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Abstract 
Building of context-aware applications in pervasive computing environments faces the 
difficult problem of dealing with uncertain context information. In this paper, we propose 
a probability extension to our ontology-based model for representing uncertain contexts; 
and use Bayesian networks to reason about uncertainty.  In addition, the supports of 
probabilistic markups and Bayesian networks have been incorporated into our context-
aware middleware system to enable the building of context-aware services by using 
various uncertain contexts. We also present our experiences and discussions.  

1. Introduction 

Emerging pervasive computing technologies provide "anytime, anywhere" computing by 
decoupling users from devices and viewing applications as entities that perform tasks on 
behalf of users [1]. To enable this vision, context-awareness is often touted as a key 
enabler to exhibit the required levels of autonomy and flexibility. Context refers to any 
information that can be used to characterize the situation of a person, place, or physical 
or computational object [2]. There have been many interests in making applications and 
services context aware so that they can exploit various contexts such as user location, 
profiles and activities, and automatically adapt their behavior in response to dynamic 
environments and user requirements. 

Most of context-aware services and applications assume that the context information 
upon which they rely is perfect and accurate. However, this assumption is unjustified. In 
many cases, it may not able to identify context precisely as a result of the limitations of 
sensing technologies; and hence, high-level contexts which are derived from these 
inaccurate sensor data may not be accurate. For example, it may be difficult to precisely 
sense the current location of a user or accurately determine the user activity in a smart 
home environment. Therefore, how to handle such uncertain contexts is a challenge that 
many researchers face.  

In this paper, we propose a common model for representing uncertain contexts and use 
Bayesian networks to reason about uncertainty. This model extends our basic ontology-
based model by attaching probability values to context predicates.  To incorporate 
probability into context ontologies, we propose a probabilistic extension to OWL [3] - 
ontology markup language to allow additional probabilistic markups. Bayesian network 
has become an established probabilistic framework for knowledge representation and 
inference under uncertainty. We adopt Bayesian network as underlying reasoning 
mechanism as it has efficient probabilistic reasoning capabilities and allows us to 
represent causal relationships between various contexts. We incorporate the Bayesian 
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network inference mechanism into SOCAM [4] which is a context-aware middleware 
system which provides support for most of the tasks involved in dealing with context - 
acquiring context from various sources; sharing and interpreting context; and carrying 
out dissemination of context.  

The rest of this paper is organized as follows. Section 2 discusses on related work; in 
Section 3 we present our model for uncertain contexts. The middleware support for 
Bayesian networks and its implementation is presented in Section 4. Section 5 presents 
our evaluation results. Finally, we conclude in Section 6. 

2. Related Work 

A number of research has been done in addressing uncertain contexts. Dey et al. [5] 
suggest a mediation process for resolving imperfect sensed contexts. However, this 
approach may place additional burden on the user as the user is involved in the mediation 
process. Judd and Steenkiste [6] introduce a contextual information service for querying 
contexts which allows dynamic contexts to be associated with meta-attributes such as 
accuracy, confidence, update time and sample interval. Lei et al. [7] propose a context 
service that allows expressing quality of context information (QoI) such as freshness, 
confidence and error in context sources and pass along QoI data from sources to clients. 
Gray and Salber [8] include quality attribute in their context model such as coverage, 
resolution, accuracy, repeatability, frequency and timeliness. These solutions have 
several drawbacks. Almost all existing models for uncertain contexts lack of 
expressiveness to capture rich types of contexts; and they do not support reasoning about 
various contexts.  

3. A Model for Uncertain Contexts 

In this section, we discuss our basic context model and its probabilistic extension; and 
translation from a RDF graph to a Bayesian network. 

3.1. A Ontology-based Model 

The initial concept for modeling context information has been introduced in [9]. In our 
model, contexts are represented as first-order predicate calculus. The basic model has the 
form of Predicate(subject, value), in which  

- subject �S*: set of subject names, e.g., a person, a location or an object. 

- Predicate�V*: set of predicate names, e.g., is located in, has status, etc. 

- value �  O*: set of all values of subjects in S*, e.g., the living room, open, close, 
empty, etc. 

For example, Location(John, bathroom) - John is located in the bathroom, 
Temperature(kitchen, 60) - the temperature of the kitchen is 60ºC, Status(door, open) - the 
door's status is open, etc. 

