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Simultaneous Authentication of Multiple Users
Using a Single mmWave Radar

Yao Wang, Tao Gu, Fellow, IEEE, and Haibin Zhang

Abstract—User authentication is crucial for maintaining privacy.
However, most existing methods are designed for single-user
scenarios and may not be efficient for multiple users. To
address this issue, we propose M-Auth, a Multiuser Authentication
system that utilizes a commercial mmWave radar to detect the
unique breathing pattern. We exploit the phenomenon that chest
movements due to breathing can alter radio frequency signals. To
make M-Auth more effective in capturing signals from multiple
users, we design an auxiliary rotating gadget to adjust the radar
orientation dynamically. By using mmWave’s high directivity, we
can isolate individual components from blended RF signals and
focus on reflections from different positions. We propose an energy
comparison method to filter out irrelevant body movements and
retain fine-grained respiration traits. Subsequently, we develop a
feature selection pipeline to extract the most informative features
and train a machine learning-based classifier to identify each user.
M-Auth is practical because it is non-contact and passive, and it
is secure because respiration is unique and challenging to forge.
Extensive experiments with 37 participants demonstrate that
M-Auth is effective in verifying legitimate users and thwarting
spoofing attacks, with an authentication accuracy of over 96%
and an attack detection rate of over 95%.

Index Terms—Respiration, Authentication, mmWave Sensing

I. INTRODUCTION

B IOMETRIC authentication has evolved significantly in
recent years, with advanced algorithms that can analyze

unique physical characteristics like fingerprints, irises, and
facial features. However, despite these advancements, biometric
authentication systems remain vulnerable to a variety of attacks,
such as the use of fake fingerprints or contact lenses placed
over photos of irises [1], [2]. To address these security concerns,
continuous authentication has emerged as a promising solution.
By continuously monitoring the user’s biometric data in real-
time, this approach can detect any anomalies or suspicious
behavior and prevent unauthorized access to sensitive data.
Moreover, continuous authentication can enhance the user
experience by eliminating the need for repeated logins, as the
system can automatically verify the user’s identity throughout
the entire duration of their session.

Existing solutions typically use behavioral biometrics, such
as gait patterns [2], [3], keystroke dynamics [4], [5], and eye
movements [6], [7], for continuous authentication. However,
these solutions require active user engagement, such as walking
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Fig. 1. A mmWave-based respiration sensing system for continuous multi-user
authentication.

a specific range, typing on a keyboard, or looking at visual
stimuli on a screen. To avoid such laborious and tedious oper-
ations, various studies have proposed leveraging physiological
biometrics, such as brain activity [8], fingertip pulses [9], and
heart rhythms [10]. These methods, however, require users to
wear additional cumbersome and obtrusive devices.

Wireless sensing and spontaneous physiological biometrics,
such as respiration and heartbeat, have been used to propose
non-contact and passive continuous authentication mechanisms.
Cardiac Scan [11] and BreathID [12] are examples of these
mechanisms, which use a continuous-wave Doppler radar
and Wi-Fi infrastructure to capture heartbeat activities and
respiration motions for continuous authentication, respectively.
While these methods have the advantage of freeing users from
getting involved in authentication and requiring no user contact,
they have significant limitations. For instance, their restricted
working range makes it inaccurate to identify far-field users,
which is not suitable in larger spaces. Additionally, they only
cater to single users, ignoring the broader applications of
multiuser settings such as smart homes and workplaces, where
multiple individuals are typically present. The primary reasons
behind these limitations are that the frequency of the signals
they adopt is fixed, and all reflections are inextricably mingled
in both time and frequency domains.

Recent efforts have focused on enabling simultaneous
authentication for multiple users [3], [13]. For example, Kong
et al. [13] reused Wi-Fi signals to capture several predefined
activities from different users and implemented a time-of-
arrival measurement technique to distinguish between the
components. Although this proposed system allows for multi-
user authentication, it requires at least 0.8m spacing between
users to achieve acceptable accuracy, which poses challenges
when users are in close proximity, such as standing shoulder-to-
shoulder or sitting abreast. Additionally, the system still suffers
from the constraint of requiring users to complete specified
tasks, and the average accuracy of 87.6% is not satisfactory
compared to state-of-the-art works.
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Design Goals. To address current limitations, we present
M-Auth, a continuous multiuser authentication system that
senses respiratory motions using a single commercial off-the-
shelf mmWave radar. Fig. 1 provides a snapshot of M-Auth.
Users enroll in the system to create profiles before being
authenticated, and an incoming respiration signal is compared
to stored profiles to identify whether the signal comes from a
genuine user or an attacker. Specifically, the following are the
highlights of our work:

Non-contact and Passive. We use radio frequency (RF) waves
to remotely detect the unique, naturally occurring respiration
motion, without the need for physical contact or exertion on
the part of the user.

Ubiquitous and Trustworthy. All people must breathe, and
it is difficult to fake breathing patterns. Meanwhile, authenti-
cations that rely on gait or hand movements are not practical
for individuals with foot or hand disabilities and can easily be
copied by a camera for imitation attacks [14].

Close Proximity. Our system enables concurrent authentica-
tion even when users have no separation spacing. This is in
contrast to existing RF-based solutions, which typically require
a separation of at least 0.8-1m [3], [13]. The limitation makes
it difficult to authenticate users who are close to each other.

Technical Challenges. MmWave sensing has shown promise
as a non-invasive method for monitoring respiratory rates by
roughly identifying signal crests [15], [16]. However, when
it comes to authentication, it is necessary to identify subtle
differences in respiration signals between users. To fully unlock
the potential of mmWave sensing in detecting subtle motion dif-
ferences, we need to address the following technical challenges:

To ensure accurate authentication, it is important to consider
the impact of angle-of-arrival (AoA) on signal-to-noise ratio
(SNR). While existing beamforming techniques, such as phased
array and beam steering, improve spectral efficiencies in a
fixed direction [17], they are not well-suited for mobile users
with unpredictable AoAs. To address this challenge, we have
developed a rotating device that mechanically controls the radar
and adjusts its orientation in response to the positions of users,
thereby ensuring effective signal capture.

Respiration signals are susceptible to motion artifacts caused
by body movements, which can overshadow the small chest
movements caused by breathing. These interferences typically
have larger amplitudes of reflected radio waves compared
to respiratory movements. To eliminate them, we propose a
comparison method that measures the energy of the signal
within a defined time window.

Effective authentication requires identifiable features, which
can be achieved by pinpointing the most representative features
in the respiration signal. To do this, a feature selection
pipeline is created. This pipeline combines the wavelet packet
decomposition (WPD) and recursive feature elimination (RFE)
techniques to analyze which features are most representative.

Applications. In IoT-rich environments, it is convenient to
have support for multi-user authentication functionality. In a
home setting, M-Auth can be used to provide personalized
services to different family members. For instance, it can be
used to monitor the sleeping patterns of each family member
and adjust different temperature preferences and lighting levels
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Fig. 2. Respiratory motion cycle and sensing rationale.

accordingly to ensure a peaceful and comfortable sleep. In a
large corporate setting with multiple people, M-Auth can be
used to verify personnel for access control, ensuring that only
authorized users are permitted to remain in the area. Besides,
M-Auth can improve the continuous authentication capability
over traditional one-time confirmation mechanisms, making
it an essential tool for ensuring data privacy and security in
today’s connected world.

