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Abstract—Nowadays, to realize the intelligent manufacturing in
Industrial Internet of Things (IIoT) scenarios, novel approaches in
computer vision are in great demand to tackle the new challenges
in IIoT environment. These approaches, which we call Industrial
Vision, are expected to offer customized solutions for intelligent
manufacturing in an accurate, time efficient and robust manner.
In this paper, we propose a novel approach to industrial vision,
called Edge-Eye, to rectify the edge deviation automatically for Ir-
radiated Cross-linked Polyethylene Foam (IXPE) production with
millimeter-level accuracy. We deploy a commercial camera with
mobile edge node in front of the IXPE sheet to continuously detect
and rectify the edge deviation. Particularly, to handle the complex
production environment when extracting the edge of IXPE sheet,
we deploy a pair of reference bars with high-contrast colors to
efficiently differentiate the sheet edge from the background. Then,
we propose a Bi-direction Edge Tracking method to perform the
edge detection from both vertical and horizontal aspects. To realize
the rectification using mobile edge nodes with limited computing
resources, we reduce the cost of computation by extracting the
Minimized Region of Interest, i.e., the edge area overlapped with the
higher contrast reference bar on both sides. We further design a
negative feedback control system with multi-stage feedback regula-
tion mechanism, keeping the edge deviation within millimeter-level.
The experimental results show that Edge-Eye achieves the average
accuracy of 5 mm for the edge deviation rectification, with the
average latency of 200 ms for edge deviation detection.

Index Terms—Edge computing, edge deviation rectification,
industrial vision, industial internet of things.
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I. INTRODUCTION

A. Motivation

A S the proliferation of Industrial Internet of Things (IIoT)
and Industrial 4.0, computer vision has been more and

more widely used in the manufacturing scenarios, aiming to
realize various functions including recognition, measurement,
positioning and detection. However, in real complex scenarios
of manufacturing, the traditional computer vision technology
usually fails to achieve expected performance in accuracy, time
efficiency and robustness. The reason is that, the traditional
computer vision usually cannot provide customized operators
to satisfy the special requirements in manufacturing, e.g., detec-
tion of appearance defect and measurement of complex forms.
Besides, the manufacturing environments are usually full of
various interferences and noises, e.g., the complex background,
the scattering or occlusion of light. These issues greatly pro-
hibit the traditional computer vision from efficiently performing
the conventional functions in IIoT scenarios. Therefore, it is
essential to explore novel approaches in computer vision to
efficiently tackle the brand-new challenges appearing in IIoT
scenarios. These kinds of approaches, which we call Industrial
Vision, should be able to offer customized solutions to intelligent
manufacturing in an accurate, time-efficient and robust manner.

Irradiated Cross-linked Polyethylene Foam (IXPE) is one of
the fundamental industrial materials, widely used for the auto-
motive trim, upholstery, and industrial packaging. During the
production process, raw IXPE sheets will first go through a high
temperature furnace via the conveyor belt to be heated, softened
and foamed. When coming out from the furnace, they will be
stretched and widened by a pair of spreader rolls, and rolled up
into a roll. The roll will be finally trimmed from both sides to end
the production. In this process, it is crucial to align both edges
of IXPE sheets on the conveyor belt continuously. Since the
conveyor belt moves at a speed of over 1 m/s, any misalignment
could be quickly accumulated in the rolling up stage, causing
more edges trimmed away and hence more materials wasted.
However, it is difficult to stretch and widen IXPE sheets in a
uniform manner due to the non-uniformity of thickness in raw
IXPE sheets. Thus, the real edge deviation in the production line
is ranged from 1 cm to 3 cm per second on average.

The existing edge deviation rectification relies on the human
supervision, i.e., an operator monitors the IXPE sheet in real
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time and adjusts the edge when necessary. This requires a
high level of concentration from the operator, which is very
labor-intensive. For a long time, the rectification precision of
IXPE production cannot be guaranteed, resulting in a high level
of material waste. As the Industrial Internet of Things (IIoT) is
increasingly deployed in manufacturing, fully automatic edge
deviation rectification can be made possible for IXPE produc-
tion, greatly reducing the labor cost and effectively improving
the long-term production efficiency.

B. Limitations of Prior Art

Several solutions have been proposed to detect the edge
position, including laser ranging, millimeter wave, and camera-
based solutions. The laser ranging solution can accurately detect
the depth difference between IXPE sheet and background, hence
detect edges. However, as the laser unit detects the distance of
one position at a time, it is inconvenient to deploy the laser
ranging array for monitoring the whole furnace, or incurs de-
lay if moving a single unit. Millimeter wave (mmWave) radar
can achieve high accuracy for distance estimation, but not for
angular estimation Thus, it is also unsuitable for detecting the
material edge. Although the moving scanning of mmWave radar
can improve the angular accuracy, the movement increases the
detection delay [1] as well. Compared with laser and mmWave,
computer vision can detect the contour edge, hence appropriate
for edge detection. Especially, 3D cameras measure the depth for
each pixel using Time-of-Flight (ToF) or structured light. How-
ever, 3D cameras can be costly for mass deployment, and the
accuracy may degrade in the complex production environment.

Therefore, the design of edge detection and deviation rectifi-
cation for IXPE production requires: 1) Accurate: the average
error should be below 5 mm, 2) Time-efficient: the average
response time should be below 200 ms, and 3) Robust: being able
to perform the edge detection for different colors of IXPE sheets,
4) Smooth: the deviation rectification should be performed in an
adaptive and steady manner.

C. Proposed Approach

In this paper, we propose a novel approach to industrial
vision, i.e., Edge-Eye, a camera-enabled IoT edge device to
automatically rectify the edge deviation for IXPE production
with millimeter-level accuracy. Specifically, we use an ordinary
camera running on the ARM64 platform as the Mobile Edge
Node (MEN), as shown in Fig. 1. In order to detect the edge
deviation, we first adaptively extract the Minimized Region of
Interest (mROI) to reduce the computing cost. Further, we pro-
pose a Super-Resolution-based Upsampling method to construct
a higher resolution image with edge points in finer granularity.
Then, we use a Bi-Direction Edge Tracking method to achieve the
highly accurate and reliable edge detection. To rectify the edge
deviation, we propose a negative feedback control scheme with
multi-stage feedback regulation to minimize the edge deviation
to millimeter-level.

Fig. 1. Illustration of Edge-Eye in practical production line.

D. Challenges

There are three technical challenges in this paper. The first
challenge is to accurately extract the edges of IXPE sheets from
the image captured by the camera in a robust manner. Since the
color of IXPE sheets may vary over time, it could be very close
to the background color of furnace. The color similarity between
the sheet and the background would cause the significant accu-
racy degradation for edge detection. To address this challenge,
we deploy a pair of reference bars with high-contrast colors, i.e.,
white and black, under the conveyor belt, as shown in Fig. 1. In
this way, the white bar and black bar will be used as auxiliary
references to reduce the complex interference from background.
Depending on the IXPE sheet color, Edge-Eye selects either
the white bar or black bar to produce the best color contrast.
Then, we propose a Bi-Direction-based Edge Tracking method
to perform the edge detection vertically and horizontally. In the
vertical direction, we detect the boundary between the IXPE
sheet and selected bar; in the horizontal direction, we detect the
leftmost or rightmost point for the uncovered part of selected bar.
We fuse the two orthogonal results into a complimentary filter
to figure out a more accurate edge position. In this way, we can
guarantee the high accuracy and robustness by performing the
bi-direction edge tracking with the high-contrast reference bars.

The second challenge is to monitor the edge deviation by only
using the mobile edge device with limited computing resources
in a time-efficient manner. The sensing delay comes from detect-
ing and tracking the edge. To address this challenge, we propose
to extract the mROI to sufficiently reduce the sensing delay,
i.e., the edge area overlapped with the higher contrast reference
bar on both sides. Moreover, the continuous edge detection
usually consumes more computing resources, so we use the
cache-pool-based method to reduce the repetitive computation.
When the difference between the current frame and the cache
frame is below a threshold, we directly reuse the previous results,
otherwise, the current frame is set as the new cache frame, and
the edge detection results are updated accordingly. In this way,
the computing resources can be greatly reduced by shrinking the
ROI in the space domain and reusing the edge detection results
in the time domain.

