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Abstract—Contactless respiration monitoring using wireless signals has drawn much attention in recent years. Many approaches 

have been proposed, however, they may not work when there is a lack of signals directly reflected from target’s chest, e.g., a 

target faces away from the transceiver or a target is blocked by furniture. In this paper, we design and implement a novel 

omnimonitoring system for human respiration, OmniRespMonitor, using a pair of speaker and microphone. Different from Radio 

Frequency (RF) signal, acoustic signals cannot penetrate through walls and furniture. The multipath reflection in an indoor 

environment will result in highly abundant acoustic signals. In this case, even though there are lack of acoustic signals directly 

reflected by a target’s chest, indirectly-reflected acoustic signals can still be received by the microphone. We can therefore monitor 

the target’s respiration by extracting this subtle variation of indirectly reflected signals. To achieve this, we model chest movement 

using truncated System Frequency Response (SFR). We then develop a global search method based on the autocorrelation 

function to extract minute chest movement from SFR sequences. Finally, we dynamically synthesize the chest movement 

information to recover the breathing wave in real time. We conduct extensive experiments with both humans and animals (goat), 

the results show that OmniResMonitor is able to monitor single target’s respiration within 5 meters in indoor environments in 

various challenging scenarios there are lack of directly-reflected acoustic signals. 

Index Terms—Acoustic Sensing, Contactless Respiration Monitoring, System Frequency Response  

1 INTRODUCTION

ISPIRATION is one of the basic vital signs of human 
being. Chronic respiratory diseases (CRDs) such as 

Apnea and chronic obstructive pulmonary disease (COPD) 
are quite common among the elders [6]. COPD is the fourth 
leading cause of death worldwide, which affects about 300 
million people worldwide and more than 3 million people 
die from COPD every year [6,7]. Continuous respiration 
monitoring in home settings is crucial to trigger early 
warnings and prevent death. 

The respiration monitoring devices in clinic settings 
such as thoracic impedance pneumography [8], capnogra-
phy [9] or pulse oximeter [10] can accurately monitor hu-
man respiration. However, these devices are usually intru-
sive and inconvenient to use in a home setting. In addition, 
they require well-trained professionals to set up and assist 
users to wear and operate properly. Commercial wearable 

devices have been largely deployed to monitor human res-
piration [11, 12]. However, wearable devices are generally 
intrusive and they may have a low level of user acceptance 
and poor usability.  

Researchers has recently turned their attention to con-
tactless sensing, i.e., non-intrusive respiration monitoring, 
including laser [13, 14], microwave [18], RFID [4, 19-21], 
Doppler radar [24, 25], FMCW radar [1, 55], UWB radar [26, 
27, 54], customized RF devices [28, 29], commodity camera 
[15-17], Zigbee [22, 23], WiFi [2, 5, 30, 31, 33-41] and audio 
devices [3,43-47]. Although these research studies show 
great promise in monitoring human respiration using a va-
riety of wireless signals, they usually require that a re-
ceiver is able to receive the signals directly reflected from 
a target’s chest. This is often not the case in real-world sce-
narios, e.g., a target is located outside the transmission area 
of a transceiver, a target faces away from transceiver, or is 
blocked by the furniture. A recent study done by Liu et al 
[42] attempts to tackle this problem using smartphone and 
a WiFi router. Their system is able to work in non-line-of-
Sight (NLoS) scenarios, however it requires that the 
smartphone is close to the subject, i.e., tens of centimeters. 
In addition, the system only works offline, not in real time. 
Liu et al [32] also propose to monitor respiration at differ-
ent sleeping postures leveraging WiFi’s Channel Fre-
quency Response (CFR), however their system requires 
three pairs of transceivers around the subject to cover dif-
ferent postures. 

In this paper, we design and implement an acoustic-
based omnimonitoring system, OmniResMonitor, using a 
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pair of speaker and microphone. The system is able to ac-
curately monitor target’s respiration even when there is a 
lack of directly-reflected signals from target’s chest. Differ-
ent from RF signals, acoustic signals cannot penetrate 
through walls and furniture. The transmitted signal is 
mainly reflected by the ambient environment. Due to 
abundant multipath reflection, regardless of the trans-
ceiver’s location and orientation, the microphone can al-
ways receive the signal indirectly reflected by human chest. 
Our intuition is to exploit acoustic multipath reflection, es-
pecially the signal indirectly reflected from target’s chest 
to address location and orientation sensitive issue. To 
achieve this, we first capture the minute-level variation of 
multipath reflection signals caused by chest movement. 
We then recover the breath wave by dynamically synthe-
sizing the variation. However, this is not a trivial task due 
to several challenges. 

(1) In the case that a target faces away from the trans-
ceiver or is blocked by furniture, since there is no signal 
directly reflected from the targets’ chest. We can use indi-
rectly reflected signals (via walls, ceilings and furniture).  
However, due to multipath reflections and a longer prop-
agation distance, the power of indirectly reflected signal 
can be very weak. What’s worse, the inherent variation of 
transmitted signal caused by the nonlinearity of electronic 
components and inevitable ambient noise will also result 
in variation of indirectly reflected signal. Hence, it is chal-
lenging to extract chest movement from weak and inter-
fered indirectly reflected signals.  

(2) Due to different reflection paths and different reflec-
tion points on the chest, each indirectly reflected multipath 
signal varies with different amplitudes and phases. How 
we synthesize the variation of these indirectly reflected 
multipath signals to recover breath wave is challenging. 

To address the aforementioned challenges, we firstly 
model chest movement using truncated system frequency 
response (SFR), which is defined as the ratio of transmit-
ting signal and receiving signal at different frequencies. It 
is able to not only accurately quantify the amplitude of all 
multipath signals (including direct and indirect signals re-
flected by the chest) with different frequencies but also 
shield the interference caused by noise and the inherent 
variation of transmitted signals. We then propose a global 
searching method based on autocorrelation to extract mi-
nute-level chest movement information from the variation 
over time of the points in SFR. Finally, we design a novel 
algorithm to recover breath wave by synthesizing chest 
movement in real time. The main contributions of this pa-
per can be summarized as follows. 

(1) We design and implement an omnimonitoring sys-
tem for human respiration, OmniResMonitor, using only a 
pair of speaker and microphone. We propose truncated 
SFR to model minute-level chest movement and globally 
search all the multipath signals indirectly reflected from 
target’s chest from the truncated SFR sequence leveraging 
autocorrelation. In this way, OmniResMonitor can accu-
rately monitor human respiration in indoor environments 
when there are no signals directly reflected from the tar-
get’s chest.  

(2) We conduct extensive experiments to evaluate Om-
niResMonitor in various indoor scenarios including three 
challenge scenarios: 1) the transceiver faces the target’s 
back, 2) the target and the transceiver face away from each 
other, 3) the target is blocked by obstacles. We also evalu-
ate OmniResMonitor with animal, i.e., 4 goats of different 
ages and sizes. Experimental results show that Om-
niResMonitor accurately monitors subject’s respiration 5 
meters away from the transceiver in the scenarios that 
there are no signals directly reflected from the target’s 
chest. 

2 RELATED WORK 

In this section, we discuss the work related to contactless 
respiration monitoring. According to type of signals used, 
existing work can be grouped into three categories: RF de-
vice-based, commercial WiFi-based, and acoustic device-
based. 