In summary, this paper makes the following contributions:
• We develop a secure, passive, and contactless continuous

authentication system for multiple users based on their unique
breathing patterns. Through extensive experiments, we demon-
strate the system’s effectiveness, with an average authentication
accuracy of over 96%.
• We design a dynamic mechanical device for effective radar

sensing. We also provide a circuit schematic for interacting with
the radar, making it easy for researchers to replicate its functions.
This design promises to improve current static sensing solutions
to be more cost-effective and dependable for coverage.
• We design a wavelet-based method for learning respiratory

signals, which greatly shortens the authentication time and
improves usability. We also develop a processing pipeline that
includes segmentation, feature extraction, and optimal feature
selection, which enhances the robustness of the system.

II. PRELIMINARIES

A. Respiratory Biometrics

This paper explores the use of respiratory motion as a unique
factor for user authentication. By analyzing the two phases of
the respiratory cycle, inhalation and exhalation, we can establish
a person’s unique physiological profile. During inhalation, as
shown in Fig. 2(a), the contraction of intercostal and abdominal
muscles pulls the ribs outward, while the diaphragm moves
downward, causing the chest cavity to expand. Exhalation,
on the other hand, occurs when the muscles relax and the
diaphragm returns to its original position, causing the chest
cavity to decrease in size as shown in Fig. 2(b). As each
individual has a unique physiological structure, such as lung
volumes and chest movement dynamics, their respiratory phases
differ, which makes respiratory motion a distinctive biometric
factor. Respiratory motion is more difficult to forge than
traditional biometric modalities such as face and voice, as
it is inherently linked to physiological activities, thus providing
a higher level of security.
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B. Feasibility Study

The radar device works by having the transmitter (Tx) send
periodic sawtooth waves to the user, as illustrated in Fig. 2(b).
As the user inhales and exhales, the chest movements alter the
incident signal. This alteration in the signal is then reflected
back to the receiver (Rx), which analyzes the changes to
determine the user’s breathing patterns. A frequency-modulated
continuous wave (FMCW) signal can be used to detect chest
movements that are caused by respiration and differentiate
between individuals. By calculating the phase changes between
consecutive measurements, the displacement of the chest can be
tracked over time. In particular, the linear relationship between
signal phase ϕ (t) and distance d(t) is calculated as follows [18]:

d (t) =
λ

4π
ϕ (t) , (1)

where λ and ϕ (t) are the wavelength and phase, respectively.
It has been observed that short-wavelength signals are more
sensitive to distance variations. In this work, we use a 4mm
wavelength mmWave. With a phase change of ∆ϕ = π, ∆d
can be as high as 1mm, which is sufficient to detect the small
chest displacements produced by respiration.

We will further study the correlation between respiration
and the captured signals. Two participants are asked to sit
facing the device and breathe normally. As shown in Fig. 3,
their respiration waveforms are significantly different. Mor-
phological characteristics, such as pulse height, width, slope,
and fluctuations, showed apparent variations between User a
and User b. These distinctions are primarily due to individual
differences in intercostal muscle strength and lung volume.
This study shows that mmWave can capture even the smallest
differences in respiratory movements, which motivates us to
use these unique characteristics for authentication purposes.

C. Threat Model

In this work, we assume that the end device is secure and
resistant to tampering or theft attempts by attackers targeting
the matching mechanism or biometric templates. The user
data collected by the device has been de-identified, removing
any personally identifiable information. Additionally, this de-
identified user data is stored locally, adding an extra layer
of security to prevent potential leaks or unauthorized access.
While respiration motion is a complex method and may be
more secure than other authentication types like passwords and
fingerprints, we will consider the following social engineering
attacks to ensure its reliability:

Blind Attack. An adversary is uncertain about the genuine
user’s breathing patterns, such as their rate, depth, and rhythm

changes. During the attack, the adversary may resort to
performing arbitrary respiration motions to M-Auth in an
attempt to produce similar effects on the system as the genuine
user does.

Impersonation Attack. An attacker could potentially ob-
serve the breathing patterns of a legitimate user through
shoulder surfing or video recordings. They may attempt to
imitate the user’s breathing in order to bypass security measures,
relying on their own understanding of the pattern.

Replay Attack. This attack is more sophisticated than the
previous two. The attacker is assumed to have knowledge
of the authentication principle, and can place a concealed
mmWave sensor in close proximity to record the legitimate
user’s body-reflected signals. Additionally, the attacker can
intercept internal communication and inject the recorded signal
to deceive the system.

III. SYSTEM OVERVIEW

Fig. 4 presents the workflow of M-Auth, which consists of
the following modules:

Signal Capturing. Beamforming techniques typically en-
hance signals in a specific direction, making them unsuitable
for improving signal quality when users are mobile. To capture
echo signals from multiple users effectively, we first eliminate
reflections from static objects (e.g., walls) and then measure the
users’ positions. Next, we implement a clustering algorithm to
estimate the central position of the users. Finally, we develop
a mechanical rotating device to dynamically adjust the radar’s
orientation toward the centroid for reliable sensing.

Signal Processing. After determining the direction, M-Auth
authenticates users within range of the radar. This module
eliminates noise from the captured signal by combining a
band-pass filter and an adaptive filter. To eliminate irrelevant
body motion reflections, we propose a signal comparison
scheme that involves calculating signal energy for a specific
time window. The system then uses extremum analysis to
segment the respiration signal. Finally, we employ wavelet
packet decomposition (WPD) and recursive feature elimination
(RFE) techniques to select the features that are most associated
with respiration.

Authentication. Once feature selection is complete, M-Auth
labels the corresponding features and saves them in order
to construct biometric templates. These stored features are
then used to build a machine learning-based classifier that
determines whether a given visitor is a legitimate user or an
attacker. In addition, our system offers template updating to
adapt to changes in respiration patterns that may result from
mood swings or energetic exercises. Specifically, when new
feature data becomes available, the system will retrain the
matching model. This process is efficient because we use
shallow machine learning models, and the time required for
each update is less than 40 seconds, as described in Section
VI-B.

IV. SIGNAL CAPTURING MODULE

A. Signal Separation for Different Users
To understand the signal capturing and separation process,

we consider a typical scenario with multiple people, as shown
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Fig. 4. System overview of M-Auth.

Fig. 5. Signal separation for multiple users and user location measurement.

in Figure 5(a). In this scenario, a mmWave radar is placed in the
corner of a room with four people and several items of furniture.
When the radar transmits RF signals into the room, the signals
bounce off the users, furniture, and walls, and then return
to the system. The resulting multi-path reflections superpose
over the wireless channel and interfere at the receiving end.
Our objective is to identify human-reflected signals from those
reflected off other stationary objects and to separate individual
signals from the multiple users in the environment. To achieve
this, we take advantage of the intrinsic property of FMCW radar,
which enables separating reflections from different objects. For
this task, we use a MIMO FMCW radar with 3 TXs and 4 RXs,
which supports multi-beam in a time-division multiplexing
(TDM) fashion. In what follows, we detail the specifics of
signal capture and isolation from multiple users1.

