents an example of the
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top eight EPs of the cleaning a dining table activity. For
example, the EP

fobject@cleanser; object@plate; object@wash cloth;
location@kicheng

has a support of 95.24 percent and a growth rate of1. It has
an intuitive meaning that cleanser, plate, and wash_cloth
are the common objects which are involved in this activity,
and this activity usually occurs in the kitchen. In fact, one of
the advantages of EPs is easy to understand. Another
interesting phenomenon is that the EPs

fobject@bowl; accel left z@ð�684:5-� 453:5�;
light@ð24:5-28:5�; object@plate; location@kicheng

has a support of 66.67 percent only, where accel left z
stands for the acceleration data of a subject’s left hand in the
z-axis. This probably can be explained that there exist some
variances of his left-hand movement when the subject
performs this activity.

5 OUR ACTIVITY RECOGNITION ALGORITHM

5.1 Overview

We first give an overview of our activity recognition system
as illustrated in Fig. 2. Given a new observation sequence
from time t ¼ 0 to T , our algorithm aims to assign correct
activity label(s) to each observation. At time t, for each
possible activity Ai, we first obtain a test instance St�tþLAi
using a window LAi

(the length of LAi
is the average

duration of Ai and can be obtained from the training data).
We then compute the likelihood of Ai based on our activity
model. The activity with the maximum likelihood will be
assigned to this instance. In the next step, the window
moves on and we obtain the next test instance. The same
computation follows to obtain an activity with the max-
imum likelihood. We then apply a segmentation algorithm
to detect and adjust the boundary between these two
adjacent activities. The above processes run recursively
until the end, i.e., t ¼ T .

The score function measures the likelihood of a possible
activity for a given test instance. Its design is critical in our
algorithm. In our design, we consider three probability
elements: EP score, coverage score, and correlation score.
We describe each of them in the following sections.

5.2 Score Function for Sequential Activity

5.2.1 EP Score

Given a test instance St�tþLSAi for a possible activity SAi, the
EP score measures the likelihood of a set of SAi’s EPs
contained in this instance. It provides a probabilistic
measurement on the fraction of EPSAi

(i.e., the discriminat-
ing features of SAi) contained in St�tþLSAi . To make use of
each EP set, we combine the strength of each set of EPs
based on the aggregation method described in [44].

Suppose an instance St�tþLSAi contains an EP, X, where

X 2 EPSAi
, then the odds that St�tþLSAi belongs to SAi is

defined as growth rateðXÞ
growth rateðXÞþ1 . The differentiating power of a

single EP is then defined by the odds and the fraction of

the population of class that contain the EP. More

specifically, the differentiating power of X is given by
growth rateðXÞ
growth rateðXÞþ1 �suppSAi

ðXÞ. The aggregated EP score of

St�tþSAi for SAi is defined as follows:

aggregated scoreðSAi; St�tþSAi Þ

¼
X

X�St�tþSAi ;X2EPSAi

growth rateðXÞ
growth rateðXÞ þ 1

�suppSAi
ðXÞ ; ð1Þ

where suppSAi
ðXÞ is the support of X in class SAi, and

growth rateðXÞ is suppSAi
ðXÞ divided by the X’s support in

non� SAi class. The EP score of each activity is then
normalized to all the training instances of SAi. Finally, we
define the EP score as follows:

ep scoreðSAi; St�tþLSAi Þ

¼
aggregated scoreðSAi; St�tþLSAi Þ

base scoreðSAiÞ
;

ð2Þ

where base scoreðSAiÞ is the median of the values of
aggregated scoreðSAi; St�tþLSAi Þ in the training data.

Example 1. Given a test instance S ¼ f1; 2; 3; 4; 6; 7; 8; 10; 11g,
and a possible activity SAi which has four EP sets: ({1, 3},
100 percent, 1), ({2, 3}, 95 percent, 150), ({1, 2, 3, 8},
81 percent,1), and ({1, 7}, 62 percent, 80). Now, we know
the differentiating power of the four EPs is 1.0, 0.95, 0.81,
and 0.62, respectively. The aggregated EP score can be
obtained by summing up all the EPs, hence we get
aggregated scoreðSAi; SÞ ¼ 3:38. Suppose there are seven
training data sets for SAi, we compute the aggregated
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score for each training data set. For example, we obtain
2.76, 3.38, 3.56, 3.66, 3.85, 3.85, and 4.12, respectively, and
we obtain the median 3.66. Finally, the EP score for SAi is
obtained by ep scoreðSAi; SÞ ¼ 3:38=3:66 ¼ 0:92.

