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Indoor intrusion detection is a critical task for home security. Previous works in intrusion detection suffer 

from the problems such as blind spots in non-line-of-sight (NLOS) areas, restricted device locations, massive 

offline training required, and privacy concern. In this article, we design and implement an omnidirectional 

indoor intrusion detection system, named AudioGuard , using only a pair of speaker and microphone. Au- 

dioGuard is able to detect both line-of-sight (LOS) and NLOS intrusions. Our observation of acoustic signal 

propagation in an indoor environment shows that there exist abundant multipath reflections and human 

movement introduces Doppler shift in echo signals. We hence capture periodical Doppler shift caused by 

intruder’s walking motion to detect intrusion. Specifically, we first extract the Doppler shift embedded in 

echo signals, and we then propose a periodicity polarization method to cancel out the impact of the change 

of radial angle and the distance on periodicity of Doppler shift. Finally, we detect intrusion by measuring 

periodicity of Doppler shift over time. Extensive experiments show that AudioGuard achieves a miss report 

rate of 0% and 1.75% for LOS and NLOS intrusion, respectively, and a false alarm rate of 4.17%. 
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 INTRODUCTION 

ndoor intrusion (someone enters the room without permission) detection plays a crucial role

n home security such as protecting assets and preventing personal attacks. A recent report in

afeAtLast [ 36 ] shows that there are 2.5 million burglaries per year, 66% of which are home break-

ns, causing more than US$3.1 billion in damages every year. More than 25% of those who interrupt

urglars become victims of violent crimes. Homes without a security system have a 300% more

hance of getting broken into. The high incidence of home burglary demands effective intrusion

etection in home settings. 

Video-based surveillance [ 7 –10 ] has been widely used to detect intrusion in public places. How-

ver, the video-based approach may present a severe privacy concern when applied to a home

etting. Additionally, video-based systems fail to detect non-line-of-sight (NLOS) intrusion.

nfrared-based approaches [ 11 –14 ] have been well studied over a decade. However, these sys-

ems typically have a limited sensing range, since sensors are deployed in each typical entrance

uch as the main entrance and window. In addition, these sensors need to be properly installed

y well-trained professionals due to the strict requirement of sensor direction. Ultrasonic sensor

pproaches [ 33 , 34 ] may suffer the same problem. 

Radar-based approaches [ 15 –17 ] have been proposed in recent years. Although these ap-

roaches can achieve accurate intrusion detection, they typically require expensive human

fforts in offline training, and radar hardware is usually costly, hence limiting its applicability

n home settings. For a cost-effective solution, WiFi devices have been used to build intrusion

etection systems. These approaches [ 2 , 18 –22 , 26 –29 ] share the same idea of extracting Receive

ignal Strength Indicator (RSSI) or Channel State Information (CSI) variation pattern

nd applying machine learning algorithms for pattern matching. These approaches rely heavily

n massive data for offline training. To overcome data dependency, studies in References 

 23 , 24 ] detect intrusion by comparing RSSI variance to specific threshold. However, RSSI variance

aries significantly with respect to distance, location, and walking direction, and hence setting

n accurate threshold is not feasible. Li et al. [ 30 –32 ] detect intrusion by identifying the transient

oment of an intruder entering house with accurate estimation WiFi sensing boundary. However,

iFi-based approaches require the transmitter and receiver placed at two sides of an intruder, or

he performance declines significantly. 

The audio devices embedded in smartphone have been used to detect intrusion by detecting door

pening and closing events [ 35 ]. Microphone array has been used to detect intrusion [ 1 , 3 ]. How-

ver, like radar- and WiFi-based approaches, they rely heavily on massive data for offline training

o cover all the possible conditions. Ultrasonic sensors also have been used to build intrusion de-

ection systems [ 33 , 34 ]. Due to strong directionality, ultrasonic sensors-based approaches suffer

he same problem as in the infrared-based approaches. Zieger et al. [ 4 ] and Zu et al. [ 38 ] proposed

o extract various time and domain features of the data received by microphone array to identify

ntrusion. However, the experience-based method suffers from poor environment adaptation. 