The third challenge is to rectify the edge deviation in an
adaptive and steady manner. The edge deviation rectification is
done by changing the rolling speed of the left or right spreader
rolls. However, it is quite difficult to figure out the uncertain
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relationship between the edge deviation and the rolling speed.
Thus, we propose a negative feedback control scheme, to formu-
late this relationship as a linear model on a small scale. When
an edge deviation is detected, we use this model to calculate
the speed change of spreader rolls and rectify this deviation
until the edge goes back to the standard position. In this way,
we can perform the edge deviation rectification in an adaptive
manner. Moreover, considering that when large edge deviation
happens, frequent adjustments in spreader rolls are essentially
needed. Inappropriate adjustments will enlarge the jitters of edge
position and decrease the rectification performance. To tackle
this issue, we propose multi-stage feedback regulation mech-
anism to smooth the frequent adjustment of rolling spreaders.
We leverage a sliding window to progressively approach the
expected value from coarse granularity to fine granularity in
a multi-stage manner. In this way, we can perform the edge
deviation rectification in a steady manner.

E. Contributions

This paper makes the following contributions. First, we pro-
pose Edge-Eye, a millimeter-level edge deviation rectification
system. To the best of our knowledge, Edge-Eye is the first
system which uses computer vision and negative feedback con-
trol to rectify the edge deviation for IXPE production. Sec-
ond, we propose an efficient edge deviation detection method,
by incorporating a pair of high-contrast reference bars, mROI
extraction and bi-direction edge tracking, to achieve the high
accuracy, real-time response and robustness in the industrial
production. Moreover, we design a negative feedback control
system, and propose the multi-stage feedback regulation mech-
anism to rapidly and accurately make control decisions. Third,
we implemented Edge-Eye and evaluated its performance in
real IXPE production lines. Experimental results show that
we achieve an average accuracy of 5 mm for edge deviation
rectification, and an average latency of 200 ms for edge deviation
detection. During the process of 20-month real deployment for
36 production lines, 66 manpower per day (90% of the overall
manpower) has been saved, and the utilization rate of the IXPE
material increases from 87% to 94%, indicating Edge-Eye can
effectively reduce the cost and improve the benefit in intelligent
manufacturing.

II. RELATED WORK

A. Distance-Based Edge Detection

Since the target and other objects are in different planes,
calculating the distance of all objects can accurately find the
contour edge of target. Laser ranging accurately calculates the
object distance by RTT method [2] but suffers from the sin-
gle point measurement and accuracy decrease through glass.
Millimeter wave radar measures the difference of frequency
modulated continuous wave (FMCW) between TX and RX
for distance calculation [3]. However, the angular resolution
limitation makes it not suitable for the material edge detection.
Moreover, the complex environment with serious multipath
effect leads to low accuracy and high time latency [4] for

the mmWave-based solutions. State-of-the-art technology, e.g.,
the 3D camera, can detect the edge position of an object by
calculating the depth information for each pixel. Time-of-Flight
(ToF) camera calculates the object depth by measuring the round
trip time of an artificial light signal provided by a laser, but
it suffers the same problem with laser ranging, e.g., accuracy
decreases through glass and the edge blurs due to large scan
intervals. Structured light camera uses the deformation principle
to calculate the depth information, by analyzing the projection
shift when the light hits the uneven surface of object [5]. This
method suffers huge interference in strong light environment,
the projected structured light can be easily submerged by strong
light. Moreover, the accuracy decreases greatly when the object
is 1 m away from the camera. Stereo camera uses the disparity
to calculate object depth information by a pair of 2D cameras.
However, it requires high computing resource and produces large
error when environment is monotonous and lack of texture [6].
Therefore, in addition to the high hardware cost, different kinds
of 3D cameras have their own limitation, making it unsuitable to
use 3D cameras for the sheet edge detection in IXPE production.

B. 2D Camera-Based Edge Detection

The edge is an inherent property of object, which usually
has a sharp change of color around in a digital image. There
have been a wide range of approaches to extract edges in
images captured by 2D cameras. Edge detection aims to find
the discontinuities of digital images, by finding the image points
with great gradient [7].

Traditional Edge Detection Methods: Basic edge detection
filters such as Sobel, Prewitt and Roberts calculate edge points by
directly evaluating the pixel value difference of adjacent points
in grayscale images [8], [9], [10], but such methods have fatal
limitations of noise pollution and rough edges. Advanced edge
detection operators, e.g., Canny operator and Marr-Hildreth
operator, achieve high performance on edge points calculation.
The former is a multi-stage algorithm [11], which uses image
smoothing, intensity gradients calculation, double threshold and
hysteresis to find the optimal edges in image. The latter uses
second derivative and zero crossing to find edge points, but
it is noise sensitive due to the second derivative process [7].
Both operators extract all possible edge points by relying on the
original contrast of edge itself, however, they suffer from low
material sheet edge extraction performance when similar color
appears between the sheet and background.

CNN-Based Edge Detection Methods: With the popularity
of Convolution Neural Networks (CNN), edge detection has
been revisited and new solutions are proposed with neural net-
works [12], [13], [14]. Deepedge [12] designs a multi-scale deep
network to achieve contour detection by using the object-related
features as high-level cues. Maire et al. [14] use the generic
deep sparse code to recognize specific targets, thus achiev-
ing target edge detection. Holistically-nested edge detection
(HED) [13] uses the image-to-image training method to con-
struct the representation network of original images and predicts
edges. Casenet [15] uses ResNet and skip-layer architecture to
realize category-aware semantic edge detection. Poma et al. [16]
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Fig. 2. IXPE production process and unsatisfied performance of traditional edge operators.

propose thin edge-maps extraction by adding an upsample block
in Dense Extreme Inception Network. Although CNN-based
solutions can be more accurate than traditional methods, they
consume more computing resources and additional expenditure
on neural network training and storage. In addition, when the
color of the material sheet is similar to the background, their
edge extraction performance is still not high.

III. PRELIMINARY

The foaming technology has been used in modern manufac-
turing to heat raw materials and form the required shape or size
for end products. As shown in Fig. 2(a), the raw material sheet
is first sent into the horizontal furnace (with a temperature of
70-85°C) for preheating, then goes into in the vertical furnace
(with a temperature of 200-300°C) for softening, widening and
stretching into the required size. Finally, the sheet is rolled up
and packed as the finished sheet ready for shipment. The color of
sheet can be various (in Fig. 2(b)), leading to a more complicated
background for edge detection. Moreover, due to the uneven
thickness of the raw material sheet, the width of finished sheet
may be different from the required size, i.e., edge deviation.
Without the proper rectification, such deviation may accumulate
rapidly, resulting that more edges have to be trimmed away and
hence more materials will be wasted. Traditional solutions rely
on the human supervision, as shown in Fig. 2(c). An operator
monitors sheet edges and adjusts the rotation speed of spreader
rolls to align the edge. This solution typically has low accuracy
in edge detection (5 cm) and large response time (5 s). Besides,
it is difficult to train operators and assure quality for long-term
production. If the IXPE material is not rectified by the spreader
rolls in time, the IXPE material could fold quickly during the
rolling process and turn into waste product. This could further
lead to unpredictable losses for the IXPE production. Figs. 2(d)
and (e) show the examples of the rectified IXPE material and
unrectified IXPE material during the production process, re-
spectively. Therefore, the goal of automatic rectification is to

detect edge position accurately and timely in a complicated
background.

As one of the best operators for edge detection, Canny
operator extracts optimal edge points by double threshold
(Hhigh, Hlow) method [11]. Specifically, after calculating the
gradient value of each edge pixel, the value higher than Hhigh

is marked as a strong edge pixel, and the value lower than Hlow

gets suppressed. If the value is between Hlow and Hhigh, it is
marked as a weak edge pixel and turns to a strong edge pixel if
connected with an original strong edge pixel, otherwise the weak
edge pixel gets suppressed. Finally, all the strong edge pixels get
output as edge points. However, Canny operator with fine-tuned
parameters does not achieve the satisfactory performance on
sheet edge extraction in following aspects.

1) Accuracy and Robustness: It is unable to achieve the
accurate and robust edge detection performance just by adjusting
parameters in Canny operator, not to say other less accurate edge
detection methods. Specifically, Fig. 3(a) shows the original
image of sheet edge position with a similar color in the back-
ground. With a high value for double threshold, Canny operator
suppresses target edge points (the black dashed lines), resulting
in the inaccurate edge position calculation in Fig. 3(b). While
with a low value for double threshold, the result in Fig. 3(c)
gives more interfered edges, e.g., interfered edges around target
edge lines and blue dashed lines have similar features, leading
to poor accuracy and failure.