The structures and properties of context predicates are described in an ontology which 
may include descriptions of classes, properties and their instances. The ontology is 
written in OWL as a collection of RDF triples, each statement being in the form (subject, 
verb, object), where subject and object are ontology's objects or individuals, and 
predicate is a property relation defined by the ontology. 



3.2. Probabilistic Extension to the Basic Model 

For representing uncertain contexts, we extend our basic context model by incorporating 
probabilistic information. It has the form of Prob(Predicate(subject, value), in which the 
probability measurement takes a value between 0 and 1. The extended model applies to 
any type of contexts such as sensed contexts, defined contexts and derived contexts. For 
example, in the case of derived context, Prob(Status(John,Sleeping))= 0.8 means the 
probability that John is currently sleeping is 0.8. 

3.3. Probability-Annotated Ontology 

As the ontology language OWL does not provide any support for probabilistic 
information, we need to augment its capability to allow additional probabilistic markups. 
To encode probability into a context ontology, we define two OWL classes: "PriorProb" 
and "CondProb". Both classes have an object property - "hasVariable" and a datatype 
property - "hasProbValue"; and class "CondProb" has an additional object property - 
"hasCond". These definitions enable us to specify arbitrary probability. For example, 
assuming A, B, C represent context predicates in the form of RDF triples, then "P(A)" - a 
prior probability, is defined as an instance of class "PriorProb" as shown in Figure 1a; 
and P(A|B,C ) - a conditional probability, is defined as an instance of class "CondProb" as 
shown in Figure 1b. 
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Figure 1.  OWL expressions with probabilistic markups 

This proposed encoding scheme is influenced by the work in [10], but our scheme allows 
to markup arbitrary conditional probability such as the example in Figure 1b. 

3.4. Bayesian Networks and Structural Translation 

A Bayesian network (BN) is a directed acyclic graph (DAG), where each node 
corresponds a random variable Xi and directed arcs represent influential relationships 
among the random variables. The uncertainty of the causal relationship is represented 
locally by the conditional probability table P(Xi|Pa(Xi)) associated with each node Xi, 
where Pa(Xi) is the parent set of Xi. Under a conditional independence assumption, the 
joint probability distribution of X = (X1, . . . ,Xn) can be obtained as following: P(X = x) 
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A BN is a powerful graphical tool for representing, learning and computing probability 
distributions. We apply BN to enable learning casual dependencies between various 
context events, and obtaining probability distributions. In our model, each node take 
corresponds to a context predicate; and directed arcs between nodes represent causal 
relationships between the contexts. By giving the conditional probability table, we are 
able to compute the probability distribution of a BN. 
Constructing a Bayesian network for context information involves identifying causal 
dependencies between different context events, and translating a context ontology to a 
BN. Dependency relation exists among various types of context information. A 



dependency captures the existence of a reliance of property associated with one entity on 
another. To markup dependency information in an ontology using OWL, we introduce an 
additional property elements - rdfs:dependsOn which captures the dependency 
relationship of properties associated with datatypes and objects. For example, in Figure 
2a, Alice’s status (Cooking) may depend on her location (Kitchen), the MicroOven’s 
status (On), etc. As the DAG of a BN and the RDF graph of a context ontology share a 
structural similarity: both of them are directed graphs, and direct correspondence exists 
between many nodes and arcs, we are able to translate a RDF graph to a DAG. For 
structural translation, each context predicate (specified as RDF triples in an OWL file) is 
mapped into a node in the BN, and an arc is drawn between two nodes if and only if there 
exists a dependency relation between two context predicates. The example in Figure 2 
shows a RDF graph augmented with dependency markup is translated into a DAG. The 
derived context - Tom’s current activity, depends on his location, the living room’s 
lighting level and noise level, his parent’s status and location, number of person in his 
house, his profile (Birthday), etc. 
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Figure 2.  Translate a RDF graph to a DAG  

4. Middleware Support for Using Bayesian Networks 

In this section, we describe our context-aware middleware system which provides 
supports to construct a BN and reason about uncertain contexts. 

4.1. The SOCAM Middleware 

 

Figure 3.  Overview of the SOCAM architecture  



Based on our context model, we design a Service-Oriented Context-Aware Middleware 
(SOCAM) architecture which aims to enable building and rapid prototyping of context-
aware services. It consists of the following components as shown in Figure 3. 

� Context Providers: They abstract useful contexts from heterogeneous sources - 
external or internal; and convert them to OWL expressions so that contexts can be 
shared and reused by other entities. 

