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ABSTRACT
Training machine learning (ML) models on mobile and Web-of-
Things (WoT) has been widely acknowledged and employed as a
promising solution to privacy-preserving ML. However, these end-
devices often suffer from constrained resources and fail to accom-
modate increasingly large ML models that crave great computation
power. Offloading ML models partially to the cloud for training
strikes a trade-off between privacy preservation and resource re-
quirements. However, device-cloud training creates communica-
tion overheads that delay model training tremendously. This paper
presents EdgeMove, the first device-edge training scheme that en-
ables fast pipelined model training across edge devices and edge
servers. It employs probing-based mechanisms to tackle the new
challenges raised by device-edge training. Before training begins, it
probes nearby edge servers’ training performance and bootstraps
model training by constructing a training pipeline with an approxi-
mate model partitioning. During the training process, EdgeMove ac-
commodates user mobility and system dynamics by probing nearby
edge servers’ training performance adaptively and adapting the
training pipeline proactively. Extensive experiments are conducted
with two popular DNNmodels trained on four datasets for three ML
tasks. The results demonstrate that EdgeMove achieves a 1.3×-2.1×
speedup over the state-of-the-art scheme.
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Figure 1: ML model training schemes.
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1 INTRODUCTION
Machine learning (ML) is powering an increasing variety of mobile
and Web-of-Things (WoT) applications [20, 33], e.g., personalized
recommendations [93], visual assistance [44], video analytics[32],
etc. It is shifting ML model training and inference from the central
cloud (i.e., cloud-only in Fig. 1) to the network edge [2, 45, 45, 46,
83, 92], enabling real-time data analytics and decision making with
privacy preservation [4, 61, 74, 90].

A series of ML techniques have been proposed to support model
training on mobile devices (i.e., On-Device in Fig. 1). For example,
transfer learning can transfer the knowledge learned by an edge
device’s ML model to other edge devices’ ML models to save on
training expenses [6, 85]. Federated learning allows edge devices
to train a model collaboratively without revealing their private
training data [4]. However, the sizes of popular ML models have
been increasing rapidly to pursue a higher model accuracy [55].
Many resource-constrained edge devices like smartphones and
smart cameras cannot afford to train large models because they
can be easily overwhelmed by the high computational overheads
incurred [3, 9, 60, 88]. Many techniques, e.g., model compression
[10], model pruning [47, 54], and sparse training [88], as well as
tools, e.g., TensorFlow Lite [17] and PyTorch Mobile [1], have been
developed to support model training on resource-constrained edge
devices. However, it is difficult and often impossible to obtain a
high model accuracy with these techniques [65].

An alternative solution is the device-cloud training scheme (see
Fig. 1), which splits a model into two parts, one (and usually a small
one) to be trained locally on the edge device and the other to be
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Figure 2: Training time under different schemes with a dedicated
worker. Under Device-Cloud and Device-Edge, the client trains the
lowest model layer and the worker trains the other model layers.
trained externally in the cloud [15, 61, 74, 87]. During the training
process, every forward pass and backward pass goes through the
edge device and the cloud back and forth. This training scheme
allows edge devices to seek help from the cloud with training large
ML models without revealing their private data. However, it is
challenged by the unstable network conditions between edge de-
vices and the cloud, which may vary during the training process
and significantly impact training performance. Yao et al. devel-
oped a Device-Cloud scheme that re-partitions the model across
the edge device and the cloud for training when the network con-
dition varies [87]. However, under this scheme, model training is
inevitably, cumulatively, and tremendously delayed by the com-
munication latency between the edge device and the cloud. Fig. 2
compares the overall time taken to train four different ML models
under the on-device scheme and the Device-Cloud scheme. We
can easily see the extraordinary delay introduced by device-cloud
communication under the Device-Cloud scheme, contributing to an
average of 42.29% of the overall training time. It is also evidenced
by the experimental results presented in [87]: a forward pass and a
backward pass of a minibatch between an edge device and a cloud
server take 100-500 milliseconds to complete. This price paid by
the device-cloud training scheme to train large models is too high
to be practical in most, if not all, real-world scenarios.

In an edge computing system powered by 5G, edge servers de-
ployed at base stations or access points can take over a lot of work-
loads from various edge devices [2, 11, 22, 69, 76]. Within close
geographic proximity, edge servers offer edge devices access to
greater computation resources with single-digit millisecond com-
munication latency [51]. ML models can be trained on edge servers
to avoid excessive traffic over the backhaul network and enable
fast model updates required by continual learning [2, 70]. Offload-
ing the entire ML model from an edge device to a nearby edge
server for training risks user privacy because private data will have
to be uploaded to the edge server. Thus, this edge-only training
scheme raises the same privacy concern as the cloud-only train-
ing scheme [4], which has raised wide privacy concerns in the
real world [28]. In fact, many European cities specifically mandate
against streaming users’ data like video recordings to the cloud [2].

To systematically overcome the limitations of existing training
schemes, this paper presents EdgeMove, a novel scheme that fa-
cilitates pipelined device-edge training (i.e., Device-Edge in Fig. 1).
It splits a model into two partitions, one for training on the edge
device and the other on an edge server. Intermediate features are
transmitted in between instead of the user’s private data. EdgeMove
offers the following advantages over existing training schemes.

• Compared with the cloud-only training scheme and the edge-
only training scheme [2], EdgeMove protects users’ data privacy
because it does not upload users’ private data to the cloud or edge

servers, which is subject to potential abuse, legal subpoenas, and
extra judicial surveillance [71]. EdgeMove also protects users’
model privacy because it offloads only part of a model for training,
while the cloud-only training scheme and edge-only training
scheme open the door to many cyber attacks [7, 58, 59, 73].
• Compared with the device-cloud training scheme [15, 61, 74,
87], EdgeMove significantly reduces the delays in the training
process introduced by the communication latency between the
local model part and the external (offloaded) model part. The key
is to take advantage of the low-latency access to edge servers’
computation resources. In Fig. 2, we can observe that training
a model under EdgeMove (Device-Edge) takes much less time
than under the device-cloud training scheme. Please note the
this experiment is conducted under relatively stable network
conditions without user mobility. In a real-world scenario where
users move and network conditions vary, EdgeMove can achieve
an even greater advantage in model training time (§5).