2) Time-Efficiency: The edge deviation rectification for mate-
rial sheet production requires real-time response, i.e., less than
200 ms. Traditional edge detection methods fail to meet this
requirement as shown in Fig. 3(d). For Canny operator with
Houghlines (HL) detection, when the frame size reduces from
1920×1080 to 640×480, the time delay reduces from 1,400 ms
to 360 ms. Other edge operators even require larger processing
time. Moreover, the low resolution image is not conducive to
manual re-examination.

The above observations motivate several ideas in design-
ing an accurate and time-efficient edge detection, which are
summarized as follows: 1) To enhance accuracy, we should fuse
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Fig. 3. Performance of various operators. (a)∼(c): accuracy and robustness, (d): time-efficiency.

Fig. 4. System deployment.

the results from multiple approaches; 2) To improve robustness,
we should enhance the contrast between the sheet and back-
ground; 3) To achieve time-efficiency, we should focus on the
specific region of interest instead of the full frame.

IV. SYSTEM DESIGN

System Deployment: Fig. 4 illustrates the deployment of
Edge-Eye. We deploy a camera in front of the vertical heating
furnace at a distance of 1.2 m from the target material sheet.
Without loss of generality, the camera has a wide-angle lens of
120◦ with video quality of 1080p/30fps, thus each pixel of the
image frame represents a width of 1.87 mm on the sheet plane.
The images obtained from the camera contain much noise due
to the color similarity between the sheet and the background.
To minimize background noise, we use a pair of reference bars
to generate high edge contrast between the material sheet and
the background, while narrowing the observation range to a
relatively clean and controllable area. Since the edge calculation
relies on the difference of colors in the image, which can be
transformed to the distance of gray-scale image. Here, we use
the max/min gray values (0 and 255), which are exactly the white
and black colors. As a result, either of the two bars (W Bar and
B Bar) can always have a color difference no less than 255/2.
To reduce the interference of light reflection in the recognition
area, we set a shading plate in front of the camera to maintain a
stable ambient light. We combine the camera with the ARM64
computing platform as our mobile edge node to detect sheet edge
with fast response and low transmission delay.

Software Framework: Fig. 5 shows the modules of Edge-Eye.
Specifically, 1) Availability Detection module checks whether
any sheet is in production. This is done by comparing the
difference between the current frame and the empty frame. 2)
Perspective Transformation module corrects image distortion of

Fig. 5. System overview.

captured frame and obtains straight edges. If the system is first
running, i.e., no mROI is extracted, we run the preprocessing
module to finish the initialization. 3) Preprocessing module
selects the reference bar and extracts the mROI. It selects the
highest contrast reference bar from W Bar and B Bar according
to sheet color, and extracts the area near the edge of material
sheet as mROI to reduce the computational overhead. Besides,
it sets cached mROI to further speed up the detection of sheet
edge. 4) Edge Detection module generates the super-resolution
image for mROI, and provides the accurate sheet edge position
by the bi-direction edge tracking method with abnormal detec-
tion. First, it uses the Fast Efficient Sub-Pixel Convolutional
Neural Network (Fast-ESPCN) to build the super-resolution
image from the original low-resolution image on this specific
ROI area, thereby generating more edge points and finer grit
description for material sheet. Second, it calculates the edge
points and divides those points into background edge points
and material sheet related edge points. Third, it tracks the sheet
edge in vertical direction and uncovered part of reference bar
in horizontal direction separately, and fuses two recognition
results through the complimentary filter. Then, it detects and
repairs abnormal results to realize high-precision edge position
recognition. 5) Deviation Rectification module rectifies the edge
deviation and adjusts sheet edge to the standard position. It
uses the negative feedback control method to make a rapid
and appropriate decision. We apply a linear model to depict
the relationship between the sheet position and the speed of
spreader rolls, thus we can keep sheet edge deviation within the
standard range by adjusting the roll speed efficiently. We then use
the multi-stage feedback regulation mechanism to dynamically
adjust the parameters of the linear model, achieving a smaller
deviation jitter range and shorter rectification time.
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Fig. 6. Material availability detection around reference bars. Left: Frames in
detection area (frame 3 = frame 1 - frame 2), Right: RGB distribution of: 1©
frame 3, 2© difference frame between empty frames.

A. Availability Detection

The system should be triggered only when the IXPE produc-
tion is in progress. To perform the material availability detection,
we use the frame difference method to verify whether there exists
material sheet on the conveyor. Specifically, we set up a detection
area in the center of reference bars. As shown in Fig. 6(a),
we record an empty background frame as the empty frame,
and calculate the difference between the current frame and the
empty frame. We thus perform analysis on the RGB distribution
of the difference frame. As shown in Fig. 6(b), we can find
that, in regard to RGB distribution, the difference between the
empty frames is small, whereas the difference between the empty
frame and the production frame is quite large. Therefore, we
use the entropy of difference frame to determine whether there
exists material sheet in production. Specifically, we calculate
the entropy of R, G, and B channels in the difference frame
F , respectively. Taking channel R as an example, we use hi to
denote the total number of pixels with value i in channel R,
and use n to denote the number of different values of i in this
channel. We use pi to represent the ratio of pixels with value i
to all pixels in channel R, thus pi = hi/(

∑n−1
j=0 hj). Then, the

entropy valueH(F ), which describes the information of channel
R in the difference frame F , can be calculated as follows:

H(F ) = −
n−1∑
i=0

pi log pi. (1)

To reduce the complexity in the calculation, we convert the
RGB difference frame into a gray-scale image and reduce the
value range from (0,255) to (0,16) by dividing point value
by 16. Then we calculate the entropy of this simplified gray-
scale image. To enhance environmental adaptability, we set two
thresholds, Hupdate and Hmaterial. For each periodic interval,
e.g., 1 minute, when the H(G) of current frame is less than
Hupdate, we update the empty frame with the current frame.
When H(G) of the current frame is greater than Hmaterial, it
can be determined that the material sheet is in production and
the edge detection should be started.

B. Perspective Transformation

A camera usually suffers the lens distortion when capturing
images in real complex environment. Since the camera is de-
ployed close to the sheet, this distortion will make the edge in

Fig. 7. Perspective transformation for captured frame.

captured frame bend seriously, which brings great interference
to detection accuracy. Fortunately, the distortion is an inherent
property of camera and all frames captured by one camera can
be calibrated with the same calibration parameters. Therefore,
before the camera is deployed, we use the chessboard-based
calibration method to calculate parameters and correct distor-
tion [17]. Specifically, the transformation relationship between
distortion coordinate (xc, yc) and correction coordinate (xp, yp)
is shown in (2), where r2 = x2

p + y2p.

[
xc

yc

]
=

(
1 + k1r

2 + k2r
4 + k3r

6
) [xp

yp

]

+

[
2p1xpyp + p2(r

2 + 2x2
p)

2p2xpyp + p1(r
2 + 2x2

p)

]
. (2)

The parameters k1, k2, k3 and p1, p2 represent the distortion
factors, which can be calculated by the following steps: 1) use the
camera to take photos of the chessboard from various angles, 2)
search the corners of black and white boxes on those chessboard
photos, 3) calculate the correspondence between the corners in
the image and the real world, and generate spatial points in world
coordinates, 4) calculate the corresponding camera parameters
(k1, k2, k3 and p1, p2) for camera calibration. Fig. 7 shows an
example of perspective transformation on the captured distorted
frame.

C. Preprocessing

1) Reference Bar Selection: To obtain the highest image
gradient at the edge of material sheet, we select the bar with
higher contrast from W Bar or B Bar. Specifically, we use the
following steps to calculate the score of each reference bar and
select the one with higher score. First, we convert the RGB frame
into a gray-scale image using (3), where R,G,B are the values
of Red, Green, and Blue for each pixel in this RGB frame.

Gr = 0.2989×R+ 0.587×G+ 0.114×B. (3)
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Second, we make convolution using Sobel Filter in (4) and derive
the gradient along x-axis (horizontal direction).