5.2.2 Coverage Score

Given a test instance St�tþLSAi for a possible activity SAi, the
Sliding-Window Coverage score (coverage score for short)
measures a fraction of irrelevant observations contained in

this instance with respect to SAi.
Fig. 3 illustrates this concept. A sequence of feature

vectors from time t is labeled with the ground truth activity
SAi, followed by SAj. During prediction, a sliding window
LSAi

is used to get instance St�tþLSAi . Since the length of LSAi

is an approximation, it could be longer or shorter than the
actual length of St�tþLSAi . For example, shown in this
example, although St�tþLSAi includes the fractions of EPSAi

,

it covers some observations of the adjacent activity SAj as
well. Therefore, we introduce the coverage score to measure
the fraction of irrelevant observations in a sliding window.
The lower the percentage of irrelevant observations
covered; the larger the coverage score is obtained.

We denote coverage scoreðSAi; St�tþLSAi Þ as the coverage

score of instance St�tþLSAi for SAi. This score is computed

based on a function, relevanceðSAi; fpÞ, where fp is a feature

vector contained in LSAi
. Recall that a feature vector is a set

of feature items. We first compute relevanceðSAi; itemhÞ for

each itemh 2 fp, we then aggregate their scores for comput-

ing relevanceðfp; SAiÞ.
We compute relevanceðSAi; itemhÞ based on the follow-

ing equation:

relevanceðSAi; itemhÞ ¼ P ðitemhjSAiÞ
þ

X
itemh2X;X2EPSAi

suppSAi
ðXÞ; ð3Þ

where the probability P ðitemhjSAiÞ is obtained from the

training data, and
P

itemh2X;X2EPSAi
suppSAi

ðXÞ indicates that
more weights are given to an item which appears in EPSAi

.

We now aggregate the values of relevanceðSAi; itemhÞ
for all itemh 2 fp. The aggregation can be simply done usingP

itemh2fp relevanceðSAi; itemhÞ. However, if EPSAi
has

many more items than EPSAj
, then a feature vector usually

gets higher scores for SAi than SAj even for the feature

vectors of SAj. Hence, we need a normalized scheme. The

normalized relevanceðSAi; fpÞ is computed as follows:

relevanceðSAi; fpÞ ¼
unnorm relevanceðSAi; fpÞ

base relevanceðSAiÞ
; ð4Þ

where unnorm_relevanceðSAi, fpÞ ¼
P

itemh2fp relevance(SAi,

itemh) and base relevanceðSAiÞ be the median of the values

of unnorm relevanceðSAi; fpÞ in the training data.

We now can compute coverage scoreðSAi; St�tþLSAi Þ. A

simply way is to sum up all the relevanceðSAi; fpÞ in LSAi
.

However, it may bias toward longer activities. Hence, we

compute coverage scoreðSAi; St�tþLSAi Þ by averaging all the

relevanceðSAi; fpÞ as follows:

coverage scoreðSAi; St�tþLSAi Þ

¼ 1

LSAi

X
fp2LSAi

relevanceðSAi; fpÞ: ð5Þ

5.2.3 Correlation Score

Human activities are usually performed in a nondetermi-
nistic fashion. However, there exist some correlations
between them, i.e., when an activity SAj has been
performed, the probability of another activity SAi being
performed. For example, in a daily routine, a user usually
brushes his teeth, followed by washing his face; cleans the
dining table after eating his meal. We use condition
probability to model such correlations between activities,
i.e., P ðSAijSAjÞ which is the conditional probability of SAi

given SAj. We can easily obtain such probabilities from
training data set. Note that the initial value is set to zero,
i.e., P ðSAijNULLÞ ¼ 0.

5.3 Score Function for Interleaved and Concurrent
Activities

We now describe how to compute the scores of
interleaved and concurrent activities. We set the number
of single activities involved in interleaved or concurrent
activities to two for illustrations although in theory it can
be more than two.