2.1. RF Device-based  

RF device-based technologies ranging from microwave 
[18], RFID [4,19-21], Zigbee [22,23], Doppler radar [24,25], 
FMCW radar [1], UWB radar [26,27,54], customized RF de-
vices [28,29] have been proposed to detect human respira-
tion. The work [55] can even eliminate the impact of body 
movement. The basic idea is to directly measure chest 
movement displacement during respiration with RF sig-
nals. Although these methods achieve accurate respiration 
detection in some specific scenarios, they typically rely on 
signals directly reflected from target’s chest. They gener-
ally do not work well in the scenarios where there is no 
signal directly reflected from target’s chest. 

2.2. Commercial WiFi-based 

In WiFi sensing, received signal strength (RSS) has been 
exploited for monitoring respiration. Abdelnasser et al. [30] 
first attempt to monitor human respiration leveraging the 
amplitude change of RSS. Similar work includes Wi-
Breathe [31] and Breathfinding [48]. However, due to low 
distance resolution, RSS-based approaches cannot effec-
tively detect minute-level chest movement and they are 
vulnerable to ambient noise. Compared with RSS, CSI has 
a higher distance resolution and it is more sensitive to chest 
displacement. PhaseBeat [50], TensorBeat [51] and studies 
in [33-35] successfully track respiration using CSI. These 
approaches are able to detect respiration in specific set-
tings, but their studies are mostly based on experiments, 
and they do not quantify the relationship between CSI var-
iation and chest movement displacement. Zhang, et al. 
[36,49] first introduce the Fresnel Zone model to monitor 
respiration. They demonstrate the quantitative relation-
ship between CSI variation and chest movement displace-
ment. The same model has been applied in [2,5,37-40] to 
further improve the performance of respiration monitor-
ing from a range of aspects. To monitor respiration for 
multiple subjects simultaneously, Zeng, et al. [41] use in-
dependent component analysis (ICA) to separate the repa-
ration information for each subject. However, these works 
rely on signals directly reflected from subject’s chest. This 
may not be the case in reality, e.g., a subject faces away 
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from the transceiver, an obstacle blocks reflected signals. 
WiPhone [42] is a smartphone based respiration monitor-
ing system that works in a non-line-of-Sight (NLoS) sce-
nario leveraging WiFi multipath reflection. However, the 
smartphone need to be placed close to the subject (i.e., less 
than a meter) to ensure strong reflected signals. In addition, 
the system works offline, not sure if it works in real time. 
WiSleep [32] is the first system that tracks respiration while 
a subject is sleeping with  different postures using multi-
path reflected WiFi signals. The system has demonstrated 
that the effectiveness of frequency response in extracting 
multipath reflection signals in indoor environments to re-
duce blind spots. However, the system requires three pairs 
of Tx and Rx around the target to cover different postures. 

2.3. Acoustic Device-based 

Acoustic-based approaches have recently attracted re-
search attention. Acoustic signal can be easily found in 
daily life. Arlotto et al., [46] monitor respiration by sensing 
exhaled airflow during respiration. Wang et al., [3] imple-
ment a similar idea using a commodity audio device and 
improve the performance by modeling the angle variation 
between the direction of exhaled airflow and the direction 
of acoustic beam. These two approaches require that the 
acoustic beam directly covers the area around a subject’s 
mouth and nose. Except for sensing exhaled airflow, Nan-
dakumar et al., [43] transform a smartphone into an 
FMCW sonar to measure chest movement displacement 
during respiration. However, its ranging accuracy is lim-
ited by the narrow frequency band of smartphones. To im-
prove accuracy, Min et al., [44] use 240 kHz ultrasonic 
pulse to measure chest movement. Even though it achieves 
a high ranging accuracy, the approach requires expensive 
ultrasonic transceivers. To obtain high ranging accuracy 
using commodity audio devices, Wang et al., [45] propose 
C-FMCW, which accurately estimates chest movement 
during respiration using commodity speaker and micro-
phone. To expand the measurable angle, Wang et al., [47] 
exploit beamforming based on a microphone array to cap-
ture the respiration of infant. The system can capture an 
infant’s respiration within 90°. Xu et al., [52] propose a fine-
grained breathing monitoring system BreathListener, 
which is able to recover the breath wave and shield the in-
fluence of body sway in driving environments. Wan 
RespTracker [53] is the first multi-target acoustic respira-
tion monitoring system. It can simultaneously monitor 
multiple targets’ respiration. However, all the above 
acoustic respiration monitoring systems rely on the sig-
nals directly reflected from target’s chest. They fail when 
a target faces away from the transceiver or is blocked by 
an obstacle between device and subject. 

OmniResMonitor fully leverages abundant acoustic mul-
tipath reflection to monitor a single target’s respiration fo-
cusing on the challenge scenarios where there are no sig-
nals directly reflected from target’s chest. 

3 SYSTEM DESIGN 

3.1 Design Motivation and System Framework 

We consider a scenario where there are two people in a 

room and they face away from each other or both are 
blocked by indoor furniture. In these scenarios, one can 
still hear what the other says since the voice signals may be 
reflected from the static environment and propagate 
through multipath. We may extract usefully information 
from indirectly-reflected acoustic signals. A target’s chest 
movement during respiration will periodically change the 
amplitude and propagation path of multipath signals 
which can be viewed as system parameters. Thus, if we can 
estimate the system parameters to quantify variation of 
multipath signal in real time, we can then extract target’s 
respiration.  

Based on the above basic idea, we deign our system as 
shown in Fig. 1. Firstly, we use speaker to transmit a sinus-
oidal frequency modulated signal. The reflected acoustic 
signal from the environment and the target’s chest are re-
ceived by the microphone. Based on the transmitted and 
echo frame, we estimate system parameters–truncated SFR, 
which describes the amplitude of all multipath signals in-
cluding direct and indirect reflected signals with different 
frequencies. Thus, the SFRs over time is able to depict the 
variation of all multipath signals. The chest movement 
during breathing is usually periodical, hence the reflection 
paths directly and indirectly affected by the subject’ chest 
movement vary periodically over time, but the paths re-
flected from the ambient environment show no periodicity. 
Based on the above idea, we separate the multipath signals 
corresponding to the subject’ chest movement by selecting 
all the periodical SFR sequences (defined in Sec. 3.2.2). Fi-
nally, we normalize and synchronize these periodical SRF 
sequences to recover the breath wave in real time.  