Sx =

⎡⎢⎣1 0 −1

2 0 −2

1 0 −1

⎤⎥⎦. (4)

Third, we use a sliding window of size m× n to scan the
gradient image with the step of η pixels, and calculate the
maximum value of each row in the sliding window as the gradient
list. Note that, the boundary between the material sheet and
the reference bar generally corresponds to the area with high
gradient values, hence we can determine the boundary area by
comparing gradient lists of different sliding windows. Since the
sheet has two edges, i.e., left edge and right edge, we search
for the left and right boundary areas for each bar, respectively.
Denote the average and standard deviation of each gradient list
as μ and σ. We first select the sliding window with largest μ,
and remove all overlapping windows. Then we select the second
window with largest μ among the remaining. Actually, the two
windows contain the left edge and right edge, separately. Assume
the average and standard deviation of the two windows for one
bar are μ1, σ1 and μ2, σ2, respectively. Thus, the score of one
bar is calculated as

s = μ1 + μ2 − |μ1 − μ2| − ln(σ1 + 1)(σ2 + 1). (5)

The bar with higher score will be selected for reference.
2) Contrast Enhancement: To reduce the random interfer-

ence from ambient noise and improve the quality of edge ex-
traction, we perform the image enhancement for the boundary
area of selected bar. Specifically, we use a sliding window of size
m× n to scan the gradient image. When we find the parameterμ
of the sliding window is larger than the preset threshold, for these
areas, we use Laplacian Filter in (6) to enhance edge contrast.

∇2f(x, y) =
∂2f

∂x2
+

∂2f

∂y2
. (6)

For other areas, we use Gaussian Kernel Filter in (7) to smooth
random noise and suppress edge contrast.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 . (7)

3) mROI Extraction: To achieve time efficiency in edge de-
tection on MEN with limited computing resources, we extract
the mROI from the selected reference bar area. By removing the
edge irrelevant areas, we are able to reduce recognition area by
over 100 times compared with the full frame, as shown in Fig. 8.
According to the continuity of sheet movement, we observe that
the edge position changes slightly between adjacent frames.
Thus we use the previous edge position to determine current
mROI. After obtaining the left and right edge position of the
previous frame, i.e., xl(t− 1) and xr(t− 1), we can extract
the corresponding mROI areas of both edges for current frame
as follows. Specifically, since the edge of reference bar helps
determine the sheet edge, we set the height of mROI to a bit
larger than the height of reference bar, so as to ensure that the
extracted area contains the edge of reference bar. Meanwhile,
the width of mROI depends on two factors: the edge position in

Fig. 8. mROI extraction.

the previous frame, i.e., xl(t− 1) for left mROI and xr(t− 1)
for right mROI, and the searching range of 2xσ . Moreover, we
extend the edge of mROI at the bar side with additional length
of τx, to guarantee that enough reference bar and material edges
are inside the mROI. In this way, we can improve time efficiency
in the space domain.

4) Frame Caching: During the actual production process,
due to the continuity of sheet movement, the recognition result
of adjacent frames in the mROI usually tends to be consis-
tent. Much time could be wasted in recognizing these frames
repeatedly. Therefore, to achieve time efficiency, we propose
cache-pool-based method to avoid the duplicated edge detection
and further speed up the recognition process. Specifically, this
pool records a fixed number of frames in the mROI. We use
the Least Recently Used (LRU) based method [18] to update
the cache pool. We define the cache hit as the entropy value of
the difference frame between the current frame and the cached
frame. If the entropy value is less than the skip threshold, the
cache hit is successful. We then use the recognition result for
the cached frame to skip the complicated edge detection. Oth-
erwise, we start the normal edge detection process, and use the
corresponding recognition result of the current frame to update
the least recently used one in the cache pool. In this way, we can
further improve the time-efficiency in the time domain.

D. Edge Detection

1) Image Upsampling: Compared with low-resolution im-
ages, high-resolution images provide more details in texture and
help to improve the accuracy in edge detection. For example,
the resolution in the 4 K image is four times higher than that
of 1080p image. However, it is unaffordable for the limited
computing platform MEN to capture and recognize the original
4 K resolution frames, along with providing the Real-Time
Messaging Protocol (RTMP) media service. Besides, the cost
of a camera that supports 4 K resolution is over four times larger
than that of an ordinary 1080p camera. Therefore, according to
the frame in the mROI captured by an ordinary 1080p camera,
we leverage the Fast-ESPCN upsampling technology to generate
a super resolution image. Compared with recognition on original
4 K frame, our method can achieve the equivalent edge detection
accuracy but require much less recognition time and fewer
computing resources.

Fast-ESPCN Structure Design. Inspired from the ESPCN
model [19], we adjust some layers to achieve the fast speed
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Fig. 9. Fast-ESPCN method takes the mROI image (low resolution) as input,
and outputs the SR (super resolution) image.

Fig. 10. Training/ Validation performance of Fast-ESPCN.

of training and inference, as shown in Fig. 9. For the frame
in mROI with size H ×W , we use the growth type of hidden
layers to get a v2 (upsample factor) channels feature map with
the same size. Then, a sub-pixel convolution layer is used to
reshape the H ×W × v2 feature map to high resolution frame
with size vH × vW × 1. Empirically, we set v = 2 to upsample
the 1080p resolution image to 4 K.

Training and Validation. In the training stage, we first collect
the original distorted 4 K frames, and use the perspective trans-
formation to get calibrated 4 K frames as ground-truth. Then,
we resize the calibrated frames to 1080p resolution as input.
An NVIDIA GPU is used to complete the model training in
offline mode, then MEN runs this model to upsample the mROI
from 1080p low-resolution image to 4 K high-resolution image.
Fig. 10 shows the benchmark performance of Fast-ESPCN mod-
ule. With the training loss of 0.042 and validation Peak Signal-
to-Noise Ratio (PSNR) of 26.3, our model achieves fast training
convergence speed and high quality in image reconstruction.
The results show that the Fast-ESPCN method achieves average
processing time of 10.3 ms with a standard deviation of 4 ms,
and the single CPU core utilization rate is 50%. Compared with
the original downward type of hidden layers (105 ms average
processing time and 27.1 PSNR), i.e., the hidden layer with the
same hyperparameters set as the original ESPCN, with the same
upscale factor (v = 2), our method achieves similar PSNR error
but runs 10 times faster than the former.

2) Edge Point Extraction: With the high contrast between the
material sheet and reference bar, the edge detection operators,
e.g., the Canny operator with fine-tuned parameters can achieve
good performance on the edge point extraction, as shown in
Fig. 11. However, it is actually difficult to fine-tune parameters
for each sheet color, and there are no static parameters that
apply to all sheet colors. Based on this understanding, we aim

Fig. 11. Pre-study for Canny operator: (a) edge extraction performance for
double threshold, (b) 1© original mROI frame, 2© large thresholds obtain fewer
edge points, 3© appropriate thresholds obtain satisfying edge points, 4© small
thresholds obtain noisy edge points.

to adaptively adjust parameters for Canny operator to accurately
extract the two vertical lines for edge detection in the recognition
area. Therefore, as mentioned in Section III, since the double
thresholds of Canny operator, i.e., Hlow and Hhigh, is very
crucial to the edge detection, it is essential to obtain optimized
values for the two parameters to improve the performance. We
observe that, as shown in Fig. 8, for both the left and right
edges of the material sheet in the mROI, they form a line with
length no less than the height of mROI, respectively. We can
use this property to evaluate whether the extracted edge points
are satisfied for edge detection. Specifically, we set large values
for (Hhigh, Hlow) initially, it enables us to extract left and right
vertical lines for the edge detection, where both lines have a small
number of edge points to start with. Then, we iteratively update
the values of (Hhigh, Hlow)by step (−Hu,−2Hu), and evaluate
whether the extracted edge points form two major lines which
are long enough. The iteration keeps running until the number
of extracted edge points is greater than a certain threshold τ .

After fine-tuning the parameters of Canny operator, we extract
all candidate edge points, including the background-related edge
points and the sheet-related edge points. Thus, it is essential
to separate the sheet-related edge points from the background-
related edge points. We observe that, during the production
process, only the sheet-related edge points move side to side,
whereas the background-related edge points keep static. There-
fore, we can divide all candidate edge points into static points,
i.e., background-related edge points, and moving points, i.e.,
sheet-related edge points, from a time-domain perspective.
Based on this understanding, we can calculate the intersection
of edge points in multiple frames to extract the static points Ss,
which keep static across multiple frames. Specifically, suppose
the candidate edge points calculated by the Canny operator
is Si for each frame i, then, for the previous k frames, we
define the common background edge points Su as follows:
Su = Si−k ∩ Si−k+1. . . ∩ Si−1. After that, the static points Ss

can be calculated as follows: Ss = Su ∩ Si. Then, the moving
points for each frame i can be calculated by subtracting the static
points Ss from the candidate edge points, i.e., Sm = Si − Ss.
This separation results are shown in Fig. 12. Herein, the moving
points Sm contain both the edge points of sheet as well as the
occasionally blocked edge points of reference bar.