We denote CAi as both interleaved activities (i.e., in this

case, we denote CAi as SAa&SAb) and concurrent activities

(i.e., in this case, we denote CAi as SAa þ SAb), where two

single activities SAa and SAb are involved in. We define the

sliding-window length of CAi as LCAi
¼ LSAa

þ LSAb
, and

use LCAi
to get the test instance St�tþLCAi . Since an instance

of CAi containing both EPSAa
and EPSAb

(i.e., some of

the steps that belong to SAa and SAb, respectively, are

interleaved or overlapped), we compute the EP score of CAi

as follows:

ep scoreðCAi; St�tþLCAi Þ
¼ max½ep scoreðSAa; St�tþLCAi Þ;
ep scoreðSAb; St�tþLCAi Þ�:

ð6Þ

When computing the coverage score ofCAi, we choose the
higher score from relevanceðSAa; fpÞ and relevanceðSAb; fpÞ
since CAi contains both the observations of SAa and SAb in
St�tþLCAi . The rational behind is that a feature vector fp that
belongs to an activity usually has a higher relevance to this
activity. Hence, we have

relevanceðCAi; fpÞ ¼ maxðrelevanceðSAa; fpÞ;
relevanceðSAb; fpÞÞ:
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subset of EPSAj

).
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Then, the coverage score of CAi can be computed as follows:

coverage scoreðCAi; St�tþLCAi Þ

¼ 1

LCAi

X
fp2LCAi

relevanceðCAi; fpÞ: ð7Þ

The computation of correlation score can be quite
complex in interleaved and concurrent activities. There
are three situations: a sequential activity followed by an
interleaved or a concurrent activity, an interleaved or a
concurrent activity followed by a sequential activity, and an
interleaved or a concurrent activity followed by another
interleaved or concurrent activity. Given the rational that
higher condition probability implies a stronger activity
correlation, we choose the maximum value of all possible
condition probabilities for all these cases. To illustrate,
given CAj, where CAi ¼ SAa&SAb or CAi ¼ SAa þ SAb,
such probability can be computed as follows:

P ðCAijCAjÞ ¼ maxðP ðSAajSAcÞ; P ðSAajSAdÞ;
P ðSAbjSAcÞ; P ðSAbjSAdÞÞ:

ð8Þ

The computation of P ðSAijCAjÞ and P ðCAijSAjÞ follows
a similar method, and we use P ðAijAjÞ to denote all the
three cases. In addition, we apply correlation analysis to
measure the likelihood of SAa and SAb appeared in an
interleaved ðSAa&SAbÞ or concurrent ðSAa þ SAbÞ activity.
This probability can be computed as P ðSAaSAbÞ. Finally,
we define the correlation score as follows:

correlationðAiÞ ¼ P ðAijAjÞP ðSAaSAbÞ; ð9Þ

where Ai can be CAi or SAi, Aj can be CAj or SAj, and SAa

and SAb are two single activities involved in CAi. When Ai

is SAi, P ðSAaSAbÞ is defined as P ðAiÞ.
In summary, the score function for sequential, inter-

leaved, and concurrent activities is defined as follows:

Definition 3. Given a time t, and an activity Aj which ends at t,
for each activity Ai, a test instance St�tþLAi is obtained from t

to tþ LAi
, the likelihood of Ai is computed as follows:

scoreðAi;Aj; St�tþLAi Þ ¼ c1 � ep scoreðAi; St�tþLAi Þ
þ c2 � coverage scoreðAi; St�tþLAi Þ
þ c3 � correlationðAiÞ;

ð10Þ

where c1, c2, and c3 are coefficients, representing the weight of
each individual score. These coefficients have different
implications. For example, a higher c1 implies that the subject
always performs his activities in a consistent manner. A higher
c2 implies that all the instances of the activity are performed in
a constant duration whereas a lower c2 implies that the
variance of the instances can be large. A higher c3 implies that
the subject usually performs his activities in certain order.
These weights reflect a subject’s habit in his daily routine.

5.4 Sliding-Window-Based Algorithm

We now design our recognition algorithm. We first apply a
sliding-window-based algorithm which is commonly used in
time series data analysis. Given m sequential activities, the
maximum number of interleaved and concurrent activities
can be computed bymðm� 1Þ. The total number of activities

is then m2. We define Lmax as maxfLAk
g, where k ¼ 1;

2; . . . ;m2. A simple recognition method is to test each possible
activity label using its corresponding sliding window and the
one with the highest score wins out. Algorithm 1 describes
this method, and it returns two activity labels corresponding
to the top two scores. Note that the activity label with the
second highest score will be used in Section 5.6.

Algorithm 1. Sliding-window-based Recognition Algorithm

-slidingWinRecog

Input: feature vector of length
Lmax: F ¼ fft; ftþ1; ftþ2; . . . ; ftþLmaxg,
where prediction starts at time t,

predicted activity Aj in the previous sliding window.

Output: An ordered pair <Ai;A
0
i>, where Ai is the

activity label with the highest score and A0i is the

activity label with the second highest score.