 
Fig. 1. Framework of OmniResMonitor 

3.2 Chest Movement Extraction 

3.2.1 Transmitted Signal Design 

To estimate SFR, the transmitted signal should be designed 
with a wide frequency band. Though FMCW signals show 
an advantage in distance resolution due to linear relation-
ship between frequency difference and distance, it may 
still introduce audible noise due to its discontinuous phase 
variation over time. To avoid the noise embedded in trans-
mitting signals, we design the transmitting signal as a si-
nusoidal frequency modulated signal whose phase varia-
tion over time is smooth and continuous. The frequency of 
the transmitted signal at time 𝑡 is given by: 

𝑓(𝑡) = 𝑓𝑐 +
𝐵

2
(1 + 𝑠𝑖𝑛(2𝜋𝑡 𝑇⁄ ))  , 0 ≤ 𝑡 ≤ 𝑇          (1) 

where 𝑓𝑐 , 𝐵  and 𝑇  denote carrier frequency, modulation 
bandwidth, and modulation period, respectively. In order 
to avoid audible noise, 𝑓𝑐  should be higher than 18KHz. 
The phase is the integral of 𝑓(𝑡) over time,  
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𝑢(𝑡) = 2𝜋 ∫ 𝑓(𝑡′)𝑑𝑡′
𝑡

0

= 2𝜋 (𝑓𝑐𝑡 +
𝐵𝑡

2
−

𝐵𝑇

4𝜋
𝑐𝑜𝑠(2𝜋𝑡 𝑇⁄ )) (2) 

Then, the transmitted signal can be presented as 𝑥𝑡(𝑡) =
𝑐𝑜𝑠(𝑢(𝑡)).  

In order to estimate 𝐻(𝑘), we have to obtain one full 
echo of a transmitted signal. However, during respiration 
monitoring, we have to transmit 𝑥𝑡(𝑡) continuously. The 
problem of multipath delay may rise, and one echo will be 
overlapped by neighboring echoes. In other words, the 
echo we received is an overlapped version of several 
neighboring echoes. It will lead to wrong SFR estimation. 
To tackle this problem, the transmitted signal is modified 
as a pulse with a duty cycle.  

𝑥𝑡(𝑡) = {
cos(𝑢(𝑡))ℎ(𝑡) ,   0 ≤ 𝑡 ≤ 𝑇

0,                            𝑇 < 𝑡 ≤ 𝑇′
                (3) 

where ℎ(𝑡) is a Hanning window, which is applied to mit-
igate spectrum leakage caused by sudden amplitude 
changes.  𝑇′ is the period of the modified transmitted sig-
nal, 𝑇′ > 𝑇. To avoid echo overlap, 𝑇′ − 𝑇 should be larger 
than multipath delay. Generally, a larger room has a larger 
multipath delay and requires a larger 𝑇′ − 𝑇.  The discrete 
transmitted signal is finally represented as follows. 

𝑥𝑡(𝑛) = {
cos(𝑢(𝑛𝑇𝑠))ℎ(𝑡) ,   0 ≤ 𝑛𝑇𝑠 ≤ 𝑇

0,                                 𝑇 < 𝑛𝑇𝑠 ≤ 𝑇′
      (4) 

where 𝑇𝑠 = 1 𝑓𝑠⁄  is the sampling interval.  
The iteration frequency of OmniResMonitor is 𝑓𝑠

′ = 1 𝑇′⁄ . 
Generally, 𝑓

𝑠

′ = 10 Hz is adequate for monitoring respira-
tion signals that have a typical frequency of 0.17 ~ 0.42 Hz, 
i.e., 10 ~ 25 bpm. Thus, 𝑇′ is recommended as 0.1 second. 
According to our preliminary test, multipath delay, 
i.e., 𝑇′ − 𝑇 is within 0.03 ~ 0.06 second in the room with a 
size of 20 ~ 60 m2. A larger room generally has a larger 
multipath delay thus requiring smaller 𝑇. Larger modula-
tion bandwidth, i.e., 𝐵  means more elaborate multipath 
signal quantification, while introduce larger computation 
burden of effective multipath signal separation (refer to Eq. 
6). In order to run OmniResMonitor on laptop in real time, 
𝐵 is recommended as 2K ~3KHz. Fig. 2 shows an example 
of the transmitting signal (𝑓𝑠 = 96𝐾𝐻𝑧 , 𝑓𝑐 = 26𝐾𝐻𝑧 , 𝐵 =
2𝐾𝐻𝑧, 𝑇 = 0.05𝑠, 𝑇′ = 0.1𝑠).  

  
(a)                                                     (b) 

Fig. 2. An example of the transmitted signal. (a) time-domain signal. 
(b) Short-time Fourier transform of (a) 

OmniResMonitor controls the transceiver to continu-
ously transmit the designed signal and receive the echo 
frame. Specifically, the designed signal is continuously 

transmitted by the speaker in a non-blocking manner, and 
meanwhile, the microphone receives the echo frame syn-
chronously. The length of the echo frame has to be the 
same as that of the transmitting signal.  

3.2.2 SFR Estimation and SFR Sequence Construction 

With the transmitted signal 𝑥𝑡(𝑛) (refer to Eq. 4) and the 
echo frame 𝑥𝑟(𝑛), SFR is estimated as: 

𝐻(𝑘) =
𝑋𝑟(𝑘)

𝑋𝑡(𝑘)
=

𝐷𝐹𝑇(𝑥𝑟(𝑛))

𝐷𝐹𝑇(𝑥𝑡(𝑛))
                         (5) 

where 𝐻(𝑘)  is the SFR at frequency 𝑓 = 𝑘∆𝑓 = 𝑘
𝑓𝑠

𝑁
, 𝑘 =

1,2, … , 𝑁/2 , 𝑁  is the length of 𝑥𝑟(𝑛) . 𝐷𝐹𝑇()  denotes dis-
crete Fourier transform.  

To eliminate noise interference beyond the frequency 
band of the transmitted signal, we only retain SFR within 
frequency band [𝑓𝑐 , 𝑓𝑐 + 𝐵], i.e., 𝑓𝑐 ≤ 𝑓 ≤ 𝑓𝑐 + 𝐵 . Plugging 
in 𝑓 = 𝑘

𝑓𝑠

𝑁
, we obtain the range of 𝑘  as 

𝑁𝑓𝑐

𝑓𝑠
≤ 𝑘 ≤

𝑁(𝑓𝑐+𝐵)

𝑓𝑠
. 

Thus, the SFR at time 𝑡 is truncated as: 

𝑯𝒕 = [𝐻 (⌈
𝑁𝑓𝑐

𝑓𝑠

⌉) , 𝐻 (⌈
𝑁𝑓𝑐

𝑓𝑠

⌉ + 1) , … , 𝐻 (⌊
𝑁(𝑓𝑐 + 𝐵)

𝑓𝑠

⌋)]

𝑇

(6) 

The SFRs over time form a matrix called as SFR matrix, 
which can be represented as: 

𝑺 = [𝐻𝑡1
, 𝐻𝑡2

, … , 𝐻𝑡𝑚
]                          (7) 

where 𝑡1, 𝑡2, … , 𝑡𝑚 are the time stamp that OmniResMonitor 
computes SFR in each iteration cycle (OmniResMonitor 
runs for one time). Generally, the duration of each iteration 
cycle is about 𝑇′ (the period of the modified transmitted 

signal. Refer to Eq. 3). Let 𝑺𝒊 (𝑖 = 1, 2, … , ⌊
𝑁(𝑓𝑐+𝐵)

𝑓𝑠
⌋ − ⌈

𝑁𝑓𝑐

𝑓𝑠
⌉ +

1) denote the i-th row of 𝑺. From Eq. 7, we know that 𝑺𝒊 

denotes the amplitude variation over time of multipath 

signal with frequency 𝑓 =
𝑓𝑠

𝑁
(𝑖 + ⌈

𝑁𝑓𝑐

𝑓𝑠
⌉ − 1). Here, we call 

𝑺𝑖 one SFR sequence. Fig. 3 shows the SFR sequences (i.e., 
rows of matrix 𝑺) when a subject is breathing naturally in 
the room (the parameters of the transmitted signal are the 
same as that in Fig. 2). 