3) Bi-Direction Edge Tracking: After obtaining the edge
points of sheet, we can perform the edge tracking for each
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Fig. 12. Separate static and moving edge points for current image frame: (a)
original mROI frame, (b) extracted edge points, (c) separated static edge points,
(d) separated moving edge points.

Algorithm 1: Bi-Direction Edge Tracking.

frame by searching vertical lines according to the extracted edge
points. However, the edge tracking in a single direction, e.g.,
searching for edges in the vertical direction, is susceptible to the
interference from ambient noise and may lead to the inaccurate
recognition result. To improve the accuracy and robustness for
edge tracking, we propose a Bi-direction Edge Tracking method.
As shown in Algorithm 1, the algorithm is composed of three
parts, i.e., vertical edge tracking for material sheet, horizontal
edge tracking for reference bar and bi-direction fusion. After
extracting edge points, we divide each set of edge points into
left-edge-points and right-edge-points according to coordinates
in the x-axis. Without loss of generality, we take one side of
edge points as an example to show the detailed algorithm design
of Bi-direction Edge Tracking.

Vertical Edge Tracking: In the vertical edge tracking, we aim
to find a vertical line to accurately estimate the edge position
of sheet, according to the extracted moving points Sm. How-
ever, when the sheet edge moves from side to side during the
production process, the edge points of sheet can coincide with
the static background edge points, resulting in part of missing
sheet edge points among the extracted moving points Sm when

Fig. 13. Horizontal edge tracking for selected reference bar: (a) original frame
of left mROI, (b) edge points from original frame, (c) sheet moves left, (d) sheet
moves right.

performing Sm = Si − Ss. Therefore, to identify the vertical
line corresponding to the sheet edge, we need to verify and search
for missing sheet edge points. Specifically, to verify if there exist
missing sheet edge points in the vertical direction, we first project
the moving points on y-axis and count the cardinality of unique
projected points. If the cardinality is less than a threshold τv , we
then use the static points vertically adjacent to the moving points
to recover the originally missing sheet edge points. After that,
we check all vertical lines with length greater than threshold τv
from the updated moving points Sm, and identify an optimal
vertical line corresponding to xv(t) to denote the sheet edge.

Horizontal Edge Tracking: In the horizontal edge tracking, we
aim to find a leftmost or rightmost point of selected reference
bar to accurately estimate the edge position of sheet. Herein, the
leftmost or rightmost point corresponds to the boundary between
the reference bar and the sheet, respectively. In principle, the
leftmost or rightmost point can be identified from the static edge
pointsSs. However, when the sheet edge moves from side to side
as shown in Fig. 13, the static edge points of selected reference
bar can be occasionally blocked by the sheet, causing the left-
most or rightmost point to be possibly categorized to moving
points. Therefore, we need to further identify the leftmost or
rightmost point from either the static points or moving points.
Specifically, when the sheet edge moves towards the center
position, more points of selected reference bar can be extracted.
In this situation, we search the horizontal line from Sm and use
the leftmost/rightmost point of the line as the recognition result.
When the material sheet moves away from the center position,
fewer points of reference bar get extracted. In this situation, for
the current frame i, we search the horizontal line from Ss, and
use the leftmost/rightmost point of the line as the recognition
result xh(t).

Bi-Direction Fusion: According to the recognition results
from Vertical Edge Tracking and Horizontal Edge Tracking,
it is difficult to determine which one is more accurate and
reliable when the two relatively independent results are differ-
ent. Considering the continuity of sheet movement, we give
different weights on current horizontal/vertical edge track-
ing results. Specifically, we set the weight according to the
difference between the previous fused result and the current
horizontal/vertical edge tracking results. In the complimentary
filter, the one with closer distance to the previous fused result
will have higher weight, as shown in (8).

x(t)=
|xh(t)−x(t− 1)|×xv(t)+|xv(t)−x(t−1)|×xh(t)

|xv(t)−x(t−1)|+|xh(t)−x(t−1)| .

(8)
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Fig. 14. CDF of edge position change and width change.

Herein, x(t) and x(t− 1) denote the fused results at current
time t and previous time t− 1, respectively. xv(t) and xh(t)
denote the recognition results from vertical direction and hor-
izontal direction at time t. The weight of current horizontal
edge tracking result xh(t) is |xv(t)− x(t− 1)|, which is the
difference between current vertical edge tracking result and
previous fused result, and the weight of current vertical edge
tracking result xv(t) can be calculated similarly. Based on the
complimentary filter, we can derive the accurate result with
stable and smooth property in the time domain.

4) Abnormal Results Detection: In actual production pro-
cess, if the detected edge position deviates too much from
the actual position, the incorrect manipulation in the following
deviation rectification could cause the material sheet to shift
dramatically. The material sheet could even shift out of the pro-
duction position, leading to the forced interruption of automated
production. We find that, since the material is maintained at
a relatively fixed width and the edge position changes slowly
during normal production process, the change of material sheet’s
edge position should be small between current frame and last
frame. To ensure the stability of automated production, we use
the continuity of sheet width change in time-domain to detect
abnormal results in edge position recognition. By calculating
the interquartile range (IQR), we determine whether current
recognition result is abnormal or not. The result is accepted if
the width change is smaller than a certain threshold, e.g., the
pixel change corresponding to a specified probability, say 95%,
as shown in Fig. 14. Otherwise, we use the most likely value
calculated from recent data to replace this result and ensure the
stability of automated production.

Specifically, to calculate the most likely value according to
recent data, we define the material width w(t) = xr(t)− xl(t),
and the width change can be represented as Δw(t) = w(t)−
w(t− 1). First, we calculate the calibrated material width w̃(t)
according to the linear regression in the previous n samples. In
this way, we obtain the width which accords with the variation
trend of the width in time-domain. Then, we use this calibrated
width w̃(t) to calculate the calibrated left edge position x̃l(t)
and right edge position x̃r(t), as shown in (9).

argmin
x̃r(t),x̃l(t)

(x̃l(t)− xl(t))
2 + (x̃r(t)− xr(t))

2

subject to x̃r(t)− x̃l(t) = w̃(t). (9)

E. Deviation Rectification

The edge deviation appears when the detected edge position
is not at the standard position. Once the edge deviation exceeds
a certain threshold, it is essential to efficiently rectify the sheet
edge deviation. Traditionally, the edge deviation rectification
is conducted manually. After the material sheet expands to
the product size, the workers will adjust the rolling speed of
stretching devices, i.e., the left and right spreader rolls, to rectify
the sheet edge deviation when necessary and keep the sheet edge
at the standard position. For example, when the edge position
deviates to the left side of standard position, the workers try
to gradually increase the rolling speed of left spreader rolls or
reduce the rolling speed of right spreader rolls, until the sheet
edge returns to the standard position. The adjustment of rolling
speed is purely determined by human experience. However,
to perform the edge deviation rectification automatically, it is
rather difficult to figure out the uncertain relationship between
edge deviation and rolling speed. Thus, we propose a negative
feedback control scheme, which formulates this relationship as
a linear model on a small scale.

Specifically, to achieve time-efficiency in the edge deviation
rectification, we use the linear model to describe the relationship
between the rolling speed of spreader rolls and the sheet edge
deviation, as shown in (10).

α× fl(t)− β × fr(t) = γ × (x(t)− xs). (10)

Here, fl and fr denote the frequency of electric motor for the left
and right spreader rolls, respectively, which are linearly related
to the rolling speed of spreader rolls. x(t) and xs denote the cur-
rent edge position and the standard edge position, respectively.
α, β, and γ are the ratio factors measured during the production
process.

Therefore, the whole control process can be regarded as the
combination of a series of linear models with different ratio
factors over time, as shown in (10). The ratio factors such as
α, β and γ can be different among different linear models over
time. We can continuously adjust the parameter γ to dynamically
adjust the linear model to approximate the specified relationship.
In this way, the relationship between the rolling speed of spreader
rolls and the sheet deviation can be depicted in a simplified
manner to reduce the deviation rectification complexity.