1: foreach activity Ai; i ¼ 1; 2; . . . ;m2 do

2: get instance St�tþLAi ¼ [
tþLAi
p¼t fp;

3: compute scoreðAi;Aj; St�tþLAi Þ;
4: end for

5: return <Ai;A
0
i>;

5.5 The Trace Segmentation Algorithm

The simple sliding-window-based algorithm presented in
Algorithm 1 can be applied recursively to recognize activities
in a given activity trace. However, it has a shortcoming. Since
the sliding-window length LAi

of each activity is an
approximation of the actual length, the segmentation may
not accurate. Moreover, any error in one segment may affect
the segmentations of the subsequent trace. This error may
accumulate resulting in poor performance.

Aiming to segment the trace accurately, we propose our
trace segmentation algorithm as presented in Algorithm 2.
Given two candidate activity labels (e.g., Aj followed by Ai)
based on Algorithm 1, our segmentation algorithm aims to
determine the boundary between Aj and Ai so that the next
sliding window can be applied from this boundary.

Algorithm 2. Trace Segmentation Algorithm

-adjustBoundary

Input: feature vector of length LAj
þ LAi

:

F ¼ fft�LAj ; . . . ; ftþLtþLAi
g,

where t is the existing boundary,

predicted activity Aj followed by Ai based

on Algorithm 1.

Output: the boundary between Aj and Ai.

1: foreach p from t� LAj
to tþ LAi

do

2: RW ½p� ¼ relevanceðAj; fpÞ � relevanceðAi; fpÞ;
3: end for

4: foreach p from t� LAj
to tþ LAi

do

5: upperSum ¼ sum of all RWs from t� LAj
to p;

6: lowerSum ¼ sum of all RWs from p to tþ LAi
;

7: GAIN½p� ¼ upperSum - lowerSum;
8: end for

9: boundary ¼ p such that GAIN ½p� is maximum;

10: return boundary;

The intuition behind our design is, given an activity
instance, its feature vectors obtained by preprocessing its
observations usually have a higher relevance to this
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activity than all other activities. Furthermore, the relevance
of its feature vectors in the same activity instance does not
vary significantly as compared to the relevance of two
feature vectors belonging to two different activities. The
algorithm makes use of the weight difference, i.e., Relative
Weight (RW), of each feature vector between the two
adjacent activities.

5.6 Method for Dealing with Sliding Window

Combining our basic sliding-window recognition algorithm
with the trace segmentation algorithm can be very efficient
provided a testing instance is well covered by a sliding
window. However, the actual length of an instance for each
particular activity varies from one to another in reality. Such
variety may affect the recognition performance seriously.

Basically, there exist two cases—the sliding-window
length (i.e., LAi

¼ �� LAi
) is either shorter or longer than

the actual length of an instance. In the former case, one or
more items in the EPs of activity Ai will not be contained in
LAi

, resulting in a lower EP score for Ai. To overcome this
issue, we select an appropriate � (where � > 1) to achieve
the best performance. We will evaluate the effect of � in our
experiment presented in the next section.

In the later case, it is likely that LAi
covers the

observations that belong to the next activity, resulting in a
possibility of missed detection. To address this issue, we
propose a solution as follows: We assume the basic sliding-
window recognition algorithm starts at time t. In LAi

, other
than the candidate activity Ai computed (i.e., the score of Ai

should be the highest among all the activities in LAi
), we

select another candidate activity with the second highest
score, A0i. We can then apply the trace segmentation
algorithm to adjust the boundary between these two
candidate activities so that the next prediction can be
executed from the correct boundary. This method is
summarized in Algorithm 3 (Lines 5-6).

Algorithm 3. epSICAR Activity Recognition Algorithm

Input: an observation sequence O ¼ fo1; o2; . . . ; oTg with

a length of T;

m sequential activities fSA1; SA2; . . . ; SAmg.
Output: assign the activity label to each observation.