Static Multi-path Elimination. For an object at a distance
d1 from the radar, the radar mixes the TX and RX chirps to
generate an intermediate frequency (IF) signal. As illustrated
in Fig. 5(b), we mark the RX chirp of the object in green dash
line as an example. The corresponding sine-wave IF signal is
expressed as follows:

SIF1(t) = A1 sin(2πf1t+ ϕ1), (2)

where A1, f1, and ϕ1 are the amplitude, frequency, and phase
of the IF signal, respectively. Given the slope of the chirp S,
f1 can be calculated as:

f1 = S · τ1 =
B

Tc
· 2d1

c
=

2Bd1
cTc

, (3)

1For a better understanding of FMCW radar measurement, readers are
suggested to refer to [15], [18], [19]. We just summarize the fundamental
principles in our procedures.

where τ1, B, Tc, and c are the time delay of the RX chirp,
frequency bandwidth, chirp duration, and speed of light,
respectively. As observed from Eq. (3), the distance of static
reflectors (e.g., walls and appliances) to the radar remains
constant over time, resulting in a frequency shift that does
not change over time. Consequently, we can get rid of those
time-invariant multi-path reflections by subtracting consecutive
time measurements.

User Presence Detection. When a user appears in radar’s
(field-of-view) FoV, our system receives the reflected signal
from the user. According to Eq. (1), the phase ϕ of the IF
signal from the user is represented as 4πd

λ . By combining Eq.
(2) and Eq. (3), we can write the user’s IF signal as:

SIF (t) = A sin(
4πBd

cTc
t+

4πd

λ
). (4)

Dynamic body movements (e.g., limb, hand, and breathing
motions) cause changes in d, consequently triggering strong
responses in the IF signal. We use this phenomenon to detect
the presence of users in the environment, and further estimate
their positions in the next step.

User Position Measurement. By observing the phase change
in the IF signal, the user’s range information (i.e., distance
between the user and the radar) can be calculated using Eq.
(1). As illustrated in Fig. 5(c), using only range information
is insufficient to distinguish between multiple users, as they
are likely to have similar distances to the radar (i.e., d1 = d2)
but be in different directions. Therefore, we introduce another
horizontal distance parameter to determine the position of the
user relative to the radar. For example, the horizontal distance
from User 1 to the radar is calculated as d1 sin θ1, where
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θ1 represents the angle of arrival (AoA) that is measured as
follows [18]:

θ1 = sin−1(
λ∆ϕ1

2πl
), (5)

where λ, ∆ϕ1, and l are the signal wavelength, phase change,
and spacing between RX antennas, respectively. Accordingly,
the n′th user’s position is expressed as Pn(dn sin θn, dn).

Multiuser Signal Separation. In an environment with
multiple users, each RX chirp is separated by a time delay
proportional to the distance from the system to the user. A
Fourier transform processes the IF signal, which consists of
multiple tones, resulting in a frequency spectrum with discrete
peaks for each tone. Each peak indicates the presence of a user
at a certain distance. According to Fourier transform theory,
frequency components can be separated if their frequency
difference ∆f is greater than 1

Tc
Hz [18], where Tc is the

chirp duration. By using Eq. (3), the relationship is represented
as:

∆f =
2B∆d

cTc
>

1

Tc
⇒ ∆d >

c

2B
. (6)

In this work, the radar provides a 4GHz bandwidth, such
that the range resolution ∆d is calculated as c

2B = 3×108

2×4×109 =
3.75cm. This means that we are able to differentiate between
users as long as they are at least 3.75cm apart from each
other. Our primary focus is on the chest movements of users,
which are caused by respiration. Even when users are standing
shoulder to shoulder (i.e., zero separation distance between
them), our system is still able to distinguish the received chirps
from each user because their chest positions are separated by
their arms (which are typically spaced more than 3.75cm apart).
As illustrated in Fig. 5(d), the reflections from multiple users
are separated into distinct areas, allowing us to analyze their
signals individually.

B. Dynamic Radar Orientation Adjustment

Design Motivation. In this study, we use a MIMO radar
that has a FoV of 120° for multiuser detection, which is
made possible by its channel diversity. Intuitively, it is not
necessary to adjust radar orientation since a radar that is
statically positioned in the corner of the room with configured
beamforming can cover all the users. However, radar’s phase
change ∆ϕ is sensitive to changes in AoA, the estimation of ∆ϕ
degrades as AoA approaches the boundary of FoV [19]. This
means that the measurement of respiration motions becomes
more error-prone as users draw closer to the border, resulting in
a lower SNR. Our experiment in Section VIII-C also confirms
that the authentication accuracy decreases by approximately 10%
when the user’s AoA changes from 0° to 60°.

Signal processing techniques, such as adaptive beamforming,
beam steering, and beam switching, might be applied to address
the issue of poor SNR [17], [20], [21]. However, these methods
only improve the signal SNR in a specific direction and assume
that the object’s position is fixed. In our scenario, users are
mobile and their AoAs are uncertain, signal processing-based
methods are consequently not applicable. Instead, we propose
an approach that physically adjusts radar’s orientation in real
time depending on the user’s location. Specifically, we operate
the following procedures to perform the adjustment.

Fig. 6. Centroid estimation and location mapping.

Step 1 - Radar Direction Calibration. To begin with,
we set up the sensor coordinate system to match the room
coordinate system. By default, we align the radar direction at
a 45° angle from the wall, as depicted in Figure 5(a).

Step 2 - User Centroid Estimation. The positions of the
users relative to the room coordinate system are consistent
with the current positions calculated by the sensor. A k-means
clustering algorithm is then utilized to identify the centroid
of the users with their positions serving as the feature. The
sensor is subsequently adjusted to point towards the centroid
to capture the reflected signals from the users. Specifically, the
estimated centroid position is denoted as Pc(hc, dc), where hc

represents the horizontal distance and dc represents the range.
The sensor is rotated by an angle of φ = sin−1 |hc/dc| in a
direction determined by the positive/negative sign of hc. This
adjustment process is controlled by an auxiliary rotating device,
which is further elaborated upon in Section IV-C.

Step 3 - Coordinate System Converting. As illustrated in
Fig. 5(a), we consider the case that people might change their
locations, and their centroid will also change accordingly. We
describe the case in Fig. 6(a), after User 3 and User 4 move
to the new locations, the system repeats Step 2 to estimate the
current centroid of the users and rotates the sensor to point
at it afterward. In this operation, the major challenge is that
we cannot directly calculate the centroid for the current cluster
since location measurements for User 3 and User 4 are relative
to the sensor coordinate system (i.e., Xs − Ys), whereas the
locations of User 1 and User 2 are corresponding to the room
(i.e., Xr − Yr). To address this issue, we develop a mapping
relationship between the two coordinate systems, as shown in
Fig. 6(b). The mapping problem can be defined as follows:

• Condition: Given user P’s location measurement Ps(θs, ds)
in Xs − Ys, rotating XsYs axes counterclockwise through
an angle of φ into XrYr axes.