According to this model, we can adjust the parameters of
stretching devices, i.e., fl and fr, and rectify the sheet edge to
the standard position. However, in the real deployment, these
parameters α, β, γ do not only vary among different production
lines, but also change with the conveyor speed and the rolling
speed of spreader rolls. This leads to the sheet edge drift on the
standard position. Moreover, the time delay in the edge position
recognition and round-trip feedback further amplifies the jitters
of sheet edge alignment. To tackle these issues, we propose the
multi-stage feedback regulation, which adaptively adjusts the
parameters and smooths the results to obtain the stronger delay
tolerance and better rectification performance.

In the negative feedback control, we first calculate the
smoothed edge position x̂(t) from the current recognition result
and the previous k recognition results, i.e., x(t− k), . . ., x(t).
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Then, we check whether the edge position deviates from the stan-
dard range. If not, we maintain the last control parameters fl and
fr. Otherwise, we start the deviation rectification by changing
fl and fr to adjust sheet position movement. According to (10),
given a sheet position movement Δx̂(t) = x̂(t)− x̂(t− 1), to
minimize the change for control parameters fl and fr in both
left side and right side, we use the Minimum Mean Square Error
(MMSE) method to compute optimal values of fl(t) and fr(t)
as follows:

arg min
fl(t),fr(t)

(|fl(t)− fl(t− 1)|+ |fr(t)− fr(t− 1)|)

subject to

γ×Δx̂(t)=α×(fl(t)− fl(t− 1))−β × (fr(t)− fr(t− 1)).
(11)

Considering that α, β, γ change with the conveyor speed and
the rolling speed of spreader rolls from time to time, we need
to dynamically update α, β, γ along with time. According to
(10), we observe that the value of γ is linear to α and β, so we
only need to update γ in an equivalent manner. Therefore, after
figuring out the optimal values of f ∗

l (t) and f ∗
r (t), for the next

time slot t+ 1, given the sheet position movement Δx(t+ 1),
we can further use the two optimal values to update the parameter
γ as follows:

γ∗ =
1

Δx̂(t+ 1)
(α× (f ∗

l (t)− fl(t− 1))− β

× (f ∗
r (t)− fr(t− 1))). (12)

In this way, we can perform the negative feedback control
scheme by dynamically adjusting the parameters of the model,
while achieving time-efficiency and adaptivity in dynamic envi-
ronments.

During the process of deviation rectification, when large edge
deviation happens, frequent adjustments in rolling spreaders are
essentially needed. Inappropriate adjustments will enlarge the
jitters of edge position and decrease the rectification perfor-
mance. To tackle this issue, we propose Multi-Stage Negative
Feedback-based Control (MSNF) to smooth the frequent adjust-
ment of rolling spreaders. The detailed design of Multi-Stage
Negative Feedback-based Control (MSNF) is shown in Algo-
rithm 2. When adjusting the parameters of fl(t) and fr(t), we
use a sliding window W (t) of size k to progressively approach
the expected value of fl(t) and fr(t) from coarse granularity to
fine granularity in a multi-stage manner. Specifically, according
to the current edge deviation monitored from Edge-Eye, we first
calculate the expected change of rotation speed, i.e., Δf ∗

l (t)
and Δf ∗

r (t), and then divide the change value into k slots in
the slide window with the form of index attenuation, e.g., the
change values in the 1st, 2nd and following slot are Δf ∗

l (t)

2 ,
Δf ∗

l (t)

4 , Δf ∗
l (t)

8 and so on. In this way, the change value can be
effectively amortized in the following k slots, i.e.,

Δf ∗
l (t) ≈

t+k∑
i=t

Δf ∗
l (t)/2

i−t+1

Fig. 15. An example of Multi-Stage Negative Feedback-based Control.

=
Δf ∗

l (t)

2
+

Δf ∗
l (t)

4
+ · · ·+ Δf ∗

l (t)

2k+1
. (13)

Moreover, note that during the process of the multi-stage
negative feedback-based control, new edge deviation could ap-
pear in the slide window W (t) with k slots, due to the issues
like nonuniform expansion factors in the IXPE materials. It
is essential to further perform rectification on the new edge
deviation to progressively approach the expected edge position.
To tackle this issue, for current time t, our solution calculates the
new edge deviation, i.e., the sheet position movementΔx̂(t), and
further divide the difference into the following k slots in the slide
window with the form of index attenuation, as shown in Step 6 in
Algorithm 2. Then, for each following slot in the sliding window
W (t), it needs to compensate the edge deviation appearing in
the past k slots, as shown in Step 7 in Algorithm 2. In this
way, the edge deviation can be progressively rectified in a multi-
stage manner, by considering the continuously introduced edge
deviations. Fig. 15 shows an example of Multi-Stage Negative
Feedback-based Control. For each slot t, the edge deviation from
the previous k slots should be rectified with specified proportion
progressively.

F. Summary

Edge-Eye focuses on providing a deviation rectification sys-
tem for the real IXPE production, which satisfies high accu-
racy, time-efficiency and robustness in the limited computing
platform. To improve the sensing accuracy in the real scenario,
Perspective Transformation is used to calibrate the distortion of
lens, and Bi-direction Edge Tracking is used to detect the edge
positions based on the super-resolution image after unsampling.
To achieve the time-efficiency, Reference Bar Selection and
mROI Extraction are proposed to reduce the recognition area,
and Frame Caching is used to skip the recognition of duplicated
frames. To achieve the robust performance of deviation rectifi-
cation, Negative Feedback Control with dynamic parameters is
proposed to adapt to the dynamic and noisy environments and
make the rapid and accurate command response.

V. PERFORMANCE EVALUATION

A. Implementation

Hardware: We have fully implemented Edge-Eye and de-
ployed the system in the foaming production line at a local
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Algorithm 2: Multi-Stage Negative Feedback-Based Con-
trol (MSNF).

factory. We describe the system deployment and our evaluation
setup and report the performance results from a series of exper-
iments. We use industry-grade alloy as reference bars because
the natural color of alloy is highly resistant to high temperature.
We deploy two reference bars (i.e., W Bar and B Bar) in the
central position inside the vertical heating furnace. A shading
plate is placed in front of the recognition area to reduce the light
reflection. We deploy a camera (LT-OV2710 of BlueSky Tech) in
front of the vertical heating furnace with a distance of 1.2 m from
the target material sheet plane. The camera has a wide-angle lens
of 120◦ and its video quality of 1080p/30fps. Thus, one pixel of
the image frame captured by this camera represents the width of
1.87 mm on the material sheet plane. We combine the camera
with an ARM64 computing platform (Raspberry Pi 4 with 2 GB
RAM and 64 GB ROM) in MEN to accomplish the on-device
sheet edge detection task. A Programmable Logic Controller
(PLC) server receives the recognition result from MEN through
Modbus protocol and makes rectification commands for edge
deviation. Since the PLC server collects each production line
information in 5 Hz, a consistent update frequency contributes
to the delivery of control command. Therefore, the time of edge
detection needs to be controlled below 200 ms.

Setup: Our IXPE products have 11 different colors, divided
into 7 major kinds. For each color, there exist 3 different sizes.
For each sheet type, we collect 1 h of production data at the

beginning (Init), 2 hours in the middle (Mid), and 1 h in the
end (End). With 11×3 different types, we obtain 11×3×4 hours
of data in total.

Metrics: For edge detection, we use the recognition accuracy
and latency. For deviation rectification, we use the sheet edge
alignment error which is highly influenced by the detection
performance. For utilization of raw material sheets, we use the
ratio of product weight after getting cut and aligned to raw
material weight, which depends on the performance of edge
alignment.

(1) Edge Position Recognition: the failure rate refers to the
frequency of unsuccessfully detecting the two edges of material
sheet during the entire recognition process, and the recognition
accuracy rate refers to the difference between the recognition
result and the ground truth. (2) Edge Deviation Rectification:
we define the recognition time delay as the processing time from
the frame captured on MEN to the edge position calculated by
recognition process, and the control time delay as the time gap
between sheet edge appearing in the real production and result
received by digital console. Except the recognition task, there
exists other tasks, e.g., streaming service, recording service and
hardware port communication service. Here we focus on the
resource usage of recognition task and ensure MEN can handle
all the computing tasks without process scheduling delay. (3)
System Benchmark: we evaluate the core indicators of IXPE
production, the alignment of sheet edge and the utilization rate
of raw material sheets. Sheet edge alignment actually reflects the
performance of edge deviation rectification, and high-precision
alignment result directly improves the utilization rate of raw
material sheets. Above metrics directly or indirectly affect the
alignment performance. From the barrel effect, it can be seen that
a short board can directly lead to the deterioration of alignment,
which needs to be avoided as much as possible.