1: preprocess O to obtain feature vectors

F ¼ ff1; f2; . . . ; fTg;
2: t ¼ 1;

3: Aprevious ¼ null; Acurrent ¼ null; Acandidate ¼ null;
4: while t 	 T
5: <Acurrent; A

0
current> ¼
slidingWinRecog(Ft;tþLmax ; Aprevious);

6: LAcurrent
¼

adjustBoundaryðFt;tþLmax ; Acurrent; A
0
currentÞ � t;

7: if t ¼ 1 or Acurrent ¼ Acandidate

8: Assign label Acurrent to ot � otþLAcurrent ;
9: t ¼ tþ LAcurrent

;

10: Aprevious ¼ Acurrent;

11: Acandidate ¼ null;
12: else if Acandidate 6¼ Acurrent

13: t ¼ adjustBoundary(Ft�LAprevious ;tþLAcurrent ,

Aprevious, Acurrent);

14: Acandidate ¼ Acurrent;

15: end if

16: end while

This computation does not affect the case where LAi
does

not cover the observations of another activity Ai including
the first case mentioned in this section. In this case, our trace
segmentation algorithm is able to adjust the boundary to the
end of LAi

since the observations in LAi
are not relevant to

A0i. As a result, the instances LAi
will be labeled as Ai, and

the next prediction can start from the end of LAi
.

5.7 The Entire Process

Putting the above algorithms together, we summarize the
entire process in the epSICAR algorithm as shown in
Algorithm 3.

We now analyze the complexity of epSICAR. Assuming
that computing a score for an activity requires time OðSÞ
and adjusting the boundary between two activities needs
time OðBÞ, where both OðSÞ and OðBÞ are linear to the
length of a slice window. Given the total number of
activities m2, and assuming that the observation sequence
O contains n activity instances and the average loop for
confirming an activity instance is k, then the total complex-
ity of the epSICAR algorithm can be computed as
nðk 
m2 
OðSÞ þm 
OðSÞ þ ðk� 1Þ 
OðBÞÞ. Based on the
measurement result in our experiments, the value of k falls
in the interval [2.5, 3.0]. Therefore, the time complexity of
the epSICAR algorithm is finally nðm2 
OðSÞ þOðBÞÞ.

6 EMPIRICAL STUDIES

We now move to evaluate our proposed algorithm. There
are no public available data sets containing sequential,
interleaved, and concurrent activities across a variety of
daily activities in a real-world situation for our study. The
data set collected in [14] contains only RFID tagged objects.
It has only 11 interleaved activities limited to the morning
section only. The House_n PLIA1 [27] data set contains only
four hours data, and the number of interleaved and
concurrent activities is also limited. Aiming to collect a
more comprehensive data set for our study, we conducted
our own trace collection described in the next section. We
then present and discuss the evaluation results obtained
from a series of experiments.

6.1 Trace Collection and Evaluation Methodology

Trace collection was done in a smart home as shown in Fig. 4a.
We first conducted a survey on common ADLs performed in
one’s daily life. Out of them, we randomly selected 26 ADLs
as summarized in Table 2. Among them, there are many
possible combinations for interleaved and concurrent activ-
ities. We randomly chose 15 interleaved activities and 16
concurrent activities, e.g., using computer and using phone

1366 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 9, SEPTEMBER 2011

Fig. 4. (a) A smart home, (b) a snapshot of our video recording shows a
subject is frying eggs in the kitchen, and (c) another snapshot shows a
subject is doing vacuuming in the living room.
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(“23 & 20”, interleaved), and brushing teeth while listening
music/radio (“9 + 25”, concurrent). The data were collected
over a period of two weeks. We had four volunteers. Each
day, each of them performed these activities at their choices in
any order they like, resembling the situations in their daily
routines. However, the duration of each activity is shorter as
compared to that in their normal lives in order to collect more
instances. There was only one subject performing activities at
any given time to reduce annotation efforts. One of the
volunteers annotated the trace to establish the ground truth
together with video recording. Figs. 4b and 4c show two
snapshots in our video recording.

Table 3 shows a total number of 532 activity instances
we collected and a breakdown by three activity cases. We
use 10-fold cross validation for our evaluation and divide
the entire trace into 10 data sets as shown in Fig. 5. Most of
data sets consist of sequential, interleaved, and concurrent
activities except Data sets 1, 6, and 7 which contain only
sequential activities. In our evaluation, we use the sequen-
tial activity instances from any nine data sets for training,
and use all the remaining instances for testing.