 

Fig. 3. An example of SFR sequences 

In each iteration cycle of OmniResMonitor, matrix 𝑺 is 
updated. The SFR estimated in current iteration cycle is 
added as a new column to the end of 𝑺, and the first col-
umn of 𝑺 is eliminated. 

3.2.3 Effective Multipath Signal Separation based on Pe-
riodical SFR Sequences Selection 
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Human respiration is periodical in nature. It means that 
the SFR sequences corresponding to chest movement dur-
ing respiration vary periodically. We select all the SFR se-
quences that vary periodically by measuring their perio-
dicity. Specifically, we first detrend the nonlinear trend of 
all SFR sequences. Then, we calculate the autocorrelation 
of all SFR sequences. Finally, based on the autocorrelation 
results, the SFR sequences that have strong periodicity are 
selected.  

1) SFR Sequences Detrending 

Due to the fact that audio device is not a strictly linear sys-
tem, the SFR sequence is embedded with a nonlinear trend, 
which will not only decrease the periodicity of the SFR se-
quences, resulting in loss of chest movement information, 
but also affect breath wave recovering. 

    
(a)                                                          (b) 

   
       (c)                                                          (d) 

Fig. 4. Nonlinear trend embedded in SFR and its affection on perio-
dicity. (a) two SFR sequences embedded with the nonlinear trend. (b) 
autocorrelation of the two SFR sequences shown in (a). (c) two SFR 
sequences after detrending. (d) autocorrelation of the two SFR se-
quences after detrending. 

Fig. 4(a) shows two SFR sequences. The red line has ob-
vious periodicity, while the blue line is aperiodic. However, 
due to the impact of the nonlinear trend, their autocorrela-
tion results shown in Fig. 4(b) are very similar. It is difficult 
to select effective SFR sequences using autocorrelation. 

To tackle this problem, we have to remove the trend of 
the SFR sequence. Firstly, we extract the polynomial trend 
of each SFR sequence using the Least Square method. Then, 
the polynomial trend is subtracted from each SFR sequence. 
Extensive preliminary experiments indicate that quartic 
polynomial is enough to eliminate all the nonlinear trends. 
Fig. 4(c) shows the detrending result of two SFR sequences 
in Fig. 4(a). The autocorrelations of two detrended SFR se-
quences are shown in Fig. 4(d). Obviously, the autocorre-
lations of two detrended sequences are significantly differ-
ent. It is easy to select the strong periodical sequence using 
the simple rule that a higher peak of the autocorrelation 
function means stronger periodicity. 

2) Autocorrelation of SFR Sequence 

After detrending, we measure the periodicity of all SFR se-
quences using autocorrelation. The autocorrelation of 𝑺𝒊  is 
defined as: 

𝑅𝑥(𝑘) =
𝑐𝑘

𝑐0

                                   (8) 

where 𝑐𝑘 is the auto-covariance of 𝑺𝒊,  

𝑐𝑘 =
1

𝑁
∑(𝑺𝒊(𝑛) − 𝑺𝒊̅)(𝑺𝒊(𝑛 + 𝑘) − 𝑺𝒊̅)         

𝑁−𝑘

𝑛=1

(9) 

where 𝑘 = 0,1, … , 𝑁 − 1. As shown in Fig. 4(d), the autocor-
relation of the periodical sequence looks like a sinusoid but 
amplitude decreases gradually, while the autocorrelation of 
the aperiodic sequence varies irregularly. 

3) Periodical SFR Sequences Selection 

 
Fig. 5. Dynamic change of the periodicity of SFR sequences. 

Fig. 5 shows three SFR sequences of one minute. We ob-
serve that their periodicity changes over time. The SFR se-
quence colored blue shows relatively strong periodicity in 
the beginning, while the SFR sequences colored red and 
black show relatively strong periodicity in the middle and 
end, respectively. In other word, none of SFR sequences can 

always correspond to chest movement. To address this prob-
lem, we introduce a 20 second sliding window. Specifically, 
in each iteration cycle (OmniResMonitor runs for one time), 
we only calculate the autocorrelation of latest 20 seconds 
(human respiration rate is 12~25 bmp. 20 seconds contains 
at least 4 breaths) SFR sequences. Based on the autocorre-
lation, the SFR sequences that have relatively strong peri-
odicity are selected with the following rules.  According to 
the definition of autocorrelation and the example shown in 
Fig. 4(d), comparing with the sequence with weak or with-
out periodicity, the autocorrelation function of sequence 
with relatively strong periodicity shows two notable char-
acteristics:  
1) The peaks of the autocorrelation function are relatively 
high. Higher peaks mean higher similarity of chest move-
ment displacement variation during each respiration cycle 
(containing a full inhale and a full exhale). 
2) The intervals of peak lags are almost the same. Closer 
interval values mean higher similarity of the length of all 
respiration cycles.  
Based on the above characteristics, we define the rules to 
select the effective SFR sequence. Suppose the first four 
peaks of the autocorrelation of one SFR sequence are  
[(𝑝1, 𝑙1), (𝑝2, 𝑙2), (𝑝3, 𝑙3), (𝑝4, 𝑙4)], then the peak intervals 
are [𝑙1, 𝑙2 − 𝑙1, 𝑙3 − 𝑙2, 𝑙4 − 𝑙3]. The rules are built as follows 
to judge whether it’s periodical: 
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{

𝑝1 > 𝑃𝑘𝑇ℎ𝑟𝑑, 𝑎𝑛𝑑

𝑚𝑎𝑥(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠) − 𝑚𝑖𝑛(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠) <
𝐼𝑡𝑣𝑙𝑇ℎ𝑟𝑑 ∙ 𝑀𝑖𝑑𝐷

𝑇′

 

where 𝑇′ is the duration of a single transmitting time slot (re-
fer to Eq. 5). 𝑀𝑖𝑑𝐷 = 3.7  seconds is the mid-value of one 
breath duration (human respiration rate is 12~25 bmp). Ac-
cording to extensive experimental analysis, both𝑃𝑘𝑇ℎ𝑟𝑑 and 
𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑇ℎ𝑟𝑑  are set to 0.2~0.25. Specifically, the experi-
mental result shows that 0.2 ≤ 𝑃𝑘𝑇ℎ𝑟𝑑 ≤ 0.25  is a good 
promise to select the effective SFR sequence. This implies that 
the relative difference of the length of four consecutive respi-
ration cycles should not be larger than 1 4⁄ . Note that even 
one’s respiration rate is changing rapidly, the relative differ-
ence of the length of four consecutive respiration cycles will 
not be larger than 1 4⁄ . In other words, 0.2 ≤ 𝐼𝑡𝑣𝑙𝑇ℎ𝑟𝑑 ≤
0.25  can adapt to the normal respiration rate change, and 
shield the SFR sequence with poor periodicity. 

  
(a)                                                          (b) 

Fig. 6. Selected effective SFR sequences in two neighboring iteration 
cycles. (a) Selected effective SFR sequences in the last iteration cycle. 
(b) Selected effective SFR sequences in the current iteration cycle. 