B. Evaluation of Edge Position Recognition

To evaluate the edge position recognition performance, we
compare Edge-eye with the distance-based edge detection (ToF,
Structured Light), traditional 2D camera-based edge detection
(Canny, Canny with ROI) and CNN-based edge detection (RCF).
We evaluate the unrecognition rate and the recognition accuracy
among different solutions. Specifically, for distance-based edge
detection, we respectively use the ToF(Time of Flight)-based
camera and structured light-based camera to measure the dis-
tance for edge detection. For CNN-based edge detection, we
use Richer Convolutional Features (RCF) [20] to perform edge
detection, it encapsulates both semantic and fine detail features
by leveraging all convolutional features, and achieves state-of-
the-art performance on several available datasets.

We also deploy the camera that supports 4 K resolution to
evaluate the recognition difference between SR 4 K resolution
frames and original 4 K resolution frames.

1) Recognition Rate: In actual production, unavoidable in-
terruption (e.g., material sheet expands or extra rod pulls sheet)
may occur, causing the failure of edge detection. We define
these cases as unrecognition results when the edge detection
method gives no edge position or the recognition result has
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Fig. 16. Evaluation of recognition performance with different settings.

a large distance with the ground-truth, e.g., over 20 mm. By
calculating the ratio of unrecognition time to full production
time, we evaluate the unrecognition rate for each method.

As shown in Fig. 16(a) and (b), among all solutions, our
solution achieves the best performance in recognition rate. The
Canny-based solution has the worst performance in recognition
rate. Edge-Eye achieves an unrecognition rate of 1.04%, and
the main unrecognition time is in the initialization stage where
material sheet expands and width changes rapidly with extra
rod appearance. Since the human worker rectifies the edge
deviation during the initialization stage, the unrecognition rate
of Edge-Eye has no influence on auto rectification performance.
Classic Canny operator achieves an unrecognition rate of 21.6%
on average, and most of the unrecognition cases occur during
the auto rectification stage. Interestingly, when we use Classic
Canny operator to process the ROI area of reference bars instead
of full frame, the unrecognition rate decreases to 8.3% which
shows a high contribution of the reference bars. As shown in
Fig. 16(c), we also find the unrecognition rate of the black color
material sheet is the lowest among all colors. It comes from the
large contrast with the original background, which contributes
to the successful recognition of Canny operator with houghlines
detection. Also the black color provides the best contrast with W
Bar compared with other sheet colors. As the opposite, the gray
color material sheet has the highest unrecognition rate because
of the low contrast with either W Bar or B Bar.

2) Recognition Accuracy: To evaluate the recognition accu-
racy, we compare the mean error of the estimated edge position,
by measuring the difference between recognition result and the
ground-truth of the edge position.

As shown in Fig. 16(a), we find that, among all solutions, our
solution achieves the best performance in recognition accuracy,
and the ToF-based camera has the worst performance in recog-
nition accuracy. The reason is that, due to the presence of glass
between the camera and the material, as well as the unstable
lighting condition, the depth information cannot be accurately
measured, thus it is not suitable to be used as an effective metric
for edge detection. For the CNN-based edge detection, RCF
achieves very close performance to our solution, however, it
incurs large compute complexity and brings high latency in
the edge detection process. Thus it is not suitable to support
real-time edge deviation rectification.

We further evaluate the recognition performance of Edge-Eye
in different production terms and different colors, as shown in

Fig. 16(b) and (c). We find that, if without reference bars, Edge-
Eye will achieve the lower recognition accuracy, as illustrated
by Gray*, Red* and Yellow* in Fig. 16(c). That is, the contrast
between the sheet and the background is reduced in the absence
of reference bars, which would greatly affect the performance of
edge detection. Judging from the production terms in Fig. 16(b),
the position error at the beginning stage is relatively large, with
an average position error of 3.6 mm. This is because that the
material edge will get bent when the material expands in the
initial stage, such that the issue of edge blur appears and the
error of edge detection increases.

To evaluate the accuracy improvement from image upsam-
pling, we evaluate the performance of no upsampling, upsam-
pling with interpolation as well as upsampling with Edge-Eye,
as shown in Fig. 16(d). We find that, for no upsampling method,
both the recognition rate and the recognition accuracy is very
low. For upsampling with interpolation, it can effectively im-
prove the recognized rate, but the accuracy is still not high
enough to support millimeter-level edge recognition. For up-
sampling with Edge-Eye, it achieves both high recognition rate
and recognition accuracy, and it greatly outperforms the other
two solutions.

3) Latency Analysis: During the production stage, Edge-Eye
achieves an average recognition time of 200 ms in edge detec-
tion. As shown in Fig. 17(a), the module of bi-direction edge
tracking consumes the most time. Besides, the cache module
has to calculate the image entropy for each frame in the cache
pool, thus it consumes extra time. In Fig. 17(b), we evaluate the
recognition latency after disabling the module of cache, image
upsampling, and mROI extraction in succession. Without mod-
ule of cache, the average recognition time increases to 270 ms.
Without module of image upsampling, the average recognition
time decreases to 110 ms. Without module of mROI extraction,
Edge-Eye directly tracks edge position in entire reference bar
area and achieves an average latency of 460 ms. It can be clearly
found that the mROI extraction module reduces the latency most,
and the module of image upsampling increases the extra la-
tency, but without this module, the position error increases from
2.8 mm to 5.4 mm. From the perspective of material production,
this is a considerable trade-off between latency and accuracy.

We further evaluate the latency in initialization, messaging
and rectification, which are not included in the edge detection
process. As shown in Fig. 17(c), for the initialization latency,
we evaluate the latency of reference bar selection and Canny

Authorized licensed use limited to: RMIT University Library. Downloaded on February 21,2024 at 09:06:33 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: INDUSTRIAL VISION: RECTIFYING MILLIMETER-LEVEL EDGE DEVIATION IN INDUSTRIAL INTERNET OF THINGS 1981

Fig. 17. Latency analysis.

Fig. 18. Evaluation of hyper-parameters of cache pool.

operator parameters generation. The experiment results show
that our solution achieves average latency of 1,700 ms and
1,300 ms for reference bar selection and Canny operator param-
eters generation, respectively. The latency is fairly small and it
can be effectively amortized by the following edge detection and
rectification phase. For the messaging latency, we evaluate the
latency of RTMP media service, it represents the time interval
between the appearance of a sheet in the detection area and the
corresponding frame appearing in the central control room. Our
solution achieves an average latency of 1,400 ms for RTMP
media service with limited computing resources in MEN. For
the rectification latency, we evaluate the overall latency of edge
deviation rectification, including the process of edge detection
and edge deviation rectification. Our solution achieves an av-
erage latency of 800 ms for rectification latency. Considering
that the conventional rolling speed is about 1 m/s, this latency is
qualified for providing reliable performance in edge deviation
rectification.

4) Cache Pool Analysis: We further evaluate the perfor-
mance of cache pool scheme through hit success rate, hit calcu-
lation time and false positive rate, by adjusting the skip threshold
and cache pool size. The hit success rate refers to the probability
of successfully finding duplicated frames, and the false positive
rate refers to the probability of mistaking the current frame as the
duplicated one. 1) Skip Threshold: We make further experiments
to determine the optimal skip threshold for cache pool, and the
result is shown in Fig. 18(a). As the skip threshold increases,
the hit success rate increases. However, when the skip threshold
is greater than 0.03, the false positive rate increases rapidly,
affecting the further recognition accuracy. In fact, the entropy
value represents the similarity between the two different frames
in the pixel level. Thus, the larger skip threshold will lead to the

Fig. 19. Resource consumption in mobile edge node.

wrong hit for the frames without enough similarity. Finally, we
set the skip threshold to 0.03, which can reduce the recognition
time without degrading the recognition accuracy. 2) Cache Pool
Size: A large size of cache pool always leads to higher hit success
rate, but also enlarges the hit calculation time. Here we conduct
experiments about cache pool size for best recognition perfor-
mance. As shown in Fig. 18(b), the calculation time increases
linearly with pool size, but the hit success rate increases slowly
after the pool size exceeds 80. The slow increase of hit success
rate means that most of similar frames are cached in the pool,
thus a larger pool size contributes little to the hit success rate
but greatly increases the hit computation time. Therefore, we
choose the value of 80 as our cache pool size.