We evaluate the performance of our algorithm using
time-slice accuracy which is a typical technique in time
series data analysis. The time-slice accuracy represents the
percentage of correctly labeled time slices. The length of
time slice �t is set to 15 seconds as our experiment shows
different �t does not affect accuracy much. This time-slice
duration is short enough to provide precise measurements

for most of activity recognition applications. The metric of

the time-slice accuracy is defined as follows: We first denote

LB as the label(s) in a time slice, where LB can be fSAig in

the case of sequential activity and LB can be fSAi; SAjg for

interleaved or concurrent activities, SAi, SAj 2 ðSA1;

SA2; . . . ; SAmÞ. We denote LBG as the ground truth label(s),

and LBR as the predicted label(s). The time-slice accuracy is

defined as follows:

Slice Accuracy ¼
P

SAi2LBG\LBR
LSAiP

SAi2LBG[LBR
LSAi

: ð11Þ

Example 2. We now give an example as follows: Given

LBG ¼ f9; 25g, if the predicted labels LBR ¼ f9; 25g, then

Slice Accuracy is 1 since LBG \ LBR ¼ LBG [ LBR. If

LBR ¼ 10, then Slice Accuracy is 0 sinceLBG \ LBR ¼ � .

IfLBR ¼ 9, thenSlice Accuracy can be computed as L9

L9þL25
.

The total time-slice accuracy is defined as follows:

Total Accuracy ¼
P t

�t

1 Slice Accuracy
T
�t

: ð12Þ

6.2 Experiment 1: Accuracy Performance

In this experiment, we evaluate time-slice accuracy for

different activity cases. Table 4 shows the average accuracies

of sequential, interleaved, and concurrent activities, respec-

tively, and the overall accuracy.
The accuracy of sequential activity is the highest among

all the three cases, while the accuracies of interleaved and

concurrent activities are lower. The result probably can be

explained as follows: First, we have four volunteers, and
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Number of Instances Collected

TABLE 4
Overall Accuracy

TABLE 2
Sequential Activities Performed
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they are instructed to perform their activities in their own
ways during trace collection. Each subject may perform his
interleaved or concurrent activities in a different manner.
This difference does not influence the sequential activity
recognition much because the training process captures the
common characteristics of all the four volunteers. However,
some of the specific characteristics of interleaved and
concurrent activities performed by different individuals
may not be captured by our model. As a result, the
accuracies of interleaved and concurrent activities are lower
and their results fluctuate from one data set to another,
depending on different subjects. Nevertheless, the result is
reasonable good, and we achieve our objective of building a
unified activity model to recognize all the three activity
cases based on sequential activity training data only.

Second, the accuracy of concurrent activity is 5.57 percent
lower than that of interleaved activity while the accuracy of
interleaved activity is close to that of sequential activity. It is
probably due to sliding-window length. In our model, we
apply LCAi

¼ LSAa
þ LSAb

to calculate the sliding-window
length ofCAi. This estimation seems work well in the case of
interleaved activity as the observations of SAa and SAb do
not overlap each other. However, for concurrent activity,
there exists some overlapped steps between SAa and SAb,
hence LCAi

should be much shorter than LSAa
þ LSAb

.

6.3 Experiment 2: Model Analysis

In this experiment, we evaluate and analyze our proposed
activity model. We first evaluate epSICAR with respect to
our score function. Fig. 6 shows that the accuracies of
epSICAR with EP score, EP scoreþ coverage score, and EP
scoreþ coverage scoreþ correlation score, respectively. As
shown in the figure, epSICAR achieves an accuracy of
66 percent on average with the EP score only, demonstrat-
ing that the concept of EPs works effectively in recognizing
both simple and complex activities. However, the effective-
ness of the EP score is not as high as we expect and there
exist some variations. We analyze this case and suggest
three reasons. First, the use of EPs in activity recognition is
leveraged on mining discriminating sensor features. The
more discriminating features are collected, the better EPs
are mined and the better results are obtained. Our current
sensor platform has limited types of sensors. More sensor
features can be developed, which we leave for our future

work. Second, we currently deploy a simple aggregation
method to sum up the contribution of each set of EPs. We
plan to further investigate this method in our future work.
Third, EP score works better for sequential activity than
interleaved and concurrent activities as suggested by the
result. This is probably because the EP sets for each activity
are mined from sequential activity instances only. Mining
all the activity instances may achieve a better result;
however, it will limit the flexibility of this model in real life.

Fig. 6 also suggests that, by introducing the coverage score,
the accuracy is improved significantly by about 19 percent
and the variance also decreases. This demonstrates that the
coverage score enhances the robustness of our algorithm
significantly. We also observe that the accuracy can be further
improved by about 3 percent when adding the correlation
score. This contribution is relatively trivial in our data set for
the reason that the four subjects may have their own habits
and perform their activities in different sequences, resulting
in a weak correlation between these activities. In the situation
of one subject performing his/her daily routine activities, the
correlation score may play an important role.