In order to reduce the information redundancy and com-
putational burden of subsequent procedures, we only retain 
the effective SFR sequences whose 𝑝1 is ranked in the top 5. If 
the number of periodical SFR sequences is less than 5, all the 
periodical SFR sequences are retained. Fig. 6 shows an exam-
ple of the selected effective SFR sequences in two neighboring 
iteration cycles (iteration cycle duration of this example is 
about 0.1 s). We can observe that: 
 OmniResMonitor selects effective SFR sequences dynami-

cally. Except for the SFR sequence highlighted with a red 
line in Fig. 6(a) and Fig. 6(b), the effective SFR sequences se-
lected in two neighboring iteration cycles are different.  

 None of the single SFR sequences has enough periodicity to 
describe the subject’s respiration. It means that we have to 
fuse the effective SFR sequences to recover breath waves. 

The advantages of the above method are summaries as fol-
lows: 
(1) It simultaneously extracts the signal directly and indi-

rectly reflected from the subject’s chest. 
(2) It is able to catch very weak indirectly reflected signals 

because the selecting process based on periodicity meas-
uring is independent from the signal amplitude. 

(3) Measuring the periodicity of SFR sequence rather than 
the spectral purity of SFR sequence allows this method to 
catch the multipath signal with complex periodical vari-
ation, e.g., periodic square wave, periodic pulse or even 
arbitrary periodic curve. 

These advantages ensure the extraction of indirectly re-
flected signals in challenging scenarios, e.g., the subject faces 
away from the transceiver, or is blocked by an obstacle. 

3.3 Breath Wave Recovering 

We recover breath wave by dynamically synthesizing the 
selected effective SFR sequences. We observe from Fig. 6 
that the selected SFR sequences have different amplitudes. 
Directly adding these SFR sequences will weaken the con-
tribution of the SFR sequences with relatively high perio-
dicity but small amplitude. In addition, some of the SFR 
sequences have opposite phases, i.e., their phase difference 
is π. In Fig. 6 (a), according to the variation direction over 
time, the SFR sequences can be divided into two categories. 
The first category includes the SFR sequences highlighted 
with green, red, and black, and the second category in-
cludes the other SFR sequences. We can see that the SFR 
sequences that belong to the same category have the al-
most same phase, and the phase difference between the 
two categories is about π. The same phenomenon can be 
observed in Fig. 6 (b). Directly adding these SFR sequences 
to recover breath wave will result in that the SFR sequences 
have opposite phases cancel each other out, and finally 
lead to poorly recovered breath wave.  

  
(a)                                                      (b) 

  
(c)                                                       (d) 

Fig. 7. Breath wave recovering. (a) Effective SFR sequences after nor-
malization and phase synchronization in the last iteration cycle. (b) 
Effective SFR sequences after normalization and phase synchroniza-
tion in current iteration cycle. (c) Breath wave recovered in last itera-
tion cycle. (d) Breath wave recovered in current iteration cycle. 

To tackle the above problems, we firstly normalize all 
SFR sequences. Then, we synchronize the phase of the SFR 
sequences by rotating part of them along the time axis (re-
fer to Algorithm 1). Finally, the SFR sequences are added 
together to build breath wave. Fig. 7 (a) and Fig. 7 (b) show 
effective SFR sequences selected in Fig. 6 (a) and Fig. 6 (b) 
after normalization and phase synchronization, respec-
tively. The red lines in Fig. 7 (c) and Fig. 7 (d) show the 
recovered breath wave recovered from Fig. 7 (a) and Fig. 7 
(b), respectively. Now, we can clearly distinguish each 
breath.   

The recovered breath wave highlighted with red lines 
in Fig. 7 (c) and Fig. 7 (d) are neighboring in time. They are 
generated in two adjacent iteration cycles of OmniResMon-
itor. But we observe that their phases are composite. In or-
der to ensure that the recovered real time breathing wave 
is continuous over time, we should ensure the phases of 
the breath wave recovered in two adjacent iteration cycles 
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are close. Specifically, if the phase difference between the 
recovered breath wave in current iteration cycle and that 
in the last iteration cycle is close to π, the recovered breath 
wave in the current iteration cycle is rotated along the time 
axis. The black line in Fig. 7(d) shows the rotated version. 
The whole breath wave recovering algorithm is shown in 
Algorithm 1. 

Algorithm 1: Breath wave recovering algorithm 

Input: Effective SFR Sequences, 𝑯𝒔; Recovered breath wave in the last 

iteration, 𝐵𝑊𝐿𝑎𝑠𝑡. 

Output: Recovered breath wave in the current iteration, 𝐵𝑊𝐶𝑢𝑟𝑟. 

1:  normalize all effective SFR sequences to the range [-1 1];  

2:  𝐵𝑊𝐶𝑢𝑟𝑟   𝑯𝒔(1); /*𝑯𝒔(𝑖) denote the i-th SFR sequence*/ 

3:  N   the amount of the SFR sequence contained in 𝑯𝒔 

4:  for i from 2 to N do           

5:        if ‖𝐵𝑊𝐶𝑢𝑟𝑟 + 𝑯𝒔(𝑖)‖𝟏<‖𝐵𝑊𝐶𝑢𝑟𝑟 − 𝑯𝒔(𝑖)‖𝟏  

6:                   𝐵𝑊𝐶𝑢𝑟𝑟  𝐵𝑊𝐶𝑢𝑟𝑟-𝑯𝒔(𝑖);  

7:        else 

8:                   𝐵𝑊𝐶𝑢𝑟𝑟  𝐵𝑊𝐶𝑢𝑟𝑟 + 𝑯𝒔(𝑖); 

9:        end if 

10: end for 

11: 𝐵𝑊𝐶𝑢𝑟𝑟  𝐵𝑊𝐶𝑢𝑟𝑟./𝑁; 

12: if ‖𝐵𝑊𝐿𝑎𝑠𝑡 + 𝐵𝑊𝐶𝑢𝑟𝑟‖𝟏 < ‖𝐵𝑊𝐿𝑎𝑠𝑡 − 𝐵𝑊𝐶𝑢𝑟𝑟‖𝟏  

13:           𝐵𝑊𝐶𝑢𝑟𝑟  −𝐵𝑊𝐶𝑢𝑟𝑟; 

14: end if 

The algorithm firstly normalizes effective SFR se-
quences (line 1). Then, it synchronizes the phase of the ef-
fective SFR sequences and synthesizes them to build 
breath wave (lines 2~11). We know that if two signals have 
the same phase, then, their superposition will strengthen, 
else, their superposition will weaken. Conversely, we can 
leverage the strength of their superposition to derive that 
their phases are almost the same or opposite. Based on this 
principle, the algorithm checks the phase of each SFR se-
quence and rotates the SFR sequences whose phase is al-
most opposite to the breath wave (the initial value of the 
breath wave is the first SFR sequence of effective SFR se-
quences (line 2)) before adding them to breath wave. (line 
2~10). After that breath wave is averaged (line 11). Finally, 
the breath wave is rotated along the time axis if its phase is 
almost opposite to that of the last breath wave. 

4 SYSTEM IMPLEMENTATION 

We implement OmniResMonitor on a laptop connected 
with an ultrasonic transceiver. The software is imple-
mented in MATLAB. We develop a broadband multi-chan-
nel ultrasonic synchronous transceiver platform for better 
quality of transmitted and received signal, as shown in Fig. 
8 (a). It consists of a USB sound card embedded with two 
broadband omnidirectional microphones (Fig.8 (b)) and a 
broadband speaker (Fig. 8 (c)).  