C. Resource Consumption in Mobile Edge Node

1) CPU Usage in Mobile Edge Node: To keep the Mobile
Edge Node (MEN) run steadily in a long-term manner, we need
to ensure all tasks run fluently without long wait time on process
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Fig. 20. Edge deviation rectification performance in different conditions.

Fig. 21. Performance on deviation rectification with Edge-Eye and fine-tuned
Canny operator.

Fig. 22. Some typical challenging conditions.

scheduling. We thus look into the resource consumption for tasks
including edge recognition, frame capturing, RTMP streaming,
video recording and Modbus communication. We evaluate the
average and max-min value to ensure the MEN can run in long
term with reasonable load in the edge detection stage. As shown

Fig. 23. Comparison of different rectification methods.

in Fig. 19(a), we can clearly find a total of 75% of computing
resources on MEN are used. Among them, the recognition task
uses 8.75%-17.5% of the overall CPU resources, the upsampling
task uses 7%-13.5% of the overall CPU resources, the RTMP
task uses 3.5%-11% of the overall CPU resources, the recording
task uses 6%-22% of the overall CPU resources. In all, EdgeEye
can run steadily without incurring heavy computing load.

2) Memory Usage in Mobile Edge Node: We analyze the
memory usage for the corresponding tasks. With loss of gen-
erality, the overall memory in our setting is 2,048 MB in total.
As shown in Fig. 19(b), it is found that, in the edge detection
stage, the total memory usage is 1,475 MB on average. Among
them, the recognition task uses 10.3% of the overall memory
resources, the upsampling task uses 30% of the overall memory
resources, the RTMP task uses 11.7% of the overall memory
resources, the recording task uses 11.3% of the overall mem-
ory resources. In all, the total memory usage for the whole
system does not exceed the memory limitation, which means
Edge-Eye can run steadily without incurring heavy memory
usage.

D. Evaluation of Edge Deviation Rectification

1) PID Controller versus MSNF: We evaluate the rectifica-
tion performance for sheet edge deviation on the actual pro-
duction line. We implemented a standard rectification approach
with PID controller. We compare the performance of edge
deviation rectification between PID controller and our method

Authorized licensed use limited to: RMIT University Library. Downloaded on February 21,2024 at 09:06:33 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: INDUSTRIAL VISION: RECTIFYING MILLIMETER-LEVEL EDGE DEVIATION IN INDUSTRIAL INTERNET OF THINGS 1983

MSNF, i.e., the multi-stage negative feedback control. Specif-
ically, we perform the evaluation under different conditions of
environmental noises in production lines, i.e., the edge deviation
varies with time in different patterns, which are Gaussian noise,
Sinusoidal noise, and Step noise, respectively. Fig. 20 show the
rectification performance of PID controller and MSNF in the
above conditions. As shown in Fig. 20(a), in the condition of
Gaussian noise, we built a well-tuned PID controller according
to the training data with Gaussian distribution. We can find that
the PID controller does have lower mean error than MSNF, i.e.,
2 mm versus 4.2 mm, moreover, the PID controller has close
convergence time with MSNF, i.e., 0.12 s versus 0.14 s. The
reason of PID controller outperforming MSNF is that, the PID
controller was well tuned with a large amount of training data
with the prior knowledge of Gaussian distribution.

However, in the real production scenarios, different produc-
tion lines, or even the same production line with different types of
IXPE, have different production conditions, such as production
speed, production temperature and material thickness. Hence, a
well-tuned PID controller for one production line may suffer a
sharp drop in performance on another production line. Moreover,
the specific training cost for each production line one by one
is too high to be acceptable. Therefore, we further evaluate
the performance in different noise distributions. As shown in
Fig. 20(b), in the condition of Sinusoidal noise, the mean error of
MSNF is 6.2 mm, which is better than 7.6 mm for PID controller.
As shown in Fig. 20(c), in the condition of Step noise, the mean
error of MSNF is 4.3 mm, which is better than 5.7 mm for
PID controller. The reason is that, the PID controller requires
well-tuned parameters according to the exact variation patterns.
Without the exact prior knowledge, the PID controller cannot
perform well. In contrast, MSNF can automatically adjust the
parameters and adapt to different conditions, so it outperforms
the PID controller in most conditions.

2) The Impact From Different Edge Deviation Detection
Schemes: To evaluate how edge deviation detection accuracy af-
fects deviation rectification accuracy, we perform the multi-stage
negative feedback control based on two different edge deviation
detection schemes, i.e., the edge detection scheme of Edge-Eye
and the fine-tuned Canny operator. We find that, with different
edge deviation detection schemes, the performance of deviation
rectification varies a lot. As shown in Fig. 21(a), since the Canny
operator cannot provide accurate edge estimation, there exist
nonnegligible fluctuations for the rectified edge position over
time. As a contrast, with our Edge-eye-based solution, the edge
position is rectified very smoothly over time. We further evaluate
the edge alignment error and the setting time. Here, the setting
time refers to the time interval required for the edge to reach the
range of the allowable error after the edge deviation happens.
As shown in Fig. 21(b), with the Canny operator, the system
achieves average alignment error of 9.9 mm and average setting
time of 21.2 ms, in comparison, with Edge-Eye-based solution,
the system achieves average alignment error of 3.1 mm and
average setting time of 3.9 ms. This implies that the edge de-
viation detection accuracy indeed affects deviation rectification
accuracy. Moreover, Edge-Eye-based rectification outperforms
the Canny operator-based rectification in both alignment error
and convergence speed.

E. Case Study

Edge-Eye has been actually deployed in a large IXPE man-
ufacturing enterprise. Specifically, 36 production lines are
equipped with Edge-Eye system for automatic edge deviation
rectification over 20 months. Here, in addition to the above
experiment results in real production, we show some results
towards some typical challenging conditions in Fig. 22.

1) Light reflection: The deployment of shading plate reduces
most of the light reflection, but still in some cases the light re-
flects to key recognition area and causes huge interference. When
light reflects to the mROI area, it makes the vertical edge tracking
unreliable, thus decreases the average recognition accuracy to
6.4 mm. Due to the calculation of background edge points, the
reflection light will be considered as the background and get
subtracted from sheet edge points. In this way, the reflection
light will cause the slight effect on the deviation rectification.
Further design of the shading plate will be required to improve
the stability of recognition.

2) Weak background light: It comes from the light equip-
ment malfunction in the vertical heating furnace and lasts for
a short time. In this case, the camera captures dark frames and
reference bars provide less contrast with sheet color. Similar
with the issue of light reflection, the vertical edge tracking fails
to work, and the horizontal edge tracking may experience an
accuracy drop. Nevertheless, we can achieve the average recog-
nition accuracy of 4.8 mm, which is acceptable for automatic
rectification.

3) Glass dirt: As the small dirt is treated as the common
background edge point, it brings no effect on the edge detection.
In this case, the average recognition accuracy is 2.83 mm,
which is consistent with the accuracy of normal situation. The
result indicates that Edge-Eye can achieve the millimeter-level
accuracy for edge recognition even in challenging conditions,
satisfying the requirements of actual production scenarios.

Meanwhile, we compare the variation of edge position be-
tween the traditional human supervision and our solution Edge-
Eye. As shown in Fig. 23, the edge position with the automatic
rectification by Edge-Eye is much smoother than the manual
rectification. In general, during the process of 20-month real
deployment, 66 manpower per day (90% of the overall man-
power) has been saved for 36 production lines, the utilization
rate of IXPE material increases from 87% to 94%, thus the
comprehensive output value has increased 400,000 dollars per
month.

VI. CONCLUSION

In this paper, we propose Edge-Eye, a camera-enabled auto-
matic edge deviation rectification system for IXPE production
with mm-level accuracy. To achieve the robust edge detection,
we deploy a pair of high contrast reference bars to enhance the
edge contrast. To achieve the time-efficient edge detection with
high accuracy in MEN, we use the minimized ROI extraction
and cache method to reduce computing resources in both space
and time domains, and then adopt the image upsampling method
to improve the frame resolution for bi-direction edge tracking.
Finally, Edge-Eye automatically rectifies the edge deviation in
fine-grained level using multi-stage negative feedback control.
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We implemented Edge-Eye on the ARM64 platform. The real
evaluation of 20-month deployment for 36 production lines
shows that 90% of manpower is saved, and the utilization rate
of IXPE material increases from 87% to 94%.

Lei Xie and Chuyu Wang are co-corresponding authors.
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