• Resolve: Determine the translation rule T(φ) to make the
equation

−−→
OPr = T(φ)

−−→
OPs true.

According to the measurement Ps(θs, ds), we have P ′s
coordinate Ps(ds sin θs, ds cos θs) in the sensor coordinate
system. Then, Pr(xr, yr) in the room coordinate system can
be calculated as:{

xr = OB + BC
=AD

= ds sin θs cosφ+ ds cos θs sinφ

yr = OF − EF
=HG

= ds cos θs cosφ− ds sin θs sinφ
. (7)

Vector
−−→
OPr can be represented in matrix form as:
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Fig. 7. The hardware design for operating mmWave sensor to adjust orientation.

Fig. 8. The hardware setup.[
xr

yr

]
︸︷︷︸
−−→
OPr

=

[
cosφ sinφ
− sinφ cosφ

]
︸ ︷︷ ︸

T(φ)

[
ds sin θs
ds cos θs

]
︸ ︷︷ ︸

−−→
OPs

. (8)

Using Euler’s Formula, T(φ) can be further simplified as:

T(φ) = cosφ

[
1 0
0 1

]
+ sinφ

[
0 1
−1 0

]
= exp(φ

[
0 1
−1 0

]
).

(9)
Since φ is the angle between the two coordinate systems that
is obtained in the previous step, we can map the locations of
User 3 and User 4 to the room with T(φ).

C. Rotating Device Design

Figure 7 illustrates the schematic diagram for controlling
motor rotation, which dynamically adjusts the orientation of
the sensor. The mixer component of the sensor combines the
transmitted and reflected signals to produce an intermediate
frequency (IF) signal. By processing the IF signal with Fourier
transforms in the Cortex, we can extract respiration waves
and estimate the user’s location. Respiration-related signals
are transmitted through the UART interface to the terminal
computer for further authentication tasks, while location
measurements are sent to the controller for adjusting sensor
direction. Since the user’s location may change frequently, we
stream this information over SPI to the external buffer for
faster data updates.

Fig. 8 shows the hardware setup. The controller primarily
consists of the following parts:

Fig. 9. Illustration of signal noise removal.

MCU. After reading the user’s location information from the
buffer, the MCU is programmed to cluster users and calculate
the centroid. It also generates rotation instructions for the driver.

Driver. It is mainly composed of 4 transistors and a timer,
which is in turn controlled by the MCU. The activation of the
transistors provides the required voltage and current for the
coils, and the timer controls its energizing timing. It controls
the stepper motor in full step driving mode, and our designed
driving sequences for the coils are are 1001, 1100, 0110, and
0011, as shown by the timing diagram.

Motor. It is controlled by the clock period and rotates to
the desired direction. In our implementation, we employ an
unipolar stepper motor which has 5 wires one for motor supply
and the other for coils. The motor has 4 coils and they are
connected as shown in Fig. 7.

The configuration of our stepper motor provides a step angle
of 1.8° and a holding torque of 3.4kg-cm, which is capable
of rotating our sensor board to the desired direction. During
direction adjustment, our system may cause authentication
errors due to sensor movement. This vulnerability could be
exploited by attackers. In our implementation, the motor speed
is set to 150rpm for stability, taking only 0.1s to rotate 90°
(i.e., the wall corner where our system is placed). It is highly
unlikely for attackers to perform malicious activities within
such a short time. In addition, our stepper motor only needs
a 5v power supply. This low power consumption requirement
allows for more convenient and flexible deployment in various
task environments.

V. SIGNAL PROCESSING MODULE

A. Respiration Signal Separation

In general, the signal we capture includes high-frequency
noises, such as power-line interference accompanied by several
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harmonics; low-frequency noises, such as baseline wander due
to physical instability; and other random interferences, such as
limb motions. To minimize the negative effects of these noises,
we employ the following optimizations to obtain a refined
respiration waveform.

Bandpass Filtering. To ensure accurate user authentication,
it is necessary to identify the signal that is predominantly
influenced by respiration motions. In practice, if the energy
of noise is stronger than that of respiration, it may lead to
a spectral leakage effect [22], whereby strong energy at one
frequency spills into other frequencies. This may cause the
original respiration signals to spread into wider signals. To
improve signal quality, we adopt a Butterworth bandpass filter
[23] as our insight suggests that the respiratory frequency band
typically lies between 0.2 and 0.5Hz [24]. The filter is used
to eliminate irrelevant signals that fall outside this band. After
bandpass filtering, the signal (i.e., green colored) shown in Fig.
9(a) exhibits higher resolution than the raw signal, allowing for
clear separation of respiratory peaks and valleys. The sample
depicted in this figure is obtained by asking a participant to
remain stationary at a distance of 2m from the sensor in a
typical office room.

Smoothing. Since unpredictable low-frequency interference
is likely to fall into the frequency range of respiration, we need
further refine the robustness against impulsive interference.
To extract the most representative morphological features, we
use a normalized least mean square (NLMS) adaptive filter
[25] to smooth the respiratory waveform. Compared to the
conventional smoothing methods, such as the moving average
filter that interpolates the element of the signal with an average
across its neighborhood, the NLMS adaptive filter is capable of
stopping the adaptive update of the filter weight in the presence
of impulsive interference. This indicates that the recovered
respiration signal is much closer to the original. From Fig.
9(a), it is observed that the signal (i.e., red colored) is more
smooth, and its morphology (e.g., height and spacing) is more
prominent.

Outlier Removal. In practice, user might perform limb and
hand movements, such as drinking or operating a phone. Figure
9(b) shows an example of how waving limb and hand creates
irregular signal changes that interfere with respiration. Simply
relying on filters is not enough to reject such interferences,
because they are aperiodic and have larger amplitude than
respiration. Therefore, we propose a method to reduce the
impact of large movements based on signal energy calculation.
The main idea is to slide a time window over the signal
and calculate the energy for each window (i.e.,

∫ t+1

t
s2(t)dt).

Then we compare the energy with the historical average of
the signal and discard the window if the energy exceeds a
certain threshold. This means that the window is dominated
by non-respiratory movements. We empirically set the time
window to 1 second and the threshold to 5 times the historical
average of the window energy. Figure 9(b) also shows how
we smooth the signal using NLMS after discarding the non-
respiratory windows. In the following sections, we further
analyze the fine-grained waveform of the smoothed signal to
extract corresponding features.

Fig. 10. Respiration segment extraction.