Contributions. Our work makes the following main contributions.
• EdgeMove is the first scheme devised to facilitate pipelined device-
edge ML model training across edge devices and edge servers.
• In an edge computing system, an edge server’s training per-
formance replies on its GPUs available, its workloads, and the
network condition, which often vary unpredictably over time.
Model training strategies formulated offline can quickly be in-
validated by these system dynamics. To tackle this challenge,
EdgeMove probes the training performance of an edge device’s
nearby edge servers, and bootstraps model training with an ap-
proximate model partitioning (§3).
• During the training process, system resources often vary over
time, sometimes mildly, sometimes considerably. For example, a
more powerful GPU may become available. Edge servers’ work-
loads may fluctuate. Network conditions may also change. These
variations are usually more drastic when the user moves. Edge-
Move probes nearby edge servers’ training performance adap-
tively and adapts the training pipeline proactively according to
system dynamics at runtime (§4).
• To evaluate the performance of EdgeMove, extensive experiments
are conducted in an edge computing system with 2 popular ML
models trained on 4 datasets for 3 types of ML tasks. The results
demonstrate EdgeMove’s superior performance over existing
training schemes. Compared with the state-of-the-art training
scheme, EdgeMove achieves a speedup of 1.5×-2.1× in training
ML models for image classification, 1.2×-2.0× for text classifica-
tion, and 1.2×-1.8× for audio classification.

2 BACKGROUND AND CHALLENGES
2.1 Parallelisms for ML Model Training
A series of parallelism schemes have been proposed to accelerate
ML model training. Data parallelism partitions training data across
multiple workers [5, 40, 41, 80]. Specifically, training data is parti-
tioned into multiple subsets, one for each worker, so that workers
can train their ML model replicas in parallel. To accommodate the
increasingly large and complex ML models, model parallelism par-
titions an ML model across multiple workers [13, 27]. It allows
each worker to their model partitions individually and the entire
model collectively. Data parallelism and model parallelism can also
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(b) PipeDream Pipeline for Device-Edge Training
Figure 3: PipeDream pipeline across two GPUs in a cluster (cloud-
only training) vs. across an edge device and an edge server (device-
edge training). In this example, a backward pass takes twice as long
as a forward pass because it is more computationally expensive.
Uplink transmission takes twice as long as downlink transmission.
be integrated to combine their advantages [27, 29–31, 43, 55]. In
recent years, pipeline parallelism has demonstrated significant ad-
vantages over data parallelism and model parallelism by leverag-
ing intra-batch parallelism and inter-batch parallelism. Combining
model parallelism and intra-batch parallelism, GPipe splits a mini-
batch into multiple micro-batches and performs forward passes fol-
lowed by backward passes for these micro-batches across multiple
pipelined workers [27]. Taking a step further, PipeDream integrates
inter-batch parallelism into the pipeline, allowing the forward and
backward passes of minibatches to partially overlap [55]. Compared
with GPipe, it accelerates model training significantly by reducing
pipeline flushes. However, PipeDream was designed to pipeline ML
model training across workers in the same clusters where work-
ers are connected with high-speed interconnects like NVLink (25
Gpbs) and PCIe (10 Gbps). Its pipeline does not consider the com-
munication latency between workers, as shown in Fig. 3a. When it
is applied in device-edge training, the communication latency be-
tween the edge device and the edge server undermines the pipeline
parallelism and slows down the training process significantly. To
overcome this limitation, EdgeMove considers device-edge com-
munication latency when partitioning an ML model for pipeline
deployment across the edge device and the edge server (§3.2).

2.2 Edge Computing System Dynamics
Most existing pipeline schemes, e.g., PipeDream [55], GPipe [27],
HetPipe [64], and PTD-P [57], are designed for ML model training
in GPU clusters. Compared with GPU clusters, edge computing
systems exhibit unique characteristics that challenge the application
of existing pipeline schemes to device-edge ML model training.
Network Conditions. GPUs/workers1 in a cluster are linked with
high-speed interconnects while communications between edge
devices and edge servers are much slower (§2.1).
GPU Resources. Most pipeline schemes assume that the GPUs
available for ML model training are virtually unlimited. For exam-
ple, PipeDream and GPipe partition ML models for training on as
many GPUs as needed to maximize pipeline throughput [27, 55].
PTP-P goes to extremes and partitions an ML model for training
across thousands of GPUs [57]. In an edge computing system, an
edge device can only access a nearby edge server covering the edge
device [24, 66, 84]. The computation resources, e.g., CPUs, memory,

1This paper speaks of "GPU" and "worker" interchangeably if the worker is a GPU.