� Context Interpreter: It provides logic reasoning services including inferring indirect 
contexts from direct contexts, querying context knowledge, etc. It consists of context 
reasoning engines and a context KB (Knowledge Base). 

� Context Database: It stores context ontologies and past contexts for a sub-domain. 
There is one logic context database in each domain, i.e., home domain. 

� Context-aware Services: They access and use different level of contexts and adapt the 
way they behave according to the current context. 

� Service Locating Service [11]: It provides a mechanism where context providers and 
the context interpreter can advertise their presence; also enables users or applications 
to locate and access these services. 

4.2. Reasoning about Uncertain Contexts 

In SOCAM, different context providers register and advertise their services through the 
Service Locating Service. Context consumers, i.e., the context interpreter or context-
aware services, are able to locate a context provider and obtain a context of interest. 
Context dissemination is done in both push and pull modes. Users or services can either 
issue a query for a particular piece of context or subscribe a context event to a context 
provider. When the event is triggered, the particular context in the form of OWL 
expressions will be returned to the subscriber. 

The supports for using probability-annotated context ontology and BN have been built in 
SOCAM. The context ontology with additional dependency markups is created and 
stored in a context database. SOCAM can translate this ontology into a BN based on the 
structural translation rule described in Section 3.4. After the BN is created, it is trained 
on real data to get probability distributions for the various nodes. SOCAM provides 
supports for getting data from the environment and training the BN. All the past contexts 
are logged in a database; and the conditional probability table (CPT) to each node can be 
computed. Once the BN is trained, it is used for inferring the probabilities of context 
conditions and other events. We have built-in the Bayesian network software toolkit - 
BNJ [12] into the context interpreter as the underlying reasoning mechanism. Reasoning 
on uncertainty in BN takes the assigning probability values to a set of nodes and then 
propagating the influence of these assignments to other nodes in the network. By training 
a set of data, we are able to obtain the probabilities of all root nodes (node with no 
predecessors) and the conditional probabilities of all non-root modes. Hence, the 
probability distributions of various context events in the BN can be found. These 
probabilities in the form of probability-annotated OWL expressions will be added to the 
context knowledge base for query and access. To use uncertain contexts, service 
developers will need to specify actions that are triggered by a set of pre-defined rules. 
These rules typically include uncertain contexts and a set of conditions. 



5. Evaluation 

The experiment is to infer a person’s current activity (i.e., birthday party, reading, 
watching TV, dining, sleeping, etc) in a smart home environment. First, a context 
ontology with dependency markups was created and stored in the context database. The 
dependency relationship was defined in a form of user-specified rules such as 
DeducedActivity(User, X): Location(User, Y), LightingLevel(Y, ?x), NoiseLevel(Y, ?x), 
NumberOfPerson(Y, ?x), Profile(User, ?x), Location(OtherMember, ?x). Based on the 
ontology, the context interpreter was able to generate a Bayesian network. The context 
interpreter got all training data and assigned probability distributions to each node. For 
example,  
<prob:PriorProb rdf:ID= 3�7RP�ORFDWHG,Q�/LYLQJ5RRP� ! 
      <prob:hasVariable><rdf:value>(Tom locatedIn LivingRoom)</rdf:value><prob:hasVariable> 
      <prob:hasProbValue>0.91</prob:hasProbValue> 
</prob:PriorProb> 

The interpreter performed the Bayesian reasoning to compute the joint probability. In our 
test, we took 336 observations for a period of 2 weeks. The interpreter performed fairly 
well and was able to assign the right activity with the highest probability in most of the 
cases.  

Our experiences show that Bayesian network is a powerful method of reasoning about 
causal relationships between various uncertain contexts. It is flexible and can be retrained 
easily. The limitation of a Bayesian approach for handling uncertainty in pervasive 
computing environments is that it may be difficult to get data to train a BN in certain 
circumstances such as in the application of security control. 

6. Conclusions 

In conclusion, we propose a probability model for uncertainty in pervasive computing 
environments and use Bayesian networks to reason about such uncertainty. This 
approach can make context-aware applications more robust and more capable of adapting 
to the changing environment. We are also looking at other efficient methods to reason 
about uncertain contexts. For example, fuzzy logic may be useful to represent and reason 
about imprecise notions such as "hot", "very low", "confidence", etc. 
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