B. Respiration Segmentation

Respiration is a rhythmic motion that exhibits a periodic
trend in the signal. Unique characteristics can be derived from
its waveform, such as respiratory rate, depth, and rhythm
changes. Since such characteristics are broadly similar between
breathing cycles for a specific user, to facilitate and simplify the
analysis of respiration, we suppose to partition the time-domain
signal into segments according to its cycles. The most direct
way to determine the cycles is to locate the peaks and troughs
of the signal. As shown in Fig. 10(a), local extremums can be
estimated by spectral analysis [26]. However, it is observed
that multiple local extremums are generated on same peaks,
troughs, and even slopes owing to the subtle fluctuation. Thus,
to determine the exclusive points that denote the peaks and
troughs in the cycles (a cycle is a “down-up” trend or “up-
down” trend), we implement a distance limitation method as
follows:

Extremum Classification. The peak represents exhalation
that leads to a positive value in phase changes, while the trough
stands for inhalation that results in a negative value. Based on
this prior knowledge, we sort the extremums into maximums
(i.e., positives) and minimums (i.e., negatives). Note that we
delete zero-value points in this step. This is because exhaling
and inhaling would produce the maximal absolute value of
phase change, and the locations for peak and trough are not
zero-value points.

Threshold Calculation. We introduce two thresholds Tmax

and Tmin to select the unique peaks and troughs from the two
categorized groups, respectively. In particular, the thresholds
are the average distances between every two adjacent values in
the two groups, respectively. The average distance is calculated
as: 1

n−1

∑n−1
i=1 ti × s, where n− 1 is the number of intervals

in the group, ti refers to the duration of the i′th interval, and
s denotes the sampling rate.

Peak/Trough Determination. We choose the first local
maximum/minimum in the groups as a valid peak/trough, and
the next valid peak/trough is selected such that the distance
between the current local maximum/minimum and the previous
valid peak/trough is greater than Tmax/Tmin. Using such
restriction, we finally obtain the corresponding peaks and
troughs for the signal, as shown in Fig. 10(b).

Since slight differences might appear between cycles, to
ensure the robustness of the features extracted from the
segment, we slice two cycles as a respiration segment in our
implementation (the determination of cycles for a segment is
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Fig. 11. Illustration of wavelet packet decomposition.

further studied in Section VIII-A). As illustrated in Fig. 10(b),
we use the signal starting from P2 to P4 as one segment.

C. Biometric Features Extraction

Respiration is non-stationary and contains periodic transient
trends. Extracting statistic features alone may not capture minor
changes between individuals. To accentuate minute changes,
we use wavelet packet decomposition (WPD) for fine-grained
analysis on respiration segments. We employ a 3-level WPD
with db1 Daubechies wavelet, minimizing edge effects and
allowing fast computation. As illustrated in Fig. 11, WPD
decomposes the segment into detail (D) and approximation
(A) components with corresponding high-pass (G) and low-
pass (H) filters at each level. With WPD, we perform multi-
resolution analysis in different frequency domains to capture
representative biometrics and discern subtle differences in
respiration motions between individuals. The original segment
is zoomed in level by level, producing a total of

∑3
i=12

i = 14
subspaces. Each subspace covers a part of the frequency
spectrum and facilitates learning of distinctive features.

To better understand the important and unique information,
we analyze and apply five different domain features to represent
the signals, including skewness, kurtosis, shape factor, impulse
factor, and root mean square (RMS). Skewness and kurtosis
can detect abnormalities and irregularities. Shape factor and
impulse factor describe the shape of the signal. Root mean
square (RMS) reflects the signal’s energy and lung function.
Overall, these features help analyze the shape, dynamic changes,
and energy of respiratory signals, providing insights into subtle
differences between individuals. After applying the 5 measures
to each respiration segment, we have a total of 14× 5 = 70
features. These features are then analyzed to identify patterns
for user template profiling and authentication model training.
By using these various features, we gain a comprehensive
understanding of the data and ensure accurate analysis for
developing reliable authentication models in various settings.

VI. AUTHENTICATION MODULE

A. Biometric Template Profiling

When an individual first enrolls in M-Auth, the biometric fea-
tures are extracted from his/her respiration samples. In practice,
not all the extracted features contribute the most informative

Fig. 12. Feature and classifier selection.

variables to represent the uniqueness of an individual. For
instance, it is observed from Fig. 11 that there exist duplicate
components after WPD process (e.g., DA2 and AD2), leading
to producing same features. Therefore, to obtain robust features,
we further study the 70 extracted features and select the most
distinct ones using the recursive feature elimination (RFE)
method [27].

Specifically, we employ a support vector machine (SVM)
classifier with a linear kernel for RFE. We choose this method
because of its ability to handle high-dimensional data and its
success in previous studies. The training of the classifier is
started by using all 70 features through 5-fold cross-validation.
In this step, we randomly select data from 10 participants
(data collection is discussed in Section VII-B). The algorithm
accomplishes this by first fitting a model to the entire set of
features. Then, it discards the least important features according
to the model’s coefficients and refits the classifier. This process
is repeated recursively until the desired accuracy is reached
with a specified number of features. By eliminating the least
important features at each iteration, RFE is able to identify the
most important features for the given problem, resulting in a
more accurate and interpretable model.

In Fig. 12(a), we present the results of our analysis. The curve
reaches an accuracy of 92.3% when 38 informative features are
used. After that point, the accuracy remains stable even with
the inclusion of additional features. This indicates that the first
38 features are the most sensitive to the classification task and
represent respiration motions. Adding more features beyond
this point does not lead to any improvement in accuracy, as the
remaining features do not contribute to the classification task.
In the following section, we leverage this insight by using the
38 selected features to train our matching model.

B. User Pattern Matching

By matching the incoming respiration segments with the built
profiles, M-Auth identifies the unknown users and determines
whether they are registered in the system. To facilitate the
profile update and maintenance, we aim to transfer the classifier
training process to our sensor board in practical applications,
thus avoiding the cumbersome offline training and online
recognizing procedure. For this purpose, we tend to adopt
lightweight shallow machine learning classifiers instead of
deep learning solutions as M-Auth’s authentication model.

To determine the optimal classifier for our authentication sys-
tem, we evaluated four machine learning techniques: Random
forest (RF), k nearest neighbors (kNN), linear kernel-based sup-
port vector machine (Linear-SVM), and radial basis function-
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TABLE I
CLASSIFIER PARAMETER SELECTION.

RBF-SVM Linear-SVM kNN RF

Parameter C=1,
γ=0.01 C=4 k=10 d=11,

n=400
Accuracy (%) 95.77 93.04 94.07 76.69

Training Time (s) 39.22 2.02 0.24 35.74

TABLE II
MMWAVE CONFIGURATION.

Bandwidth 4GHz ADC Sampling Rate 2.5M/s
Chirp Slope 53MHz/µs Chirp Repetition 184µs
Chirps per Frame 128 Samples per Chirp 128

based support vector machine (RBF-SVM). We fine-tuned the
parameters for each classifier using 5-fold cross-validation
and grid search [28] to achieve optimal performance. We use
the one-vs-the-rest multi-class strategy [29] to evaluate the
performance of the classifiers. This strategy involves selecting
users individually and assessing the classifier’s performance
for each user. Taking the random forest classifier parameter
selection as an example, we have pre-set two parameter sets for
the classifier: n and d. Among them, n represents the number
of decision trees in the forest, with a value range between
0 and 500 and a step size of 50, resulting in 10 potential
parameters. d represents the maximum depth of the tree, with
a value range of 0 to 20 and a step size of 1, resulting in 20
potential parameters. After performing the grid search method
on these two parameter sets, the RF classifier can be fine-tuned
to achieve the best possible performance for our task.