and GPUs, available on its nearby edge servers are limited due to
their small physical sizes[2, 38, 89]. In addition, it is unknown to
the edge device what GPUs and how of many of them are available
on nearby edge servers for training its ML model. Furthermore, an
edge server’s training performance relies on not only the specs of
the GPUs available but also its workloads and the network con-
dition. For example, a fully loaded edge server may not be able
to guarantee its training performance as expected. While many
pipeline schemes see GPU clusters as white boxes, the edge de-
vices in an edge computing system have to consider edge servers
as black boxes, particularly when serverless computing is imple-
mented to relieve edge devices of resource allocation and server
management [14, 42, 63, 67, 75]. EdgeMove tackles this challenge
by probing the end-to-end training performance of an edge device’s
nearby edge servers at the beginning of the training process for
pipeline construction (§3).
Runtime Dynamics.Most existing pipeline schemes do not adapt
model partitionings during the entire training process, assuming
that GPUs’ training performance always remains stable. This may
be true in a dedicated GPU cluster but is unrealistic in edge com-
puting systems. An edge server’s resources are shared by multiple
tenants like YouTube and Uber [24, 37, 68]. The availability of its
GPUs may vary during the training process. Its workloads and
network conditions may also vary during the training process, de-
pending on the user demands within its coverage. These system
dynamics can undermine or improve edge servers’ runtime train-
ing performance, especially when the edge device moves. To tackle
this challenge, EdgeMove monitors the end-to-end training perfor-
mance of the worker, i.e., the edge server training the ML model at
the moment, probes the end-to-end performance of nearby edge
servers adaptively, and adapts the training pipeline proactively (§4).
2.3 Device-Cloud ML Model Training
Yao et al. proposed the first scheme to enable device-cloud training
across an edge device and a cloud server [87]. Their scheme consists
of an offline phase and an online phase. In the offline phase, the edge
device evaluates its own training performance, the cloud server’s
training performance, and the network conditions. Then, Device-
Cloud splits the ML model into two partitions, one to be trained
locally and the other to be trained by the cloud server. The experi-
mental results presented in [87] reveal that the network condition
is critical to the end-to-end training performance. Thus, the key
idea of Device-Cloud is to find the partition point that minimizes
the time taken to transmit intermediate features between the edge
device and the cloud server. Similar to EdgeMove, Device-Cloud
recognizes the potential changes in the network conditions during
the training process. In the online phase, it monitors the uplink
and downlink data rate, and evaluates the training pipeline. If it is
suboptimal, Device-cloud enumerates all the partition points based
on the current network conditions and adapts the training pipeline
accordingly. Device-cloud is not suitable for device-edge training
for two main reasons.
• Device-Cloud assumes a single powerful cloud server as the exter-
nal worker with fixed specs. The experimental results presented
in [87] suggest offloading as many model layers as possible to the
cloud for training. However, in an edge computing system, edge
servers are heterogeneous and their available resources vary over
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time [2, 21, 25]. It is not always the optimal solution to offload
the most model layers for training. In addition, as shown in Fig. 3,
device-edge communication latency factors into the performance
of the device-edge pipeline. To optimize the pipeline performance,
EdgeMove sees edge servers as black boxes, and evaluates their
end-to-end training performance, taking into account the com-
putation dimension and the communication dimension in both
training pipeline construction (§3) and adaptation (§4).
• Similar to its offline training pipeline construction, Device-Cloud’s
online training pipeline adaptation only considers the commu-
nication dimension, i.e., the changes in uplink and downlink
data rates. However, the dynamics in edge servers’ computation
resources must also be considered at runtime, especially when
the clients move (§2.1). In addition, Device-Cloud re-evaluates
network conditions and pipeline performance at every training
iteration. This incurs excessive (and often unaffordable) resource
consumption on edge devices, and more so in an edge computing
system where multiple edge servers may be available as the ex-
ternal worker. Taking both computation and communication into
account, EdgeMove monitors the current edge server’s end-to-
end training performance at runtime by training cycles (1 cycle
= 500 training iterations) (§3), probes nearby edge servers’ end-
to-end training performance when it is necessary, and adapts the
training pipeline when it is worthwhile (§4).
To enable device-edge training, EdgeMove consists of two phases,

i.e., training pipeline construction (§3) and adaptation (§4). It may
complement existingmodel training schemes. For example, PipeDream
and GPipe can be implemented on edge servers to accelerate the
training of model partitions offloaded from clients under EdgeMove.

3 OFFLINE PIPELINE CONSTRUCTION
Similar to pipelined cloud-only training [27, 55, 57, 64], pipelined
device-cloud training and device-edge training both require split-
ting the target ML model into two partitions, one for local training
and the other for external training. The key is to find the optimal
partitioning that maximizes the pipeline throughput (and mini-
mizes the training time). Existing pipeline schemes profile the target
model before model partitioning, assuming that external workers’
training performance is known and unchanged (§2.2). For example,
PipeDream [55] obtains the estimates of each model’s compute time
and output size based on the performance of the GPUs. Then, it
employs dynamic programming to find the optimal partitioning
progressively from the lowest model layer to the highest. Device-
Cloud [87] also profiles the target model layer by layer but on the
edge device and the cloud server. Then, it runs tests, layer by layer,
through the device-cloud pipeline to find the optimal partitioning.
These sophisticated profiling and partitioning techniques are un-
suitable for device-edge training because the system dynamics can
quickly invalidate the previously-optimal partitioning and under-
mine the pipeline performance (§2.1). An illustrative example can
be found in Appendix B. In addition, Device-Cloud uploads the
entire target model to the cloud server for profiling, which reveals
the model architecture and opens the door to cyber attacks (§1).

3.1 Model Profiling
EdgeMove also profiles the target model 𝑀 on the client and its
nearby edge servers. It sends a test model 𝑀𝑡 and a test dataset

𝐷𝑡 to each nearby edge server for training. When they complete
the training cycle (§4) and return the results, the client obtains the
estimates of their end-to-end training performance, measured by
the time taken to complete a training epoch plus the RTT (Round
Trip Time). The edge server with the best performance is selected
as the worker. In the meantime, other nearby edge servers register
the client’s training task. When they can improve their training
performance with a more powerful GPU or more pipelined GPUs,
they notify the client, which may activate a training pipeline adap-
tation (§4). This way, the client does not constantly have to probe
nearby edge servers’ available GPUs at runtime.

Unlike PipeDream or Device-Cloud, EdgeMove does not transmit
the entire model to external workers to probe their training perfor-
mance. Instead, it produces the testing models by obfuscating the
model parameters2. This protects the edge device from many cyber
attacks [7, 58, 59, 73] by preventing the reveal of the true model
architecture. The test dataset 𝐷𝑡 comprises randomly generated
samples to protect the user’s data privacy. For example, a dummy
image generator3 is used to generate dummy images for profiling
image classification models in our study.