In this article, we design and implement AudioGuard , an omnidirectional indoor intrusion detec-

ion system using only a speaker and microphone. The system is able to detect both line-of-sight

LOS) and NLOS intrusions. AudioGuard can be implemented on different audio device and is ro-

ust against interference and transceiver’s location and orientation. We observe that there exist

bundant acoustic reflections in an indoor environment, and an intruder’s walking motion always

ntroduces a periodic Doppler shift. We hence discover our basic idea to capture an intruder’s walk-

ng motion that is inevitable during intrusion. By measuring the periodic Doppler shift embedded

n echo signals, we can detect intrusion. Designing and implementing such an omnidirectional

ntrusion detection system, however, entails two main challenges as follows: 
CM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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(1) Different from the shift of main peak of echo spectrum as explained in the classical

Doppler effect theory, due to multipath reflections in indoor environments, the Doppler

shift caused by walking motion appears as sidelobes of an echo spectrum without an ob-

vious peak. This raises a problem of how to quantify the Doppler shift. 

(2) Although limbs swing during walking is periodic, as the change of radial angle and the

distance from intruder to device, the Doppler shift over time embeds with nonlinear trend

and its amplitude varies nonlinearly. It seriously decreases the periodicity of Doppler shift

and makes it difficult to distinguish intrusion and interference, e.g., curtain fluttering. 

To address the aforementioned challenges, we first propose to capture Doppler shift using an

cho power spectrum density (PSD) difference vector. We then propose a periodicity polariza-

ion method to cancel out the impact of the change of radial angle and the distance on Doppler shift

eriodicity. Finally, we detect intrusion by measuring the periodicity of Doppler shift sequence.

he demo video is available at https://tinyurl.com/4y44pdbk or https://youtu.be/iI-Pk4st75o . 

The main contributions of this article are summarized as follows: 

(1) We design and implement AudioGuard , an omnidirectional intrusion detection system us-

ing only a speaker and a microphone. It captures both LOS and NLOS intrusions. We

propose to capture Doppler shift using PSD difference vector and cancel out the impact

of the change of radial angle and the distance on Doppler shift over time using a period-

icity polarization algorithm. It enlarges the Doppler shift periodicity difference between

walking and other movement interference. 

(2) We conduct extensive experiments to evaluate AudioGuard with a variety of indoor set-

tings. Experiments show that AudioGuard can be implemented on different audio device

and robust against the variation of transceiver’s location and orientation. AudioGuard

achieves a miss report rate of 0% and 1.75% for LOS and NLOS intrusion, respectively. The

false alarm rate under interference is 4.17%. 

 RELATED WORK 

n this section, we briefly review the most relevant works in indoor intrusion detection that can

e grouped into three categories: video- and infrared-based approaches, RF-based approaches, and

udio-based approaches. 

.1 Video- and Infrared-based Approaches 

ideo-based approaches [ 7 –10 ] have been widely used to detect intrusion in public places. Cam-

ras are installed to capture images or video for intruder recognition. Compared with other in-

rusion detection approaches, video-based approaches can detect intrusion and also retain full

vidence. However, limited by visual angle, multiple cameras have to work together from differ-

nt positions to cover an entire room, and it fails if an intruder is in an NLOS area. In addition,

ideo-based approaches are usually sensitive to light conditions and may present a severe privacy

oncern when applied to home settings. 

Infrared-based approaches [ 11 –14 ] have been a mature intrusion detection solution for many

ears. These approaches can be further grouped into two categories. The first category leverages

 pyroelectric infrared sensor to capture infrared signals released by an intruder. Limited by small

ensing range, pyroelectric infrared sensors are usually deployed to monitor the small area around

ntrance. The second category leverages directional infrared sensor to detect transient moment

hen intruder block the line-of-sight between sender and receiver. To avoid underreporting, mul-

iple sensors have to be deployed in every possible entrance, such as door and window, to form
ACM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 

https://tinyurl.com/4y44pdbk
https://youtu.be/iI-Pk4st75o


4:4 T. Wang et al. 

a  

b  

s

2

R  

t  

p  

o  

i

 

h  

W  

d  

s  

t  

p  

o

 

f  

s  

a  

r  

L  

H  

m  

[  

h  

m  

s  

f  

c  

a

2

A  

l  

s  

e  

t  

l  

s  

R  

r  

s  

p  

t  

t

A

 wireless sensor network. In addition, due to strong directionality, thes sensors are required to

e carefully installed by well-trained professionals. The complex deployment may prevent these

ystems from large-scale deployment in home settings. 