Next, we evaluate the effect of our segmentation algo-
rithm. Fig. 7 shows the results for epSICAR with and without
segmentation. As expected, epSICAR with segmentation
achieves a much better accuracy (i.e., 25 percent improve-
ment on average) in all the data sets. Without segmentation,
epSICAR only achieves an accuracy of 60 percent on average.
This demonstrates that, on one hand, a sliding-window-
based method has a limitation in truncating an activity
instance with its correct length for prediction; more seriously,
any error in a boundary detection may affect the recognition
of the subsequent trace. The errors may accumulate one after
another affecting recognition accuracy seriously. On the
other hand, our trace segmentation algorithm works well to
segment the two adjacent activities, and improves accuracy
significantly.

6.4 Experiment 3: Parameter Analysis

In this experiment, we evaluate and analyze the effect of
important parameters used in our model. We first evaluate
the effect of the length of time slice, �t. Fig. 8 shows the
average accuracy for our data sets using different lengths of
time slice. We can see that the accuracy remains quite stable
with the length of �t varies from 1 to 30 seconds. It
demonstrates that the metrics we defined is effective, and
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the accuracy does not fluctuate with different �t. We
actually set �t to 15 seconds for all other experiments.

In this experiment, we evaluate the effect of coefficients
(i.e., c1, c2, and c3) used in our cost function. Table 5 shows
the accuracy results using different sets of coefficient. The
value of each coefficient represents the importance of an
individual score in the cost function for a given data set. The
result reveals that there are certain patterns in our data set,
i.e., a subject seems always to perform each activity in a
constant duration, and it shows less activity correlation since
we have four subjects. Table 5 also shows that the set
(c1 ¼ 1:0, c2 ¼ 1:5, and c3 ¼ 0:7) achieves the best perfor-
mance, and we actually use this set for all other experiments.

Finally, we evaluate and analyze how the sliding-window
length affects the accuracy. Choosing an appropriate sliding-
window length is critical in our model as we discussed. In a
typical sliding-window method, a too-long window may
include more than two activities’ observations resulting in
difficulty of segmentation. On the other hand, a too-short
window may break an activity instance into too many
fractions resulting in difficulty of recognition. Recall that the
length of the sliding window LAi

is calculated based on
LAi
¼ �� LAi

, where LAi
is the average length of all activity

instances in the training data set. Fig. 9 shows the effect of
different � values with respect to the average accuracy, and
the effect of our method of dealing with the sliding-window
length (named Enhanced Detection algorithm for illustration).
Fig. 9 shows that the highest accuracy is achieved at � ¼ 1:1.

However, we can still achieve above 70 percent at � ¼ 1:6,
and the accuracy trend shows a linear relation. It also
demonstrates that our trace segmentation algorithm works
effectively and correct segmentations can prevent a serious
loss in accuracy. We also observe that the total accuracy
without the Enhanced Detection algorithm decreases when
� > 1, demonstrating that the Enhanced Detection algorithm
works effectively in dealing with the case where the sliding
window covers the observations of another activity. On the
other hand, we observe a similar result in the cases of with
and without the Enhanced Detection algorithm when � < 1,
demonstrating that the Enhanced Detection algorithm does not
affect our prediction process as we analyzed in Section 5.6. To
summarize, this experiment demonstrates that the length of
sliding window does affect the accuracy of our algorithm,
however, but its influence is limited in our model and
epSICAR deals with various cases effectively.

6.5 Experiment 4: Comparison Study

This section reports our comparison study. We compare the
performance of our algorithm with both static models (i.e.,
C4.5 and Naı̈ve Bayes) and temporal models (i.e., HMM and
CRF). HMM is a generative probabilistic model consisting of
a hidden variable and an observable variable at each time
step as illustrated in Fig. 10a. CRF is a discriminative
probabilistic model, and a linear-chain CRF model can
be used for activity recognition, as illustrated in Fig. 10b.

Since C4.5, Naı̈ve Bayes, HMM, and CRF cannot be
directly applied to recognize interleaved and concurrent
activities, we compare the performances of different models
based on sequential activity only in this experiment. For

GU ET AL.: A PATTERN MINING APPROACH TO SENSOR-BASED HUMAN ACTIVITY RECOGNITION 1369

TABLE 5
Effect of Coefficients

Fig. 9. Effect of �.

Fig. 8. Effect of the time-slice length �t.