3.2 Model Partitioning
As discussed in §3, system dynamics may quickly invalidate the
optimal model partitioning found offline. Thus, knowing the im-
practicality of the sophisticated model partitioning techniques em-
ployed by PipeDream and Device-Cloud in edge computing systems,
EdgeMove employs a lightweight partitioning technique to boot-
strap pipelined device-edge model training. Its main idea is to
commence model training rapidly with an approximate par-
titioning, followed by online adaptation (§4.2). Let 𝑡𝑑 denote
the time taken by the edge device to complete a training cycle in
model profiling, 𝑆 denote the set of nearby edge servers, and 𝑡𝑒,𝑛
denote the time taken by the 𝑛-th nearby edge server in 𝑆 . We
calculate their per-layer training time as follows:{

𝑡𝑑 =
𝑡𝑑
𝑅×𝐿

𝑡𝑒,𝑛 =
𝑡𝑒,𝑛
𝑅×𝐿 ,∀𝑠𝑛 ∈ 𝑆

(1)

where 𝑅 is the number of training iterations in a training circle (§4),
and 𝐿 is the number of layers in the target model𝑀 .

The objective of model partitioning under EdgeMove is to maxi-
mize the pipeline throughput, similar to existing pipeline schemes.
The key is throughput balance, i.e., for the edge device and the edge
server to sustain roughly the same throughput. Noting that the
edge device’s training performance is lower than the edge server,
EdgeMove partitioning objective is to ensure that the time taken
to process a minibatch (including forward and backward passes)
roughly equals to the time taken to complete the backward pass of
the previous minibatch plus the forward pass of the next minibatch.
Take Fig. 4 for example, which compares an example EdgeMove
pipeline with a PipeDream pipeline for device-edge training. There
should be 𝑡𝑢𝑙 (𝑏2) + 𝑡𝑓 𝑝 (𝑏2) + 𝑡𝑏𝑝 (𝑏2) + 𝑡𝑑𝑙 (𝑏2) = 𝑡𝑏𝑝 (𝑏1) + 𝑡𝑓 𝑝 (𝑏3),
where 𝑢𝑙 stands for uplink, 𝑑𝑙 stands for downlink, 𝑓 𝑝 stands for
forward pass, and 𝑏𝑝 stands for backward pass.

2Many off-the-shelf techniques can be employed. In our experiments, we employ
Neurobfuscator [39] available at https://github.com/zlijingtao/Neurobfuscator.
3https://github.com/FabianBeiner/PHP-Dummy-Image-Generator
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Figure 4: PipeDream vs. EdgeMove for device-edge training.
EdgeMove employs Algorithm 1 (in Appendix) to find an approx-

imate partitioning for model𝑀 . Based on the result,𝑀 can be split
into two model partitions,𝑀𝑑 for the client and𝑀𝑒 for the worker.
They are deployed accordingly to establish a device-edge training
pipeline. This concludes offline pipeline construction and training
commences.

4 ONLINE PIPELINE ADAPTATION
At runtime, EdgeMove monitors the pipeline performance and
adapts the training pipeline accordingly. It may adapt the training
pipeline in two ways: 1) adapting model partitioning across the
client and the worker; 2) adapting the entire training pipeline with
a new worker and potentially a new model partitioning.

4.1 Pipeline Monitoring
At runtime, system dynamics like changes in the network condi-
tions and worker’s workload conditions may undermine the per-
formance of the pipeline §2.2. To optimize the pipeline, the client
monitors the worker’s training performance by inspecting its end-
to-end training time, and adapts the training pipeline accordingly.
For example, if the worker is taking more time than before to train
its model partition, it may disrupt the throughput balance between
the client and the worker (§3) and undermine the pipeline per-
formance. To restore the throughput balance, one or more model
layers need to be transferred from the worker to the client.

The training epoch can conduct the inspection (i.e., after ev-
ery training epoch), similar to how many techniques adapt model
training [26, 34, 49, 82]. However, pipeline adaptation by the epoch
(i.e., the processing of all the minibatches) is unsuitable for device-
cloud training. It is an overly low granularity. Take VGG-16 [72]
for example. It takes an RTX3080Ti GPU 24 seconds to complete a
training epoch on the CIFAR-10 dataset [35] with a batch size of
32. In device-edge training, during such a long period, the system
dynamics may have already undermined the pipeline performance
immensely.

Device-Cloud [87] goes to another extreme by inspecting net-
work conditions by the training iteration (i.e., after processing each
minibatch). This granularity is too high for device-edge training.
Fig. 5 shows the per-iteration computation time (1 Iteration per
Circle) for training a VGG-16 model and a ResNet-50 model. We can
see significant and constant fluctuations across different training
iterations. There are various possible causes, e.g., the worker’s work-
load dynamics, the model’s inner nature, and sample characteristics.
These fluctuations easily activate excessive pipeline adaptations,
which require pipeline flushes, model re-partitioning, and model
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0 400 800 1200 1600 2000 2400
Iteration

80

100

120

140

160

Co
m
pu

ta
tio

n 
Ti
m
e 
(m

s)

1 Iteration per Cycle
5 Iterations per Cycle
50 Iterations per Cycle
500 Iterations per Cycle

(b) ResNet-50 on Speech Command
Figure 5: Per-circle rolling average computation time for model
training. When the circle size is 5 iterations, the rolling average
takes the last 5 iterations, adds them up, and divides the sum by 5. a)
VGG-16 is trained on a RTX3080Ti GPU with a batch size of 16. b)
ResNet-50 is training on the same GPU with a batch size of 16.
partition re-deployment. Frequent pipeline adaptations will cause
system oscillation and decelerate model training. In the meantime,
it may incur enormous computation overheads for the client.