.2 RF-based Approaches 

adar-based approaches [ 15 –17 ] share the same basic idea of extracting various features from

he Doppler effect caused by walking and then detecting intrusion by matching feature variation

attern using machine learning algorithms. These approaches rely heavily on massive data for

ffline training. In addition, expensive hardware prevents large-scale deployment of these systems

n home settings. 

To build an intrusion detection system that is friendly for the home environment, researchers

ave turned their attention to widely available commercial WiFi devices. In the early stage of

iFi sensing, RSSI was explored to detect intrusion [ 1 , 18 , 19 , 22 –25 , 39 ]. References [ 23 , 24 ]

etect intrusion using a threshold to identify whether movement occurs. These approaches are

ensitive to movement interference (e.g., curtain fluttering). References [ 1 , 18 , 19 , 22 , 25 , 39 ] share

he same basic idea as radar-based approaches. They detect intrusion by extracting RSSI variation

attern from offline RSSI data using machine learning algorithms. These approaches heavily rely

n massive offline data and suffer from poor environment adaptation ability. 

Similarly, References [ 2 –4 , 20 - 21 , 26 - 29 ] detect intrusion by exacting the CSI variation pattern

rom offline CSI data using different machine learning algorithms. These approaches suffer from

imilar problems as RSSI-based and radar-based approaches. To overcome the limitations of the

bove approaches, Li et al. [ 30 ] propose to detect intrusion using a relatively robust feature CSI

atio, i.e., the ratio between dynamic CSI component and static CSI component. Furthermore,

i et al. [ 31 ] propose to detect intrusion by measuring Doppler shift embedded in CSI [ 40 ].

owever, due to lack of mechanism to avoid interference, these two approaches are sensitive to

ovement interference such as object falling and curtain fluttering. The approach in Reference

 32 ] accurately detects intrusion by identifying the transient moment of an intruder entering a

ouse with an accurate estimation of WiFi sensing boundary. Lin et al. [ 5 ] propose a CSI-EIH

odel to describe the effect of moving object’s height to CSI amplitudes. Based on this model, the

ystem can detect intrusion and avoid false alarm caused by pets. However, the system may raise

alse alarms if moving object is higher than the given height threshold. In addition to these short-

omings, CSI-based approaches have restriction on device location. They require that transmitter

nd receiver placed at two sides of intruder, else the performance declines significantly. 

.3 Audio-based Approaches 

udio-based approaches have recently attracted researchers’ attention. Ultrasonic sensors are

everaged to build intrusion detection systems [ 33 , 34 ]. Due to strong directionality, ultrasonic

ensors-based approaches suffer the same problem as in infrared-based approaches. Dissanayake

t al. [ 35 ] use the speaker and microphone embedded in smartphones to detect intrusion by iden-

ifying door opening and closing events based on Doppler shift. However, it is sensitive to the

ocation and orientation of the smartphone, because different locations and orientations of the

martphone may result in completely different Doppler shifts. In addition, like both radar- and

SSI-based approaches, it also heavily relies on massive data for offline training. Microphone ar-

ays have been used to detect intrusion [ 1 , 3 ]. However, these methods also heavily rely on mas-

ive data for offline training to cover all the possible conditions. Zieger et al. [ 4 ] and Zu et al. [ 38 ]

roposed to extract various time and domain features of the data received by microphone array

o identify intrusion. These approaches are all experience-based approaches lacking explainable

heory. It leads to poor environment adaptation ability. 
CM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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283.4 Hz

Fig. 1. Classical Doppler shift caused by moving reflector. 
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Differently, in this article, we design and implement AudioGuard , an omnidirectional indoor in-

rusion detection system using only a pair of speaker and microphone. AudioGuard detects intru-

ion by fully leveraging abundant multipath reflection in indoor environment to capture periodical

oppler shift caused by intruder’s walking. It is able to detect both LOS and NLOS intrusions. 

 DOPPLER SHIFT CAUSED BY INTRUSION IN INDOOR ENVIRONMENT 

.1 Classical Doppler Effect 

oppler frequency shift is caused by relative movement between transmitter and receiver. In gen-

ral, when a receiver moves toward a signal source, the frequency of the received signal increases

nd vice versa. Mathematically, the frequency of the received signal can be described as follows: 

f ′ = 
c ±v r 

c ∓v s 
f , (1)

here f ′ is the received frequency, f is the transmitted frequency, c is the velocity of the wave in

ropagation medium, v r is the radial velocity of the receiver relative to the medium (positive if the

eceiver is moving toward the source and negative otherwise), and v s is the radial velocity of the

ource relative to the medium (positive if the source is moving away from receiver and negative

therwise). 