The sound card uses the USB Audio Class 1.0 standard, 
and Fig. 8 (d) shows its key modules. The speaker is devel-
oped with an aluminum ribbon tweeter, and Fig. 8 (e) 
shows its key modules. Note that OmniResMonitor only 
uses a single microphone and speaker. 

 
(a) 

  
(b)                                              (c) 

  
(d)                                                       (e) 

Fig. 8. Platform overview. (a) Ultrasonic transceiver platform, (b) USB 
sound card, (c) speaker, (d) sound card modules, (e) speaker modules. 

Compared to off-the-shelf audio devices, our platform 
has two advantages: 1) wider frequency band and higher 
sampling rate. The frequency response range of our plat-
form is 1~42kHz, while off-the-shelf audio devices have a 
typical band of 20Hz~22kHz. The wider available fre-
quency band allows us to transmit and receive any types 
of ultrasonic signal in frequency band 20~42kHz. Our sam-
pling rate of transmitting and receiving is able to reach 
96KHz, compared to 44.1KHz or 48KHz from off-the-shelf 
audio devices. 2) Speaker and mic in our platform are 
highly synchronized because both their clocks share the 
same crystal oscillator. Precise clock is crucial to ensure the 
same sampling rate at both transmitter and receiver. 

5 EVALUATION 

We now move to evaluate our system. OmniResMonitor 
runs in real time for all experiments. We compare Om-
niResMonitor’s performance with the baseline method in 
different scenarios, followed by evaluating its robustness 
by varying respiration rate, apnea, and body movement. 
We also conduct experiments to understand the effective 
sensing distance of OmniResMonitor under different condi-
tions. In addition, we conduct experiments with animals 
(i.e., goats). Finally, we discuss the limitations of Om-
niResMonitor. The demo video of all the experiments is 
available at https://tinyurl.com/3mt3w7mp, https://ti-

nyurl.com/45drar4b. 

5.1 Experimental settings 

5.1.1 Key Parameters and Experimental Subjects 

Transmitted signal has the following parameter settings: 
𝑓𝑐 = 26𝐾𝐻𝑧, 𝐵 = 2𝐾𝐻𝑧, 𝑇 = 0.05𝑠, 𝑇′ = 0.1𝑠  (The duration 
of OmniResMonitor executing for one time is equal to 𝑇′). 
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The sampling rate of transceiver, 𝑓𝑠 = 96KHz. The power 
and sensitivity of the speaker are 15 watt and 94dB, respec-
tively. The beamwidth of speaker when 𝑓𝑐 = 26𝐾𝐻𝑧  is 
±14°.  The sensitivity, signal-to-noise ratio and total har-
monic distortion of the mic are -26 dBFs, 64.3 dB and 0.2%, 
respectively.  

We recruit 20 volunteers (16 males, 4 females) aged 
from 21 to 27 years with a height from 1.61  to 1.81 m. We 
have no dress restriction, and they wear their own clothes, 
e.g., T-shirt, sweater, jacket and overcoat.   

5.1.2 Baseline and Ground Truth 

We compare OmniResMonitor with two state-of-the-art 
acoustic signal-based approaches [3, 45], i.e., one monitors 
chest movement by high resolution ranging, and the other 
senses the exhaled airflow by extracting the Doppler shift 
of the echo scattered by exhaled airflow. Both baselines re-
quire the acoustic beam to directly cover the subject’s chest 
and the area around the subject’s mouth. Additionally, the 
effective sensing distance of both baselines is about 1 m. 
They have restrictions in location and orientation for de-
vice and subject. For a fair comparison, 1) both baselines 
are implemented using the same devices, transmission 
power, and deployment scenarios; 2) we adopt the same 
parameter settings and configurations as specified in [3, 
45]. 

For the ground truth, each subject is asked to wear a 
commercial motion sensor WitMotion WT901WIFI on the 
abdomen, which integrates a 3-axis acceleration sensor, a 
gyroscope, a 3-axis angle sensor, and a magnetometer. It 
accurately captures chest movement during breathing for 
the ground truth in each experiment. 

5.2 System Performance Evaluation 

In this section we compare our system with the two 
baselines in different experimental settings: 1) free location 

and orientation of both different subjects and transceiver 
in different rooms, 2) various challenging scenarios, and 3) 
different postures. 

5.2.1 Free Location and Orientation of Subjects and 
Transceiver in Different Rooms 

We first investigate the effect of different locations and 
orientations of subject and transceiver in two different 
rooms. We recruit 20 participants (16 males, 4 females). 
The sizes of two rooms are 5.2 m3 m3.5m and 8.4 
m5.8 m3.4m, respectively. In each setup, a subject 
freely selects his/her location and orientation in the room. 
The acoustic transceiver is placed randomly, i.e., on a table, 
box, chair, sofa, or even on the ground. Each experiment 
runs for 30 minutes. This experiment is firstly conducted 
in the small room with 10 subjects, then we repeat it in the 
large room with another 10 subjects. Fig. 9(a) and Fig. 9  (c) 
show the room layouts, and Fig. 9 (b) and Fig. 9 (d) show 
the real scenarios.  

Fig.9 (e) shows the experimental result in the small 
room. The maximum respiration monitoring error of Om-
niResMonitor is 1 breath during 30 minutes. We carefully 
analyze the experimental data and the recoded video and 
find that the error is incurred by system delay. There is an 
around 1s delay between actual breathing and the recov-
ered breath wave. Two baselines work well in setups 2 and 
6 shown in Fig. 9 (a), while fail in other setups. This is ex-
pected because both baselines work on directly reflected 
signals from the subject’s chest within 1 meter, and only 
setups 2 and 6 meet this requirement.  

Fig. 9 (f) shows the experimental result in the large room. 
We can see that OmniResMonitor achieves high accuracy in 
setups 1, 2, 3, 4, 5, 9, and 10, but it fails in setup 6 and does 
not work well in setups 7 and 8. It may be caused by the 
long distance between subject and transceiver. The effec-
tive sensing distance of OmniResMonitor under different 

       
(a)                                                                 (b)                                                     (c)                                                           (d) 

     
(e)                                                                                                                            (f) 

Fig. 9. Setups and results of the experiment evaluated with free location and orientation of both different subjects and transceiver in different 

rooms. (a) The layout of first room and the setups. Red circles linked with arrow denote the location and orientation of transceiver. Green 

triangles denote the location and orientation (vertex angle) of subjects (b) the photo of setup 4 in first room. (c) The layout of second room and 

the setups. (d) the photo of setup 4 in second room. (e) Experimental results in first room. (f) Experimental results in second room. 
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scenarios is investigated in Sec. 5.4. As shown in Fig. 9 (c), 
the distance between subject and transceiver are too far 
(more than 6.5 m) in setups 6, 7, and 8, resulting in weak 
effective multipath signals. Two baselines only work well 
in setups 9 and 10, and fail in all other setups.  

The above experiments reveal that the performance of 
OmniResMonitor is limited by the sensing range of acoustic 
devices. Within its effective sensing range, OmniResMoni-
tor is able to achieve high accuracy without any location 
and orientation restriction. 