EdgeMove inspects pipeline performance at runtime by the train-
ing cycle. A training cycle consists of an appropriate number of
training iterations, not too many or too few. To find the right num-
ber of training iterations, we set the cycle size at 5, 50, and 500 and
include the corresponding per-cycle rolling average computation
time in Fig. 5. When the circle size is 5 iterations, the rolling average
still fluctuates significantly and continuously (with a coefficient of
variation of 0.137). When it increases to 500 iterations, the rolling
average training time stabilizes for both models with a coefficient of
variation of only 0.029. Inspecting pipeline performance after every
500 iterations, EdgeMove can minimize the uncertainties caused
by computation time fluctuations in an edge server’s end-to-end
training performance and focus on the communication dimension,
i.e., network condition changes. In addition, an appropriate circle
size allows the client to inspect pipeline performance and adapt
the pipeline on time without excessive computation overheads. A
different ML model, a different training dataset, or a different batch
size may require a different circle size. It can be easily obtained
by profiling the target ML model offline. In our experiments, three
different circle sizes are used (§5).

4.2 Partitioning Adaptation
As discussed in §3.2, EdgeMove employs a lightweight technique
to find an approximate model partitioning for bootstrapping model
training. After training commences, EdgeMove starts monitoring
pipeline performance for pipeline adaptation (§4.1). One of Edge-
Move’s key online tasks is adapting the approximate model parti-
tioning to optimize pipeline performance. It employs a novel par-
tition adaptation technique to achieve this objective. The main
idea is to move the partition point by one layer (to a lower layer
or a higher layer) after each training circle based on pipeline per-
formance changes until the optimal partition point is found. It
continues cycle-by-circle over the entire session with the worker
until worker adaptation (§4.3). The pseudocode is presented in
Appendix 2

EdgeMove runs the algorithm when training commences. Let
𝑐1 denote the first training circle. At the end of 𝑐1, the algorithm
measures the end-to-end training time (i.e., the overall time for
the client and the worker to complete 𝑐1), and moves partition
point randomly by one layer, across either the previous layer or
the next layer (Line 2-3). Please note that if the partition point is
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after the first layer, it moves across the next layer. At the end of
𝑐2, the algorithm again measures the end-to-end training time and
compares it with the performance in 𝑐1 (Line 10-12). If it takes less
time in 𝑐2 than in 𝑐1, the movement of the partition point at the end
of 𝑐1 was correct. The algorithmwill move the partition point across
one layer in the same direction to approach to optimal partition
point (Line 7). Otherwise, it moves the partition point across one
layer in the opposite direction (Line 11). This continues until the
end-to-end training time stabilizes, which indicates that EdgeMove
found the optimal partition point for balancing the client and the
worker’s throughput (§3.2). Please note that the partition point may
move back and forth around the optimal partition point. To avoid
such movements, the algorithm will move the partition point only
when the expected performance difference is more significant than
those caused by previous movements in the same direction.

4.3 Worker Adaptation
By balancing the client and the worker’s throughput, partitioning
adaptation can cope with mild variations in pipeline performance.
However, when the pipeline performance decreases drastically, par-
titioning adaptation may struggle to ensure pipeline performance.
The client and the worker can both contribute to a drastic pipeline
performance decrease. For example, when the client switches to an
energy-saving mode, e.g., Android’s "Battery Saver" mode [18], its
computation power declines. The decline could be so significant
that even offloading most model layers to the worker through par-
titioning adaptation (§4.2) cannot restore pipeline performance to
a satisfactory level. Similarly, when the worker’s end-to-end per-
formance degrades drastically due to unexpected runtime events
like network condition deterioration, workload bursts, cyber at-
tacks and client movement, training the fewest model layers on
the worker may not be able to ensure the pipeline performance
either. It also violates the objective of device-edge training, i.e.,
to leverage edge servers’ computation power. EdgeMove tackles
these challenges with an adaptive worker adaptation technique that
finds a new worker to replace the previous one. The pseudocode is
presented in Appendix 3

Worker adaptation requires probing nearby edge servers’ end-to-
end training performance online with model profiling (§3.1). The
client can monitor pipeline performance constantly (§4.1) because
it consumes little computation resources. However, it is impracti-
cal for the client to probe nearby edge servers constantly. Under
EdgeMove, the client records the worker’s worst end-to-end train-
ing performance at the end of every training circle (§4.2), denoted
by 𝑡𝑤𝑠𝑡 . At the end of each training cycle, the client inspects the
worker’s performance against 𝑡𝑤𝑠𝑡 to determine whether it is neces-
sary to probe nearby edge servers’ training performance. When the
worker’s training performance is worse than 𝑡𝑤𝑠𝑡 , the client probes
nearby edge servers’ training performance (including the worker’s)
in the same way as offline model profiling (§3.2). In the meantime,
model training proceeds to the next circle, asynchronously, with
the online probing process.

When the probing results come back from the nearby edge
servers, the client compares their training performance with the
worker’s performance obtained at the end of the current training
circle. If the worker is outperformed, the client selects the edge
server with the best training performance as the new worker. Then,

it partitions the ML model and builds a new training pipeline with
the technique presented in §3.2. If the worker is not outperformed
by any other nearby edge server, the client may retain the current
training pipeline, wait for the next opportunity, or simply terminate
the training process.

When profiling a model, the client registers its training task with
probed edge servers (§3.1). If an edge server’s training performance
improves at runtime, it can notify the client. This may also activate a
worker adaptation, which compares the edge server’s performance
against the worker’s.
Remark.Worker adaptation incursmigration overheads. The client
needs to terminate the training pipeline and build a new one. These
take time. However, in the long term, these once-off overheads are
worthwhile compared with the performance gains from training
with a more powerful new worker. In addition, a pub-sub system is
needed to allow the client to register its training task with probed
edge servers. Such a system can be built easily based on pub/sub
services offered by Google [19], Microsoft [53], Amazon [52], etc.
It barely consumes edge servers’ resources and can benefit other
applications running in the edge computing system. Without this
pub-sub system, the client has to wait until it probes a nearby edge
server to discover its improved training performance. This slightly
reduces EdgeMove’s responsiveness to system dynamics but does
not fundamentally undermine its usefulness.