If the signal source and receiver are integrated to form an acoustic radar, then v r = v s . Plugging

±v s = | v | · cos (θ ) ( v and θ denote the walking speed of reflector and the angle between v and sig-

al source, respectively) into Equation ( 1 ), the Doppler frequency shift Δf can be represented as 

Δf = f ′ − f = 

( 
2 | v | · cos ( θ ) 

c ∓ | v | · cos ( θ ) 

) 
· f . (2)

When v is much less than the velocity of sound c , we have c ∓v s ≈ c . Δf can be further

implified as 

Δf = 
2 | v | cos ( θ ) 

c 
f . (3)

The ideal model above assumes that the receiver only receives the signal reflected from the front

f the moving reflector. Thus, the Doppler shift appears as the peak shift echo spectrum. As shown

n Figure 1 , when the reflector moves toward the transceiver with a speed of 1 m/s, the Doppler

hift Δf apears as the peak shift of 283.4 Hz (the frequency of transmitting signal is 20 kHz and

he sampling frequency is 48 kHz). 

.2 Doppler Shift Caused by Walking in Spectrum 

omparing with the human body, the reflection area of a static environment is much larger. In

ther words, the power of the multipath signal reflected from intruder is much lower than the
ACM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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Fig. 2. Comparing the frequency resolution of FFT and the proposed method. 

Fig. 3. Time–frequency spectrum of the echo when walking and other disturbance events happen. 

p  

r  

c  

a  

p  

s  

s  

w  

s  

d  

fi

 

e  

h  

p  

e  

i  

c

3

F  

t  

o

 

s  

A

ower of the multipath signal reflected from the static environment. However, only the signals

eflected from the moving object embed with the Doppler shift. The result is that rather than

hanging the main peak of echo spectrum, the Doppler shift caused by intruder’s walking appears

s sidelobes of echo spectrum. Additionally, as shown in Figure 2 (a), the change of the reflection

ath length of the signal reflected from the front and the back of intruder are always opposite,

o they always introduce opposite Doppler shift (positive Doppler shift versus negative Doppler

hift). Based on the above analysis, we can finally derive that a Doppler shift caused by walking al-

ays appears as two different shapes of sidelobes at two sides of the main peak of echo. Figure 2 (b)

hows the PSDs of echo (0.1 second) when an intruder is approaching and walking away from the

evice (the frequency of transmitting signal is 20 kHz and the sampling frequency is 48 kHz). So

nding a way to quantify the Doppler shift caused by the walking is challenging. 

We consider a scenario where there are two people in a room and they are out of the sight of

ach other. For example, one is in bedroom and the other one is outside bedroom. One can still

ear what the other says, since the voice signals may be reflected from the static environment and

ropagate through multipath. Similarly, due to abundant acoustic multipath reflections in indoor

nvironments, even if the intruder is in NLOS areas, the microphone can still receive the signal

ndirectly reflected from the intruder, and, thus, the echo is still embedded with the Doppler shift

aused by the intruder’s walking. 

.3 Periodicity of the Doppler Shift Caused by Walking over Time 

igure 3 (a) shows the time–frequency spectrum of the echo when intruder is walking away from

he device (as shown in Figure 3 (b)) and other interference (e.g., object falling, curtains fluttering,

pening and closing door, and chair sliding) happen. 

From Figure 3 (a), we observe that due to the periodic limbs swing during walking, the Doppler

hift caused by walking shows some periodicity, while a Doppler shift caused by interference is
CM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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Fig. 4. System framework. 
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periodic. So, our insight to detect intrusion is capturing the periodic Doppler shift sequence over

ime. However, from Figure 3 (a) we also observe that the Doppler shift varies nonlinearly over

ime as radial angle and the distance varies during walking (shown in Figure 3 (b)). Except for last

wo steps before a stop, when the intruder is close to the device, the Doppler shift appears as a

ow-frequency shift but with high power. When the intruder is far from the device, the Doppler

hift appears as a high-frequency shift but is low in power. As shown in Figure 3 (b), it is caused by

he fact that when an intruder is close to the device, the energy of the signal reflected from intruder

s relative larger, while large radial angle leads to small radial velocity, finally resulting in a low-

requency shift. When an intruder is far from the device, the energy of the signal reflected from

ntruder is low, while a small radial angle makes large radial velocity, finally resulting in a high-

requency shift. So finding a way to cancel out the impact of radial angle and distance variation

n the periodicity of the Doppler shift is challenging. 