Fig. 10. (a) Graphic structure of HMM and (b) linear-chain CRF, where
the round-shaped nodes represent the hidden states and the square-
shaped nodes represent the observations.
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each of the 10 data sets, an HMM was trained and the
Viterbi algorithm was used to recover the state sequence,
which is the recognized label sequence. Similarly, for each
data set, a CRF was trained and the state sequence was
recovered as the recognized label sequence. Both the HMM
and CRF were evaluated on the same training and testing
data sets generated using 10-fold cross validation. Table 6
shows the comparison results of different algorithms.

The average accuracy of epSICAR is 90.96 percent—the
highest amount three, followed by 83.27 percent for CRF and
70.34 percent for HMM. Our EP-based algorithm outper-
forms both static and temporal models. As we know, static
classifiers are concerned about mining the regularities among
training data while our EP-based algorithm mines the
differences between classes. In a discriminative task, such
as sensor-based activity recognition, mining the differences is
more straightforward and effective as suggested by the result.

In addition, we have the following analysis. First, the
amount of training data is still relatively small comparing to
the complexity of real-life activities. In this circumstance,
mining the differences between classes is more effective for
building a discriminative model. Although CRF is also a
discriminative model, it focuses on mining the regularities
in which typically a large amount of training data is
required. This comparison result reveals that our EP-based
approach tends to be more efficient with the same amount
of training data. HMM, as a generative joint model, is least
effective due to the known shortages, such as overfitting
training data and strong independence assumptions. The
epSICAR algorithm as compared to HMM and CRF is more
fault-tolerant. HMM and CRF are basically directed-graph-
based probabilistic models, a prediction error made in one
state may cause a series of errors in the state sequence. In
this experiment, we notice that it typically takes 20 steps for
the HMM model to fall back to the correct state after an
error occurred in the current step, whereas epSICAR can
quickly turn into the correct state in two or three steps after
an error. Furthermore, our EP-based algorithm is more
noise-tolerant as compared to both static and temporal
models. This is because mining the differences of classes
will not include noise patterns provided the noise distribu-
tion is random. The noise-tolerant feature is particularly
important in sensor-based activity recognition as it is
inevitable that sensor data contain noise.

In addition, epSICAR is capable of handling interleaved
and concurrent activities even if the training instances only

contain sequential activity. From this aspect, epSICAR has a
good advantage of handling complex activities and great
applicability for real-life applications.

7 CONCLUSION

To conclude, we first summarize the paper, and then
discuss the limitations of our approach, and outline our
future work.

7.1 Summary

To summarize, in this paper, we study the problem of
activity recognition based on sensor readings in a pervasive
computing environment. We deploy wireless sensors and
conduct a real-world trace collection. We then investigate a
challenging problem that how we can apply a model, which
can be learned from sequential activity instances only, in
recognizing both simple and complex activities. We exploit
Emerging Patterns as powerful discriminators to differenti-
ate activities, and propose the epSICAR algorithm. Our
comprehensive evaluation results demonstrate both the
effectiveness and flexibility of our algorithm.

7.2 Limitations and Future Work

As initial exploration of a pattern-based approach to sensor-
based activity recognition, we demonstrate that Emerging
Pattern can be effectively applied to recognize activities.
Mining a strong EP set for each activity is important as we
leverage on a score function to differentiate activities. An EP
describes the significant changes between two activity
classes; and ideally, there should exist many distinguishing
features among different activity classes. In our current
sensor platform, we only capture four types of information.
There are many other useful sensor features can be devel-
oped, e.g., the audio, users orientation, etc. The audio feature
has been proven to be very useful in recognizing human
activities [12], [13] because it captures the sounds produced
when performing activities and there exist many different
audio features among different activities. We will incorporate
audio sensor into our platform in our future work.

Another limitation is on our data collection. While the
data sets we collected provide many comprehensive cases
for studying and analyzing our algorithm, it was done in a
mock scenario. A more nature collection should be
conducted in a real home, and it will be subject to our
financial and resource constraints. We are seeking budget
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support and a possibility of collaborating with other

partners for such further study.
As we mentioned in Section 6.4, the coefficients of our

score function reflect a users habit in her/his daily routine. It

is very interesting to further study their effects to discover

activity patterns with respect to different users and activities

under different circumstances. Although they are currently

obtained though our experiments, a better approach is to

learn from training data sets through statistical learning

methods that we will study in our future work.
The computation of EP score was based on a simple

aggregation method which does not have any solid statistical

foundation. We will also look into a better method for

aggregating the contribution of each EP set. There are many

potential methods can be applied in this case, such as Bayes

theorem. Finally, our goal is to develop an efficient, real-time

sensor-based recognition system capable of recognizing

various activities under real-life scenarios.
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