5 EVALUATION
5.1 Experiment Setup
System Setup. An edge computing system is built with 125 vir-
tual machines deployed in a private data center as edge servers
with a coverage radius of [300, 500] meters, each with a 4-core
vCPU, 8-16GB RAM, and a 2080Ti GPU or a 3080Ti GPU. These
virtual machines are each assigned a location extracted from the
widely-used EUA dataset4 [36] to simulate the Melbourne CBD area
powered by edge computing. An Amazon p3.2xlarge EC2 instance
with 8 vCPUs, 61GB RAM and a V100 GPU is hired as the cloud
server to enable Device-Cloud [87]. A Google Pixel 6a connects
to the system via a Wi-Fi 6 router as the client. We ran tests on
the system and measured the network conditions. The network
latency between the client and the cloud server is [100, 170] mil-
liseconds. The network latency between the client and the edge
servers is [5-40] milliseconds, similar to the 5G network latency
in the U.S. reported by Ericsson in August 2022 [48]. At runtime,
an edge server may be able to improve its training performance at
runtime with a more powerful GPU or more pipelined GPUs (§3.1).
From the client’s perspective, it is no different from discovering a
new edge server nearby. Thus, in the experiments, edge servers’
GPU resource dynamics are not implemented.
Client Movement. In the experiments, the client moves along one
of the ten randomly-created trajectories across the Melbourne CBD.
These trajectories include different numbers of turns at different
locations. Two example trajectories are illustrated in Appendix C.
When the client moves, its nearby edge servers are identified based
on the distance between them - those that cover the client are
considered its nearby edge servers.

4https://github.com/swinedge/eua-dataset
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Models and Datasets. VGG-16 [72] is trained on the CIFAR-10
dataset [16] for image recognition, and on the AG News dataset [91]
for text classification. ResNet-50 [23] is trained on the Speech Com-
mands dataset [81] for speech recognition, and on the CINIC-10
dataset [12] for image recognition. More details about the models
and the datasets can be found in Appendix D.

Baseline. EdgeMove is evaluated against three representative train-
ing schemes, including a baseline and two state-of-the-art schemes.
• On-Device [87]. Under this baseline scheme, ML models are
trained only on the client’s edge device.
• Device-Cloud. [87]This is the state-of-the-art scheme for device-
cloud training. In the experiments, it builds training pipelines
across clients and the cloud server. First, it profiles the target
model layer by layer, similar to PipeDream, and finds the optimal
model partitioning for device-cloud training, considering both
computation and communication conditions. At runtime, it moni-
tors the network conditions and adapts model partitioning based
on uplink and downlink data rates without worker adaptation. A
detailed discussion about this scheme can be found in §2.3.
• PipeDream-E [55]. PipeDream is the state-of-the-art scheme
for pipelining ML model training across GPUs in a cluster. Sev-
eral schemes have adapted PipeDream to various ML training
scenarios [56, 57, 86]. These schemes are not implemented in
the experiments because they share the same core idea with
PipeDream. PipeDream-E adapts PipeDream to device-edge train-
ing by building training pipelines across clients and edge servers.
The experiments randomly select one of the client’s nearby edge
servers as the worker offline (and online when the client leaves
the worker’s coverage area). Then, it profiles the model layer by
layer and finds the optimal model partitioning across the client
and the worker without considering device-edge network condi-
tions. After that, it builds a training pipeline across the client and
the worker without partitioning adaptation or worker adaptation.
More details about PipeDream can be found in §2.1.

PerformanceMetrics.Acceleration is themain objective of pipeline
training [27, 55, 87]. In the experiments, we evaluate EdgeMove’s
training time-to-accuracy, i.e., the time taken to train a model to
the target accuracy, same as [27, 55, 87].

5.2 Experimental Results
Overall Performance. Table 1 summarizes the average time taken
for the clients to train a model to the target accuracy under different
schemes, as well as their speedups over On-Device. The following
key findings can be derived from the table.
• On-Device takes the most time to train a model in all the cases.
This is not surprising because it does not leverage powerful
workers or pipeline parallelism to accelerate model training.
• Powered by pipeline parallelism and external workers, PipeDream-
E and Device-Cloud both reduce the training time considerably,
evidenced by their significant speedups over On-Device. This
confirms the effects of pipelining model training across the client
and a powerful external worker.
• PipeDream-E and EdgeMove both outperform Device-Cloud evi-
dently. Their advantages come from the much lower device-edge

Table 1: Training time-to-accuracy (seconds) and speedups over On-
Device. The highest performance in each column is underlined.

Model & Dataset Scheme Training Time Speed Up

VGG-16
CIFAR-10

Target Accuracy: 82.8%

On-Device 3,053 1.00×
Device-Cloud 2,601 1.17×
PipeDream-E 1,937 1.58×
EdgeMove 1,283 2.38×

ResNet-50
CINIC-10

Target Accuracy: 85.0%

On-Device 6,188 1.00×
Device-Cloud 4,027 1.54×
PipeDream-E 3,263 1.90×
EdgeMove 2,626 2.36×

VGG-16
AG News

Target Accuracy: 90.0%

On-Device 4,645 1.00×
Device-Cloud 3,967 1.17×
PipeDream-E 3,490 1.33×
EdgeMove 2,002 2.32×

Resnet-50
Speech Commands

Target Accuracy: 72.8%

On-Device 9,331 1.00×
Device-Cloud 6,052 1.54×
PipeDream-E 5,118 1.82×
EdgeMove 3,988 2.33×
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Figure 6: Model convergence.

communication latency compared with device-cloud communi-
cation latency (§1). This indicates the fundamental advantage of
device-edge training over device-cloud training.
• EdgeMove outperforms PipeDream-E remarkably. The main rea-
son is that it factors into three elements that are neglected by
PipeDream-E: 1) edge servers’ heterogeneous GPU resources; 2)
network conditions between the client and different edge servers;
and 3) runtime system dynamics in both computation and com-
munication. This tells us that EdgeMove can properly tackle the
challenges discussed in §2.