Table I lists the parameters used for each classifier, as well
as their corresponding accuracy and training time at their best
performance. Among the classifiers, RBF-SVM achieves the
highest accuracy of 95.77%, followed by kNN with an accuracy
of 94.07%. Linear-SVM has an accuracy of 93.04%, while RF
achieved the lowest accuracy of 76.69%. Despite having the
longest training time at 39.22 seconds, RBF-SVM emerged as
the best classifier on this task. In addition, Fig. 12(b) illustrates
the distributions of FPR and TPR for the four classifiers. The
results show that the RBF-SVM has the highest AUC value
of 98.51% and the lowest EER of 4.36%, indicating that it
is the most suitable classifier for our authentication system.
Therefore, we have selected the RBF-SVM for user pattern
matching in this study. For further details on the abbreviations
used, please refer to Section VII-C.

VII. SYSTEM IMPLEMENTATION

A. System Setup

In our experiment, we employ a commercially available
IWR1443BOOST mmWave radar equipped with 7 antennas (3
TXs and 4 RXs) [30] to demonstrate the feasibility of M-Auth.
The radar board is configured according to Table II, providing
a range resolution of 3.75cm and a displacement resolution
of 1mm, which satisfies the requirements of our scenario. As
illustrated in Fig. 13, the sensor board transmitted and received
signals, which were then streamed out via UART to a laptop
featuring an Intel i7-8650U processor for further processing.
We develop the M-Auth software in Python 3, which can be
conveniently ported to portable embedded systems.

Fig. 13. Experimental setup.

B. Data Collection

Genuine Data Collection. We recruit 37 healthy participants
(17 females and 20 males) between the ages of 19 and 35.
Before data collection, participants are given the information
that the experiment is to perform biometric authentication only
and that their personal data would be stored securely and de-
identified. Our experimental setup, as shown in Figure 13,
involves having a participant sit or stand in front of the radar 2
meters away and breathe freely in a typical workplace environ-
ment without any restrictions on limb movement or smartphone
use. The default settings are utilized unless otherwise specified.
To minimize the impact of fatigue on the data and ensure data
consistency, we collect each participant’s data over multiple
rounds lasting two months. For evaluation, we collect 400
respiration segments for each participant, resulting in a total
of 14,800 samples.

Attack Data Collection. We collect attack data as follows:
Blind Attack. We invite a total of 37 participants to take part

in this study. 7 participants are assigned the role of legitimate
users, while the remaining 30 participants are designated
as attackers. Each attacker randomly performs 20 segments,
resulting in a total of 600 segments. We then collect 4200
samples in total, which are used to analyze the performance
of our system under blind attack.

Impersonation Attack. We select a group of 7 individuals
to participate as victims and another group of 10 individuals
to act as attackers. The attackers are specifically instructed
to mimic the breathing patterns of the victims, paying close
attention to their respiratory rhythm and depth. For each victim,
we obtain 50 segments from each attacker, resulting in a total
of 3500 samples.

Replay Attack. We invite 7 participants as victims and employ
an additional mmWave radar to record the victim’s respiration
signals. It is assumed that the end device is secure, the attacker
does not know the specifications such as the length of the
respiration segment and the configuration of FMCW chirps.
For each victim, we use the default chirp configuration to
capture respiration for 10 minutes and slice the signal into
segments by 5 seconds. In total, we collect 840 samples.

C. Evaluation Metrics

To evaluate the performance of M-Auth, we introduce the
following metrics:

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3358548

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: RMIT University Library. Downloaded on February 24,2024 at 03:10:15 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 10

A
ut

he
nt

ic
at

io
n 

A
cc

ur
ac

y

A
ct

ua
l U

se
r

Predicted User

1

0.5

0

1

19

37
1 19 37

(a) Performance with different cycles (b) Confusion matrix

Fig. 14. Performance of legitimate user authentication.

Authentication Accuracy. It denotes the percentage of genuine
samples that are correctly verified. A system with high
authentication accuracy is more reliable and secure. In addition,
a high authentication accuracy also translates to a better user
experience by reducing false positives and false negatives,
which can lead to frustration and wasted time.

ROC Curve. The ROC curve presents the relationship
between the true positive rate (TPR) and false positive rate
(FPR) under different thresholds. The TPR represents the rate
of attacks that are correctly detected, while the FPR denotes
the rate of genuine samples that are falsely identified as
attacks. A larger area under the ROC curve (AUC) means
better performance of the system.

Equal Error Rate. EER is the rate at which the system
incorrectly identifies genuine samples as imposters and the rate at
which the system fails to detect an attack sample. It is calculated
by finding the point where the ROC curve intersects the diagonal
line. A lower EER indicates a better performance of the system
in distinguishing between genuine and impostor samples.

VIII. PERFORMANCE EVALUATION

A. Overall System Performance

We first evaluate the impact of different segment lengths
on authentication accuracy. Fig. 14(a) shows the results with
different numbers of respiration cycles in a segment. We
observe that when 2 cycles are chosen, the average accuracy
leaps to 96.05% and remains roughly stable thereafter. We also
notice that the standard deviation (STD) decreases from 0.74%
to 0.32%, indicating that the results were more consistent. To
further investigate this phenomenon, we find that the accuracy
improves slightly when increasing the number of cycles from
2 to 5, reaching 97.67%. The STD slightly increases by
0.01% to 0.33% instead. These changes are not statistically
significant, suggesting that choosing 2 cycles may provide the
best balance between accuracy and computational resources.
The result indicates that longer segments do not necessarily
improve the performance, and may introduce additional noise
and variability in the respiration signals. Based on these
observations, we choose 2 cycles as the optimal segment length
and the corresponding average accuracy demonstrates M-Auth
is effective in verifying legitimate users.

Next, we evaluate the performance of specific user verifica-
tion. We evaluate the authentication accuracy of 37 participants
and generate a confusion matrix, which is displayed in Fig.
14(b). The matrix presents the corresponding authentication
accuracy along the diagonal regions. It is color-coded to indicate

Zoom-in

(a) Attack Detection (b) ROC curves under attacks

Fig. 15. System performance under three attacks.

the level of accuracy, with darker regions representing higher
accuracy. Overall, we find that the authentication accuracy of
our system is quite impressive, with the lowest and highest
accuracy rates being 91.25% and 100% respectively, and a STD
of only 2.69%. This low STD indicates that users’ accuracy
rates tend to cluster around the average, which is 96.05%. It
is important to note that the darker areas of the confusion
matrix highlight the system’s ability to accurately identify
specific users, which demonstrates that our system is reliable
and effective in authenticating individuals.