 SYSTEM DESIGN AND IMPLEMENTATION 

.1 System Framework 

s shown in Figure 4 , AudioGuard has three modules, namely the Doppler effect extraction module,

he periodicity polarization module, and the intrusion detection module. The Doppler effect ex-

raction module extracts a Doppler shift using a PSD difference vector. The periodicity polarization

odule first retains the segments that contain moving events and then polarizes the periodicity

f the Doppler shift sequence. The intrusion detection module detects intrusion by measuring the

eriodicity of the Doppler shift sequence over time. 

.2 Doppler Shift Extraction 

udioGuard continuously transmits a 20-kHz single frequency acoustic signal, which is inaudible

or a human, through a player. The microphone receives the echo synchronously with the sam-

ling rate f s = 48 kHz . The length of the received frame is 0.1 seconds. To remove environmental

oise in echo, a band-pass filter is adapted. Since the maximum walking velocity of a human is

pproximately 4.3 m/s, according to the Doppler shift formula [ 41 ], the maximum Doppler shift

aused by an intruder walking is about 500 Hz. Therefore, the pass band of the filter is set as

 f c − 500 , f c + 500 ]. 

As mentioned in Section 3 , the Doppler shift caused by an intruder’s walking motion appears

s two different shapes of sidelobes at two sides of the main peak of the echo spectrum. The

raditional method, i.e., extracting a main peak shift of PSD of echo, cannot be applied to capture

he Doppler shift under this condition. In this article, we capture the Doppler shift using a PSD

ifference vector. 

PSD can be estimated using the Welch algorithm [ 6 ], which can significantly improve the

ariance characteristics of the power spectrum via overlap mechanism, also effectively reducing
ACM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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pectrum leakage via the window function. Specifically, the PSD of one echo frame x r (n) is

stimated as 

P ( ω k ) = 
1 

LN 

L−1 ∑ 

l= 0 

������
N−1 ∑ 

n= 0 

x r ( n + l ·M ) w ( n ) e −jnω k 

������
2 

, (4)

here ω k is the digital angular frequency, which is defined as ω k = kΔω = 2 πk/N , L is the num-

er of overlapped segments, N is the length of each segment, M is the hop size, andw is a window

unction with a length of N . As mentioned, the Doppler effect caused by walking appears at fre-

uency band f c − 500 ≤ f k ≤ f c + 500 . According to the relationship between physical frequency

f k and digital angular frequency ω k , i.e., ω k = 2 π f k /f s , where f s is the sampling frequency, we

an obtain the range of ω k , 

2 π ( f c − 500 ) 

f s 
≤ ω k ≤

2 π ( f c + 500 ) 

f s 
. (5)

Plugging ω k = kΔω = 2 πk/N into Equation ( 5 ), we obtain the range of k , 

N ( f c − 500 ) 

f s 
≤ k ≤ N ( f c + 500 ) 

f s 
. 

he minimum and maximum of k is 

k 1 = 

⌈ 
N ( f c − 500 ) 

f s 

⌉ 
, k H 

= 

⌊ 
N ( f c + 500 ) 

f s 

⌋ 
hen the PSD difference vector of the echo frame at time t i is defined as 

P D i = 
(
di f f i k 1 

, di f f i k 2 
, . . . , di f f i k m 

, . . . , d i i f f k H 

)
, k 1 < k 2 < · · · < k H 

, (6)

here di f f i 
k m 

is defined as 

di f f i k m 

= P i 
(
ω k m 

) − P r ef 
(
ω k m 

)
, (7)

here P i denotes the PSD of the echo frame at time t i (refer to Equation ( 4 )) and P r ef denotes the

eference PSD, which is the average PSD of the echo collected from current environment without

ny movement event. Every time AudioGuard starts, it first runs the initializer to obtain a reference

SD of the current environment. Specifically, the initializer continuously estimates the echo PSD

or 20 seconds and then calculates the average PSD value as a reference PSD. During this process,

ny movement event is forbidden. If movement happens while the PSD is being referenced, then

he initializer automatically tries again to obtain the reference PSD. Specifically, if the PSDs show

bvious fluctuation, which can be easily observed from the variances of points in PSD over time,

hen the initializer runs again. 