Model Convergence. Fig. 6 illustrates clients’ model convergence
under different training schemes. Despite themodels and the datasets,
we can see that EdgeMove is always the first to complete the train-
ing process, with much time to spare compared with its competitors.
Looking closely at the early stage of the training process, we can
see that EdgeMove’s model accuracy increase is relatively slow,
even slower than PipeDream-E. About 50-75 seconds in, the in-
crease rate starts to pick up. This is EdgeMove’s "warm-up" phase,
where partitioning adaptation (§3.2) kicks in to find the optimal
partitioning. After the warm-up phase, EdgeMove’s model accuracy
increase remains well above every other training scheme, making
it always the first to converge the model.
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(d) Speech Commands
Figure 7: Per-circle training time in the first 200 training circles.

Per-circle Training Time. Compared with PipeDream-E and
Device-Cloud, one of EdgeMove’s unique features is its consid-
eration of edge servers’ end-to-end training performance, treating
them as black boxes (§2). It is the basis for the model profiling (§3.1)
and pipeline monitoring (§4.1) mechanisms designed for EdgeMove.
To validate the usefulness of this feature, Fig. 7 demonstrates the
clients’ average per-circle training time in the first 200 training
circles. As expected, we can observe that EdgeMove’s per-circle
training time is much lower than its competitors. In the beginning,
it takes more time to complete a training circle than PipeDream-
E. This confirms that the approximate model partitioning (§3.2)
EdgeMove obtains offline to bootstrap model training is indeed not
optimal. Luckily, through partitioning adaptation (§4.2), EdgeMove
manages to find the optimal model partitioning across the client
and the worker rapidly. This is evidenced by the quick decrease
in its per-circle training time after model training commences. In
Fig. 7, we can observe peaks in EdgeMove’s per-circle training time,
as well as other training schemes, some larger than others. We
investigated and found that most of the small ones were caused by
partitioning adaptation (§4.2), while most of the large ones were
caused by worker adaptation (§4.3). We can also observe peaks in
PipeDream-E’s per-circle training time, which appear when the
client is no longer within the worker’s coverage and has to find a
new worker. EdgeMove’s peaks are much smaller than PipeDream-
E’s on average. This indicates the ability of EdgeMove to adapt
partitioning or worker timely in response to system dynamics.

Adaptation to Client Speed. The clients in an edge computing
system may move at different speeds. For example, they may travel
in different ways, on foot, by bicycle or car. System dynamics are
usually more significant when a client is travelling at a higher speed.
To evaluate EdgeMove’s ability to adapt to client speed, we conduct
an experiment where clients move along the same trajectories at
twice the speed in the previous experiments. Fig. 8 compares the
training time-to-accuracy in these two cases. We can see that when
the clients move faster, On-Device and Device-Cloud take almost
the same time to train their models. They do not have to adapt
to client speed because it does not impact on-device training or
device-cloud training. PipeDream-E’s performance is much worse,
taking an average of 44.2% more time to train clients’ models across
the entire experiment. EdgeMove wins this contest easily against
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Figure 8: Training time-to-accuracy when different client speeds.
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Figure 9: Adaptation overheads.

PipeDream-E. We can barely observe any increases in its training
timewhen clients speed up. This shows that EdgeMove can properly
accommodate user mobility, which is a grand challenge in a lot of
studies on edge computing [8, 50, 62, 77–79].
Adaptation Overheads. Partitioning adaptation (§4.2) and worker
adaptation (§4.3) incur overheads, measured by the time taken to
upload newmodel layers to the worker and the time taken to upload
model partitions to new workers. Fig. 9a shows the average num-
ber of partitioning adaptations EdgeMove needs to train a model
and compares the number of worker adaptations it needs against
PipeDream-E. PipeDream-E replaces the worker with a new worker
reactively only when it leaves the worker’s coverage area (§5.1).
To respond to system dynamics timely, EdgeMove replaces the
worker proactively based on its end-to-end training performance
against other nearby edge servers’ (§4). Thus, it evidently needs
more worker adaptations than PipeDream-E. Fig. 9c compares Edge-
Move’s adaptation time (i.e., time for adaptation) and training time
(overall training time minus adaptation time) against PipeDream-
E’s. We can see that EdgeMove spends more time adapting than
PipeDream. However, its overall training time is much less than
PipeDream-E. This indicates that its proactive adaptations pay off
with significant speedup gains.

6 CONCLUSION AND FUTUREWORK
This paper presented EdgeMove, a novel scheme that pipelines
device-edge machine learning (ML) model training. To tackle the
challenges raised by the edge computing system dynamics, it boot-
straps model training with an approximate training pipeline con-
structed based on edge servers’ end-to-end training performance.
At runtime, it monitors pipeline performance and adapts the train-
ing pipeline accordingly. Compared with state-of-the-art schemes,
EdgeMove completes model training up to 2.4× faster across a range
of ML tasks.
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A PSEUDOCODE

Algorithm 1:Model Partitioning
Input: 𝑡𝑑 : client’s probed training time; 𝑡𝑒 : worker’s probed

training time; 𝑅: size of training circle; 𝐿: number of
layers in the test model; 𝑙∑: number of layers in the
target model; 𝑡𝑢𝑙 : uplink transmission time; 𝑡𝑑𝑙 :
downlink transmission time

Output: 𝑙𝑑 : number of layers for client
1 FunctionModel Partitioning(𝑡𝑑 , 𝑡𝑒 , 𝑅, 𝐿, 𝑙∑, 𝑅𝑇𝑇)
2 𝑡𝑑 ←− 𝑡𝑑