B. Performance of Resisting Attacks

We evaluate the resilience of M-Auth for the attacks discussed
in Section II-C. As shown in Fig. 15(a), the detection rates of
the three attacks are over 98%, 95%, and 94%, respectively, with
mean values of 98.86%, 96.29%, and 95.34%, respectively. It is
expected to have a high detection rate under blind attack since
respiration motions are rarely the same between individuals as
mentioned in Section II-A. We also observe a slight decrease in
detection of impersonation attack, which suggests that imitating
the victim’s respiration can help attackers with their attack.
However, the average detection rate of 96.29% indicates it is
challenging to replicate someone else’s respiration precisely.
Furthermore, our system remains resilient to replay attacks,
as verified by the results. Attackers lack detailed specifics of
M-Auth, such as chirp configuration and signal segmentation,
which makes it difficult for them to accurately replicate the
system’s unique features. Overall, these results demonstrate the
robustness of our system against various attacks, ensuring a
secure authentication process for our users.

In order to better understand the performance of the system,
it is useful to examine the ROC curve depicted in Fig. 15(b).
The curve provides a visual representation of the system’s
ability to distinguish between legitimate users and attacks. We
can see from the AUC values that the system is highly effective
at this task, with values of 98.70%, 98.57%, and 97.49% for
the three attacks, respectively. Additionally, the EER values
of 3.99%, 4.63%, and 7.75%, respectively, indicate that the
system is able to accurately differentiate between legitimate
users and attacks. These results demonstrate the robustness of
our system and its ability to provide reliable security measures
to protect against attacks.

C. Robustness Analysis

Impact of Multiple Users Under Variant Distances. We
evaluate our system with up to four users with distances ranging
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Fig. 16. Robustness analysis for different scenarios.

from 2m to 4m. We randomly select 2, 3, and 4 participants
and ask them to stand shoulder-to-shoulder at distances of
2m, 3m, and 4m, respectively. Fig. 16(a) shows the average
authentication accuracy. It is observed that the accuracy values
are all over 90% for the groups of 2-user and 3-user within 4m.
The accuracy values for the 4-user within 3m almost approach
90%. The results verify that M-Auth is capable of identifying
multiple users simultaneously within a reasonable range. Note
also that the increase of either users or the distance might
decrease the accuracy, especially for the group of 4-user at 4m,
the accuracy decreases to 85%. It is expected due to the fast
attenuation of mmWave signals and could be further improved
by increasing respiration cycles in the segment.

Impact of AoA Under Variant Distances. To examine
the effective sensing range, we evaluate performance under
changeable AoAs and distances. The test requires the recruiter to
be at 2m, 3m, and 4m away from the system, and positioned at
angles ranging from 0° to 60° relative to the radar’s orientation.
The results are visualized in Fig. 16(b). We observe that the
accuracy exceeds 92% when the angle is less than 30° and
the distance is within 3m. Like the previous experiment, the
accuracy decays with the increase in distance. Moreover, the
accuracy is above 92% when the user is on a straight line with
the probe and reduces to less than 88% at 60°. The results are
expected since the estimation of phase change decays with the
increase of AoA. This experiment motivates us to design the
rotating device in Section IV-C, which can dynamically adjust
the device orientation according to the user position.

Impact of User Orientation. We study the performance
when users are not facing the device. Participants are asked to
assume four different orientations, including facing the device,
having their back to the device, and facing left or right to the
device. The results are presented in Figure 16(c). We observed
that the average authentication and false acceptance rates were
the best (96.07% and 6.23%, respectively) when users faced
the device. Across all orientations, the rates fluctuated slightly
by 1%-3%, indicating the robustness of our system in verifying
users in different orientations. This is due to the fact that when
individuals breathe, their chest expands in all directions, and
our system can capture the side expansions. This is a significant
advantage over other methods of identity verification, which
often require a specific body position to be successful.

Impact of Body Motion. We further investigate the perfor-
mance under daily activities without requiring users to stop their
ongoing work. Participants are invited to perform four different
activities: static (as a control group), typing, imitating driving,

and speaking. From Fig. 16(d), it is observed that the average
authentication rate and false acceptance rate are close to those
of the control group when typing or driving. The results are
consistent with our methodology, where we introduce a signal
energy comparison scheme to remove the outliers caused by limb
or hand movements. In the case of speaking, the results drop
by about 6% compared to the control group. This is due to the
inherent nature of speaking, i.e., phonation relies on exhalation;
it is not possible to phonate during inhalation [1]. The limitation
could be alleviated by intermittent pauses during speaking.

Impact of Test/Train Split Ratio. We change the amount of
training data used for building the user authentication model
in our scenario to test system performance. To avoid other
factors that may affect authentication accuracy, we use a fixed
dataset to evaluate the performance by controlling the ratio
of the testing and training sets. The results are presented in
Table III. As we increase the proportion of the training set, the
average accuracy shows a gradually rising trend, increasing from
93.49% to 95.59%. Meanwhile, the training time consumption
also increases gradually from 5.63 seconds to 52.57 seconds.
When the proportion of the training set is only 10%, the standard
deviation is 0.52%. However, when the proportion of the training
set exceeds 20%, the standard deviation is consistently below
0.35%. This is because a small training set may not provide
enough information for the model to learn from. Therefore,
choosing the optimal test/train split ratio is crucial for balancing
performance and training time. In our scenario, it is suggested
to adopt the ratio of 3/7 to achieve good results (95.77±0.24%)
within a reasonable training time (38.61s).

D. Usability Improvement

In Section VIII-A, we conducted a series of experiments to
determine the optimal signal length for our work. After careful
analysis, we discovered that the most effective signal length is
two breathing cycles. This length typically lasts more than 10
seconds, as demonstrated in the example shown in Fig. 10(b),
where two breathing cycles occupied 15 seconds. This result
is significant as it greatly improves the accuracy and reliability
of authentication, with an average accuracy of 96.05%.

Using longer signal lengths allows for more data to be
captured and provides more insights into the patterns and trends
of the signal. However, longer signal lengths also require users
to stand in front of the device for a prolonged period, which
could negatively affect the overall comfort and convenience
of the system. To improve usability, it is best to minimize
the time spent on the authentication process while ensuring
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TABLE III
SYSTEM PERFORMANCE WITH DIFFERENT TEST/TRAIN SPLIT RATIOS.

Test/Train Ratio 1/9 2/8 3/7 4/6 5/5 6/4 7/3 8/2 9/1

Accuracy (%) 95.95
±0.35

95.71
±0.27

95.77
±0.24

95.73
±0.30

95.59
±0.20

95.45
±0.21

95.27
±0.24

94.78
±0.30

93.49
±0.52

Training Time (s) 52.57 45.89 38.61 32.39 26.78 20.71 15.47 10.26 5.63

Algorithm 1 Wavelet-based Signal Generation
Input: x, respiration signal of length 1 cycle;
Output: z, respiration signal of length 2 cycles;

1: wavelet = pywt.Wavelet(′sym5′);
2: coeffs = pywt.wavedec(x,wavelet, level = 4);
3: for i = 1 to len(coeffs) do
4: coeffs[i][−2 :] = coeffs[i][−2 :] ∗ 0;
5: end for
6: y = pywt.waverec(coeffs, wavelet);
7: z = np.concatenate(x, y);
8: Return z;
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Fig. 17. Signal generation using wavelet transform.

the accuracy and robustness of the system. We propose to
analyze the signal pattern of a respiratory signal with only one
cycle and generate a new respiratory signal containing two
cycles. By doing this, we can halve the user’s authentication
time without shortening the signal length. Specifically, we
employ wavelet transform to learn signal patterns, enabling us
to examine different aspects of a signal in detail, such as its
frequency content and time localization. By analyzing these
properties, we can gain insights into the underlying patterns
of the signal and use this information to generate new signals
with similar characteristics.