We randomly record 20 seconds to get reference PSD for five days in the same room without

ovement interference. Figure 5 shows the recorded reference PSD of each day. It can be observed

hat the reference PSDs are very similar. It indicates that if the environment does not change, then

e only need to get reference PSD for only one time. 

Figure 6 (a) show the reference PSD and the PSD of one echo frame when there is no moving

bject. Figure 6 (b) shows the PSD difference vector derived from Figure 6 (a). Figure 6 (c) shows the

eference PSD and the PSD of one echo frame when one subject is walking. Figure 6 (d) shows the

SD difference vector derived from Figure 6 (c). Figure 7 shows all the samples of PSD difference

ectors during one walking event containing seven steps. Even though during walking the limb

wing is periodic, the PSD difference vectors during walking do not show obvious periodicity. It

s consistent with our analysis in Section 3.3 . 
CM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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Fig. 5. Reference PSDs over five days. 

Fig. 6. PSD difference vector. 
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Finally, we quantify Doppler shift of the echo frame at time t i as the first normal form of P D i ,

.e., 

d i = ‖ P D i ‖ 1 = 
H ∑ 

j= 1 

����di f f i k j 

���� . (8)

.3 Periodicity Polarization 

ue to abundant acoustic multipath reflection in a room environment, almost all the movement

vents (e.g., walking, door opening and closing, object falling, object sliding, and curtain fluttering)

ill introduce a Doppler shift in echo. We have to first identify all the movement events and then

dentify intrusion among these movement events. According to Equation ( 8 ), compared with the

ondition where there is no moving object, when a moving event occurs, the value of d i will

e obviously larger due to a Doppler shift. So, we can simply truncate the segments containing

ovement using a threshold. Specifically, to avoid the interference caused by system jitter, if d i is
arger than the threshold for 3 continuous times, we start to record d i . Similarly, if d i is smaller

han the threshold for 3 continuous times, then we stop to record d i . Thus, each movement event

an be segmented out, and d i over time is recorded. We call the recorded d i over time as Doppler

hift sequence. Figure 8 shows the Doppler shift sequence of different movement events. 

We observe that the Doppler shift sequences caused by curtains fluttering and objects sliding

re aperiodic. Even though walking is periodic, the Doppler shift sequence caused by walking

shown in Figure 8 (c)) shows weak periodicity. It is caused by the change of radial angle and

he distance from intruder to device during walking (refer to Section 3.2 ). Too-weak periodicity

f a Doppler shift sequence caused by walking will result in intrusion detection error. In order

o improve intrusion detection accuracy, we intend to enhance the Doppler shift with weak

eriodicity while keeping the periodicity of an aperiodic Doppler shift sequence. In other words,

e enlarge the periodicity difference between a weak periodic Doppler shift sequence and an
ACM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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Fig. 7. Samples of PSD difference vector during a walking event. 

Fig. 8. Doppler shift sequence of different movement events. (a) Curtain fluttering. (b) Object sliding. 

(c) Walking. 
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periodic Doppler shift sequence. Thus, the intrusion can be easily detected as the Doppler shift

equence with strong periodicity. 

It is well known that strong periodicity simultaneously requires the following: (i) the shapes of

he sequence during all periods are similar, and (ii) the length of all the periods is almost constant.

f any one of the requirements is not met, then the signal will show weak even no periodicity.