𝑅×𝐿 ; /* evaluate client’s training performance */

3 𝑡𝑒 ←− 𝑡𝑒
𝑅×𝐿 ; /* evaluate worker’s training performance */

4 𝑙𝑑 ←− (𝑙∑ ∗ 𝑡𝑒 + 𝑅𝑇𝑇 )/(𝑡𝑑 + 𝑡𝑒 ) /* find approximate

partition point */

5 𝑙𝑑 ←− round (𝑙𝑑 )
6 return 𝑙𝑑

Algorithm 2: Partitioning Adaptation
Input: 𝐹 : training pipeline; 𝑙𝑑 : number of layers for client
Output: 𝑙𝑖 : partitioning adaptation result

1 Function Partition Adaptation(𝐹 , 𝑙𝑑)
/* initialize */

2 ∀𝑑 ∈ {+1,−1} /* set random direction */

3 𝑖 ←− 1, 𝑙𝑖 ←− 𝑙𝑑
4 𝐹 (𝑙𝑖 ) /* build pipeline */

5 obtain 𝑡𝑖 from 𝐹 (𝑙𝑖 ) /* obtain training time in 𝑐𝑖 */

/* adapting */

6 while 𝑙𝑖 not stable do
7 𝑙𝑖 ←− 𝑙𝑖−1 + 𝑑 /* move partition point */

8 𝐹 (𝑙𝑖 ) with 𝑙𝑖 /* adapt pipeline */

9 obtain 𝑡𝑖 from 𝐹 (𝑙𝑖 ) /* obtain training time in 𝑐𝑖 */

10 if 𝑡𝑖 > 𝑡𝑖−1 then
11 𝑑 ←− −𝑑 /* reverse adaptation direction */

12 end
13 end

B OPTIMAL PARTITIONING POINT
Fig. 10 shows the optimal partition points for training a VGG-16
across a device-edge pipeline under four different network condi-
tions. We can see that the optimal partition point varies drastically
with the network condition.

Algorithm 3:Worker Adaptation
Input: 𝐹 : training pipeline;𝑀𝑡 : test model;𝑊 : nearby edge

servers
Output:𝑤 : worker adaptation result

1 FunctionWorker Adaptation(𝐹 ,𝑀𝑡 ,𝑊 )
/* initialize */

2 probe(𝑊,𝑀𝑡 ) /* probe nearby edge servers */

3 𝑤 ←− 𝑎𝑟𝑔𝑚𝑖𝑛(receive(𝑊 )) /* find best edge server */

4 obtain 𝑙𝑑 with Algorithm 2 for𝑤
5 𝑡𝑤𝑠𝑡 ←− 𝐹 (𝑙𝑑 )

/* monitor training performance by cycle */

6 For each training cycle
7 𝑡𝑐𝑢𝑟 ←− 𝐹 (𝑙𝑑 ) /* obtain training time */

8 if 𝑡𝑐𝑢𝑟 > 𝑡𝑤𝑠𝑡 then
9 probe(𝑀𝑡 ) /* probe nearby edge servers */

10 𝑤 ′ ←− 𝑎𝑟𝑔𝑚𝑖𝑛(recv(𝑊 )) /* find best worker */

11 if 𝑤 == 𝑤 ′ then
12 𝑡𝑤𝑠𝑡 ←− 𝑡𝑐𝑢𝑟 /* update worst training time */

13 else
14 𝑤 ←− 𝑤 ′ /* change worker */

15 obtain 𝑙𝑑 with Algorithm 2 for𝑤
16 𝑡𝑤𝑠𝑡 ←− 𝐹 (𝑤, 𝑙𝑑 )
17 end
18 end
19 end
20 return𝑤 ;
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Figure 10: Overall training time for VGG-16 across a device-edge
pipeline with different partition points under different network con-
ditions. In this figure, a bar represents the overall training time with
the corresponding partition point. The star indicates the optimal
partition point that results in the least overall training time.
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C EXAMPLE CLIENT TRAJECTORIES

Figure 11: Example client trajectories across Melbourne CBD with
125 edge servers.

D MODELS AND DATASETS
Table 2 summarizes the characteristics of the models and datasets
used in the experiments.
Models. VGG-16 [72] and ResNet-50 [23] are conducted on four
datasets in the experiments to perform three different ML tasks.
• ImageClassification.VGG-16 is trained on the CIFAR-10 dataset
and ResNet-50 is trained on the CINIC-10 dataset to classify im-
ages into 10 classes. The size of the training circles is 500 itera-
tions.
• Text Classification. VGG-16 is trained on the AG News dataset
to classify articles into 4 classes. The size of the training circles
is 1,000.

• Audio Recognition. ResNet-50 is trained on the Speech Com-
mands dataset to classify audio records into 12 classes. The size
of the training cycles is 200 iterations.

Table 2: Datasets and Models

Dataset Task Model Cycle Size Classes

CIFAR-10 Image Classification VGG-16 500 10
CINIC-10 Image Classification ResNet-50 500 10
AG News Text Classification VGG-16 1000 4

Speech Command Audio Recognition ResNet-50 200 12

Datasets. Four datasets are used in the experiments.
• CIFAR-10 [16] is the baseline dataset for tiny image classifica-
tion. It contains 50,000 training image samples and 10,000 test
image samples, all sized 32×32. They are equally divided into ten
mutually exclusive classes: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck.
• CINIC-10 [12] is an augmented dataset for image classification.
It is constructed from two popular sources: ImageNet and CIFAR-
10. The images are resized to 32×32 and the dataset contains
90,000 images in each its three subsets, including the training
subset, the validation subset, and the test subset. It is 4.5 times
larger than CIFAR-10.
• AG News [91] is a dataset built from AG’s corpus of news articles.
It contains 30,000 training articles and 1,900 test articles from
the 4 largest classes of AG’s Corpus, including “World”, “Sports”,
“Business”, and “Sci/Tech”.
• Speech Command [81] is an audio dataset of spoken words to
help train and evaluate audio recognition systems. It includes
64,727 audio files classified into 12 different classes.
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