5.2.2 Various Challenging Scenarios 

In this subsection, we conduct experiments to evaluate 
OmniResMonitor in three challenging scenarios. 1) The 
transceiver faces toward the back of the subject at different 
locations – “back-to-face” scenario. 2) Transceiver and sub-
ject face opposite directions at different locations – “back-
to-back” scenario. 3) There is an obstacle between subject 
and transceiver. The obstacle blocks the signal directly re-
flected from the subject’s chest. As shown Fig. 10 (a), Fig. 
10 (b), we evaluate OmniResMonitor with 7 different setups 
in the “back to face” scenario, 6 different setups in the 
“back to back” scenario. In each setup, 3 subjects are mon-
itored for 10 minutes. Fig. 10(c), Fig. 10(d) and Fig. 10(e) 
show 3 different setups in the scenario that there is an ob-
stacle between subject and transceiver. In each setup, a 
subject is monitored for 10 minutes. 

Fig. 10(f), Fig. 10(g), and Fig. 10(h) show the experi-
mental results in three scenarios. We observe that two 
baselines completely fail. It is expected since both baselines 
require directly reflected signals from subject’s chest 
within 1 meter. OmniResMonitor achieves accurate respira-
tion monitoring in all the scenarios with a maximum error 
of 2 breaths during 10 minutes. 

The results indicate that abundant acoustic multipath 
reflection signals have been effectively exploited in Om-
niResMonitor to achieve accurate respiration monitoring in 

different indoor scenarios. 

5.2.3 Different Postures 

We conduct an experiment to evaluate OmniResMonitor 
when subject is lying on bed.  

 
(a)                                                             (b) 

         
(c)                                                        (d) 

Fig. 11. Setups and results of the experiments evaluated with different 

sleep postures. (a) Experimental setups. (b) Experimental results 

when subject is lying on his/her back. (c) Experimental results when 

subject is lying on left. (g) Experimental results when subject is lying 

on right. 

As shown in Fig. 11(a), a subject is asked to lie on bed 
with three common postures (lie on one’s back, the left side 
and the right side). Each sleep posture is tested for 2 
minutes. We repeat this experiment three times with three 
subjects. Fig. 11(b) shows the result when a subject is lying 
on his/her back. We can see that both baselines fail. Even 
though subject 1 is close to the device, two baselines do not 
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(a)                                                                 (b)                                                     (c)                                                           (d) 
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Fig. 10. Setups and results of the experiments evaluated with challenging scenarios. (a) Experimental setups of test scenario “back to face”. (b) 

Experimental setups of test scenario “back to back”. (c), (d), (e) the photos of experimental setups of test scenario that there is obstacle between 

subject and transceiver. (f) Experimental results of test scenario “back to face”. (g) Experimental results of test scenario “back to back”. (h) 

Experimental results of test scenario that there is obstacle between subject and transceiver. 
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work. This is probably because the chest is almost parallel 
to the direction of transmitted signal propagation. The ef-
fective reflection area is small, thus the signal directly re-
flected from the subject’s chest is very weak. In contrast, 
OmniResMonitor achieves accurate respiration monitoring 
for all three subjects.  

Fig. 11(c) and Fig. 11(d) show the results when the sub-
ject is lying on the left and right sides, respectively. We can 
see that both baselines only work when subject 2 is lying 
on right and when subject 3 is lying on left. From Fig. 11(a), 
it is observed that when subject 2 is lying on right and 
when subject 3 is lying on left, they are close to the trans-
ceiver and their chests are completely within the coverage 
of the transmitted signal. OmniResMonitor achieves accu-
rate respiration monitoring for all three subjects. 

The experimental result indicates that OmniResMonitor 
is able to monitor breath for common sleeping postures. 
This is expected because it does not rely on direct reflection 
signals, independent to sleeping postures. 

5.3 System Robustness Evaluation 

We now conduct experiments to evaluate the robustness of 
the system under the conditions that are common in prac-
tice but may introduce errors in respiration monitoring. 

5.3.1 Impact of Respiration Rate Variation 

We evaluate the respiration monitoring accuracy of Om-
niResMonitor with varying respiration rates. 5 participants 
are asked to change their respiration rate 5 times during 5-
minute in an experiment. The lowest respiration rate of all 
the subjects is 9 BPM and the highest respiration rate is 29 
BPM, which is outside the normal respiration rate range, 
i.e., 12 ~ 22 BPM.  

The respiration monitoring result is shown in Fig. 12. 
The respiration rate variation range of each subject is rep-
resented in the rectangle above the bar. We can see that the 
maximum error is 3 breaths during 5 minutes. 

The experimental results indicate that OmniResMonitor 
is able to accurately track both rapid and slow breathing 
throughout the process.  

 
Fig. 12. Results of varying respiration rate 

5.3.2 Impact of Apnea 

Identifying Apnea is an important objective of monitoring 
respiration during sleep. When Apnea happens, SFR se-
quence variation only comes from system internal noise, 
which results in very weak irregular SFR sequence varia-
tion. So, we can use the variance of the SFR sequence to 
identify Apnea directly. Specifically, if the variances of the 
first 4s subsequences (it can be adjusted according to actual 
need) of the selected effective SFR sequence is less than the 

given threshold, we can judge that Apnea happens. Note 
that the SFR sequence refers to the SFR sequence after 
detrending. 

Due to the complicate ethics process with real Apnea 
patients in hospitals, we simulate Apnea following the 
clinical symptom described as “hold breath for a while” 
[36,43]. We recruit 5 participants to test Apnea detection 
performance. Each participant is asked to simulate Apnea 
at least 3 times during 10 minutes. There are 20 Apneas in 
total. The durations of simulated Apneas range from 6 to 
12s. Fig. 13 shows two examples of the recovered breath 
wave when Apnea occurs. We can see that the recovered 
breath wave clearly shows Apnea. All the simulated Ap-
neas are successfully detected.  

  
Fig. 13. Two examples when apnea happens 

5.3.3 Impact of Body Movement and Other Moving Ob-
jects Around 

Different from Apnea, body movement or other moving 
objects around will generate drastic but irregular SFR se-
quence variation. The periodical SFR sequence variation 
caused by chest movement would be submerged. Under 
this condition, it is difficult even impossible to detect 
breathing. This is a common unsolved problem for all con-
tactless respiration monitoring approaches.  

 
Fig. 14. CDF of the latencies from the end of the movement to the time 

OmniResMonitor resumes to monitor respiration 

To reduce false alarm rate, OmniResMonitor is designed 
to suspend respiration detection once body movement is 
detected and recover for detecting respiration after the 
data generated by body movement or other moving object 
is flushed out from the SFR sequence buffer. We recruit 5 
participants to test whether OmniResMonitor can actually 
suspend respiration monitoring when body movement oc-
curs and resume to monitor respiration after movement 
stops. Specifically, during respiration monitoring, each 
subject is asked to change posture or stand up. In addition, 
another one enters the test room, then leaves the test room 
during respiration monitoring. Experimental results show 
that OmniResMonitor identifies all the movement and sus-
pends respiration monitoring. Fig. 14 shows the empirical 
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CDF of the latencies from the end of the movement to the 
time OmniResMonitor resumes to monitor respiration auto-
matically.  