Algorithm 1 presents the use of the PyWavelets2 Python
library to learn and generate new respiration signals. We begin
by defining a wavelet named sym5 because this basis function
can finely detect the local features of the signal, and performs
well in extracting low-frequency signals while removing high-
frequency noise. Next, we perform wavelet decomposition
on signal x, using the specified wavelet and setting the
transformation level to 4. This produces a list of five coefficient
arrays, coeffs, each corresponding to a wavelet decomposition
level. For each coefficient array, we multiply the last two arrays
(corresponding to high-frequency wavelet coefficients) by 0
to remove unimportant high-frequency information. We then
perform wavelet reconstruction on the trimmed coefficients
to obtain a new signal y. Finally, we concatenate x and y to
obtain the desired signal z containing two breathing cycles.
Fig. 17 shows an example of generating a long signal using the
algorithm described above. The algorithm learns the pattern of
the single-cycle signal in Fig. 17(a), and then generates a signal

2https://github.com/PyWavelets/pywt.
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Fig. 18. System performance when using signal generation.

containing two cycles as shown in Fig. 17(b). By doing so, users
can complete the authentication process within one breathing
cycle, thereby improving the system’s usability in practice.

Next, we verify the effectiveness of the proposed method,
especially its impact on system performance. We use the data
collected in Section VII-B to generate test signals for our 37
participants and evaluate them using the authentication classifier
established in Section VI-B. Fig. 18 compares the average
authentication accuracy before and after using signal generation
for each individual. Before using signal generation, the overall
average accuracy is 96.05%, and the average accuracy of each
individual ranges from 91.25% to 100%, with a STD of 2.69%.
After signal generation, the overall average accuracy is 95.69%.
For each individual, the minimum accuracy is 92.77% and the
maximum accuracy is 98.77%, with a STD of 2.23%. While the
proposed method may slightly reduce the system’s performance,
its lower STD improves the system’s stability. Most importantly,
this method significantly shortens the time required for user
authentication, which enhances practical usability.

IX. RELATED WORK

Continuous Authentication. Traditional physiology-based
authentications have been the standard for a long time, such
as fingerprint [31], iris [32], and face [33]. However, recent
developments in technology have shown that they are vulnerable
to artifacts, leading to the development of behavior-based
continuous authentications such as gait patterns [2], [3], finger
vibrations [34], vocal vibrations [35], and keystroke dynamics
[4]. As traditional solutions only provide one-time authentica-
tion during the initial login phase, continuous authentications
have been proposed as more reliable alternatives to traditional
physiology-based authentications. While these methods have
shown promise, they require continuous and active interaction,
which may be obtrusive and inconvenient for users.

Vital Sign-based Authentication. To overcome the limita-
tions mentioned above, vital signs are used for new passive
authentications. For example, brain responses to visual stimuli
are used for user authentication [8]. In continuous user
authentication, electrocardiogram (ECG) signals are widely
studied as biometric markers [10], [36]. To make it more
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convenient, photoplethysmogram (PPG) is suggested as an
alternative to ECG [9]. Another approach is BreathPrint, which
uses breathing audio to authenticate users [37]. However, these
methods require users to wear gadgets, which is inconvenient.
To address this, wireless signals are used for non-contact
authentication. Cardiac Scan uses radar to verify users based
on unique cardiac motion [11]. BreathID extracts respiration
signals from Wi-Fi signals for contactless authentication [12].
However, these methods either require a dedicated device or
close-range sensing, limiting their applicability.

Among all the discussed works, the most similar research
to ours is BreathID, where the authors use Wi-Fi signals to
authenticate users based on their unique respiratory motions.
However, there are key differences between their work and ours:
(i) They can only test one user at a time, while we can verify
multiple users simultaneously. This improves system efficiency,
reduces deployment cost, and expands the application scenarios
of RF-based authentication. (ii) They assume users to be
still during authentication, ignoring physical interferences like
limb and hand movements. Our work introduces a method
to eliminate motion-corrupted segments, making our system
more practical. (iii) They use over 500 features to describe the
respiration signal, whereas we carefully select 38 representative
descriptors, which improves authentication accuracy and user
template update. With these unique factors, our authentication
solution differs significantly from BreathID.

X. DISCUSSION

We analyze the potential limitations of our system and
provide suggestions for how to improve it in the future.

Single Radar Deployment. Our solution is based on a
dynamic radar deployment that adjusts radar direction based on
user locations, enhancing signal quality and enabling accurate
activity recognition. However, there are limitations to consider.
In wide-space settings, signal strength may be lost when two
users move apart. The radar direction may not cover both users
within its field of view (FoV), resulting in a significant drop in
signal intensity. This can impact the system’s ability to capture
fine-grained signals. To address this, we recommend deploying
our system in activity-intensive settings where users are likely
to be close. Another option is to install multiple radars to cover
a larger area and ensure sufficient signal quality for all users.
This is a common challenge for single-deployed radar systems
and can be overcome by using multiple radars in practice.

Quasi-static State. Our system requires users to remain
quasi-static during usage to ensure accurate monitoring. This
is a common challenge in wireless sensing since full-body
movements result in phase shifts that can overpower those
caused by respiration. Due to the low signal-to-noise ratio
(SNR) of the submerged signal, isolating it is not easy. One
possible solution is intermittent authentication, where users
are periodically prompted to briefly pause their activities
for authentication. This minimizes the impact of large body
movements on system performance while maintaining security.
It also helps prevent users from forgetting to log out, reducing
security risks.

Emotions and Health. In our work, we use respiration
data acquired from healthy individuals under normal physical

conditions to construct the matching model. However, we
recognize that even though most individuals have typical
respiratory patterns, some individuals may experience irregular
breathing for various reasons. For instance, individuals with
breathing problems, such as asthma, pneumonia, or anxiety,
may have significant fluctuations in their respiration motions,
which can negatively impact the accuracy of our authentication
system. To improve the resilience of our system, we can
collect respiration data from individuals with different breathing
problems like sleep apnea or chronic obstructive pulmonary
disease to create a more diverse dataset that can be used to train
our system. We can also develop algorithms to detect and adjust
for abnormal respiration patterns during the authentication
process.

XI. CONCLUSION

This paper presents a continuous multi-user authentication
system by sensing non-contact respiratory motion using a single
COTS mmWave radar. To obtain high-quality reflected signals
from users, we design a rotating device to assist the radar in
finding the best direction. We provide an interference reduction
approach to eliminate the effects due to body movements.
To accurately authenticate genuine users and block spoofing
attacks, we experimentally determine the appropriate data
segment, elaborately select the representative features, and
build a fine-tuned classifier for pattern matching. Extensive
experimental studies demonstrate that our system is resilient
to different spoofing attacks and effective in authenticating
legitimate users in various application scenarios.
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