We can see that the latencies are 25 s.  It is reasonable 
that the length of the SFR sequence buffer corresponds to 
about 25s. It means that the movement data will be flushed 
out after about 25s, the periodicity of the data will be then 
restored and OmniResMonitor automatically resumes to 
capture respiration. Note that even though during the la-
tency, OmniResMonitor fails to capture breath, it can re-
cover the breaths during this latency after the interfered 
data is flushed out from the buffer. 

5.3.3 Impact of Ambient Noise 

Ambient noise can be received by the mic. It is necessary 
to test whether the ambient noise has impact on respiration 
detection. We test OmniResMonitor in several real scenarios 
where noise is constantly generated, i.e., 1) playing music 
or video in test room; 2) knocking door; 3) some one is talk-
ing loudly out the door. We recruit 4 subjects for these ex-
periments. Experimental result show that noise has no im-
pact on OmniResMonitor’s performance. The truncated SFR 
(refer to Sec. 3.2.2) only retains the part within the fre-
quency band of transmitted signal, i.e., 26KHz~28KHz. In 
real scenarios, there is hardly any ambient noise which can 
reach such a high frequency band. Studies show that the 
highest frequency of human voice is 3KHz [40]; the highest 
frequency of music is 16KHz [41]; the highest frequency of 
the noise produced by knocking door is several hundreds 
Hz [42,43]. The frequencies of these ambient noise are far 
below 26KHz~28KHz, resulting in no effect on Om-
niResMonitor’s performance. 
 

5.4 Effective Sensing Distance Estimation 

To clarify the effective sensing distance of OmniResMonitor, 
we conduct an experiment to evaluate it with different set-
ups at a distance ranging from 3 to 13m. As presented in 
experimental settings, the power and sensitivity of the 
speaker are 15 watt and 94dB, respectively. The beam-
width of speaker when 𝑓𝑐 = 26𝐾𝐻𝑧 is ±14°.  The sensitiv-
ity, signal-to-noise ratio and total harmonic distortion of 
the mic are -26 dBFs, 64.3 dB and 0.2%, respectively.  We 
test its sensing range with three setups. 1) The subject and 
transceiver face each other– “face to face”. 2) “back to face”. 
3) “back to back” (please refer to section VI.B.2). For each 
setup, the subject is monitored for 5 minutes at each dis-
tance (from the transceiver to subject) 3, 4, …, 13m. Fig. 15 
(a) shows the three setups.  

Suppose the number of detected breaths is 𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  and 
the number of actual breaths is 𝑁𝑎𝑐𝑡𝑢𝑎𝑙 , the respiration 
monitoring accuracy can be calculated as 𝑅 =  

𝑁𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑁𝑎𝑐𝑡𝑢𝑎𝑙
. Fig. 

15(b) shows the respiration monitoring accuracy of the 
above three setups. We can see that the upper bounds of 
effective sensing range in the three setups are 8 m, 6 m, and 
5 m, respectively. Note that it does not mean that Om-
niResMonitor doesn’t work beyond the distance upper 
bounds, but its performance may be unstable. For example, 
during 5 minutes tests at 10 m for the setups “face to face” 

and “back to face”, OmniResMonitor can accurately moni-
tor the subject’s respiration for more than 3 minutes, while 
during the other 2 minutes OmniResMonitor fails. 

 
                           (a)                                                        (b)   

Fig. 15. Effective sensing distance estimation. (a) “face to face”. (b) 

“back to face”, (c) “back to back” (d) respiration monitoring accuracy 

at different distances. 

5.5 Evaluation with Animals 

In this experiment, we sue this system to monitor the res-
piration of animals (i.e., goat) which may be useful in iso-
lating sick goat. In our experimental setting, we have 4 
goats with different ages and sizes obtained from a farm-
ing company, and a goat is free to move in the sheepfold. 
Since wool absorbs acoustic signals, it is challenging to 
monitor its respiration.  

  
(a)                            (b)                                (c) 

Fig. 16 The setups and results of the experiments evaluated with goats. 

(a) photo of experimental environment. (b) the location and orienta-

tion of the goats and the transceiver. (c) respiration monitoring results. 

Each goat is monitored for 2 hours. During most of the 
time, the goats are walking around or eating. The goats are 
resting only for several minutes.  Fig. 16 (a) shows the 
photo of the experimental environment. Fig. 16 (b) shows 
the locations and orientations when the goats are resting. 
The number in the triangle is the identity code of each goat 
sprayed on the chest. Fig. 16(c) shows the experimental re-
sults. The resting time of each goat is represented in the 
rectangle above the bar. We can see that, during resting, 
OmniResMonitor achieves accurate respiration monitoring 
for all the goats. Even though the goats no. 12 and 38 are 
completely blocked by the table, OmniResMonitor still 
works well. 

5.6 Limitations  

1) Not suitable for too large rooms. A too large room 
might result in weaker multipath reflection. The experi-
ment in Section VI.B.1 reveals that OmniResMonitor may 
fail to monitor respiration due to long distance between 
transceiver and target, which will result in weak acoustic 
multipath reflection. Increasing the power of speaker or 
deploying multiple speakers with different orientations 
may be able to mitigate this problem. 
2) Single target. The current implementation cannot be ap-
plied to monitor multiple targets. Different targets have 
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different respiration rates. We know that the mixture of 
several signals with different frequencies is aperiodic. 
However, OmniResMonitor relies on the periodicity meas-
urement of SFR sequences. We plan to design a solution 
based on system impulse response (SIR) sequences in our 
future work. SFR integrally describes the variation of mul-
tipath reflected signals, while SIR is able to separately de-
scribe the variation of each multipath reflected signal. SIR 
makes it possible to identify multipath reflected signals be-
long to different targets according to their time delay and 
amplitude variation over time.  
3) Other movement events. Other movement events will 
incur SFR sequences variation. In this paper, we only con-
sider the condition that there is no other moving object in 
the room environment. As presented in the experiment in 
Section VI.C.3, OmniResMonitor fails when body move-
ment and other moving events happen. To reducing false 
alarms, OmniResMonitor is designed to automatically sus-
pend respiration detection once body movement is de-
tected and recover respiration detecting after other move-
ment events finish. It is worth noting that the sound inter-
ferences (such as the sound of talking, knocking on the 
door, playing music, etc.) will not result in SFR sequences 
variation. Because of the SFR truncation procedure con-
tained in OmniResMonitor, only the SFR within the fre-
quency band [𝑓𝑐 , 𝑓𝑐 + 𝐵] is retained, which is beyond the 
frequency of common sound. The movement interference 
is still an unsolved problem in contactless sensing which 
we leave for future work. 

6 CONCLUSION 

This paper presents a contactless acoustic respiration 
monitoring system OmniResMonitor, aiming to reduce the 
blind spot under various challenging scenarios without 
signal directly reflected from target’s chest. Different from 
previous works, OmniResMonitor leverages abundant 
acoustic multipath reflection in an indoor environment to 
monitor a single target’s respiration. Extensive experi-
ments with both humans and animals show that Om-
niResMonitor is able to robustly monitor a single target’s 
respiration within 5 meters in common indoor environ-
ments. Within its sensing range, OmniResMonitor works 
well under various challenging scenarios and it is in-
denpent to the location and orientation of target and trans-
ceiver.   
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