rom Figure 6 , we clearly see that a Doppler shift sequence caused by walking only meets the first

equirement, while Doppler shift sequences caused by other aperiodic movements do not meet

oth requirements. If we can enhance the similarity of sequence shape during each period while

eep the length of original periods, then a Doppler shift sequence caused by walking will then meet

oth requirements, while Doppler shift sequences caused by other aperiodic movements only meet

he first requirement. Thus, the periodicity of a Doppler shift sequence caused by walking will be

ignificantly enhanced while the periodicity of Doppler shift sequence caused by other aperiodic

ovement will not be enhanced. 
CM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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Fig. 9. Periodic polarization of the Doppler shift sequence of different moving events. 
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Periodicity polarization is designed to eliminate the difference of fluctuation amplitude in each

eriod. Specifically, the periodicity polarization process is composed of detrending, smoothing, and

mplitude normalization. First, we extract the polynomial trend of a Doppler shift sequence and

ubtract it from Doppler shift sequence. Then, we smooth the detrended Doppler shift sequence to

liminate small burrs. Finally, we normalize the amplitude of Doppler shift sequence by eliminating

he envelope of the sequence using a Hilbert transform [ 37 ]. For a detrended and smoothed Doppler

hift sequence d = d 1 , d 2 , . . . d i , . . . , a discrete Hilbert transform can be calculated by leveraging

iscrete Fourier Transform and Inverse Discrete Fourier Transform, 

ˆ d = IDFT 

(
ˆ D 

)
, (9)

here ˆ D is defined as 

ˆ D ( k ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

−jD ( k ) , k = 

{ 

1 , 2 , . . . , N / 2 − 1 , w he n N is e ve n 

1 , 2 , . . . , ( N − 1 ) / 2 , w he n N is odd 

jD ( k ) , k = 

{ 

N / 2 + 1 , . . . , N − 1 , w he n N is e ve n 

( N + 1 ) / 2 , . . . , N − 1 , w he n N is odd 

, (10)

here D = DFT ( d ). With 

ˆ d , the envelope of d , i.e., the amplitude of d over time can be calculated

s 

A ( n ) = 

√ 

d ( n ) 2 + ˆ d ( n ) 2 . (11)

We then normalize d as 

d 

′ ( n ) = 
d ( n ) 

A ( n ) 
. (12)

The subfigures in first line of Figure 9 show the original Doppler shift sequences (blue line) and

he Doppler shift sequences after periodicity polarization (red line) of different moving events.

ubfigures in the second line of Figure 9 show the corresponding autocorrelations. A higher peak of

he autocorrelation function means stronger periodicity. Comparing the autocorrelation of original

oppler shift sequences and that of the Doppler shift sequences after periodicity polarization,

e can see that the periodicity of Doppler shift sequence of walking is significantly enhanced

hile the periodicities of other Doppler shift sequences are not enhanced obviously. It indicates

hat periodicity polarization is able to enlarge the periodicity difference between weak periodic

oppler shift sequence and aperiodic Doppler shift sequence. 
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.4 Intrusion Detection 

fter periodicity polarization, intrusion can be easily detected as the Doppler shift sequence with

trong periodicity. We measure the periodicity of Doppler shift sequence using autocorrelation

unction. The autocorrelation of the Doppler shift sequence after periodicity polarization d 

′ is
iven by 

R x ( k ) = 
c k 
c 0 
, (13)

here c k is the auto-covariance of S i , 

c k = 
1 

N 

N−k ∑ 

n= 1 

(
d 

′ ( n ) − d 

′ 
) (

d 

′ ( n + k ) − d 

′ 
)
, k = 0 , 1 , . . . , N − 1 . (14)

From Figure 8 , we observe that the autocorrelation function of periodic Doppler shift sequence

ooks like a sinusoid, but its amplitude decreases gradually, while the autocorrelation function

f aperiodic Doppler shift sequence varies irregularly. Based on this characteristic, the rules are

uilt as follows to judge whether intrusion happens. Suppose the coordinate value of first three

eaks of the autocorrelation are ( p 1 , l 1 ), ( p 2 , l 2 ), ( p 3 , l 3 ), respectively; then the peak intervals are Pk

ntevs = [ l 1 , l 2 − l 1 , l 3 − l 2 ] . If the following rules are satisfied, then we judge intrusion happening,

⎧ ⎪ ⎨ ⎪ ⎩ 

p 1 > P kT hr d, and p 1 > p 2 > p 3 , and 
m ax ( PkIn tvs ) −m in ( PkIn tvs ) 

m ean ( PkIn tvs ) > IntvT hrd 

The first rule is designed to ensure that the shapes of the Doppler shift sequence within all

eriods are similar enough. The second rule ensures that the lengths of all the periods are almost

onstant. The combination of the above two rules ensures that the detected Doppler shift is strong

eriodic. According to the experimental results in Section 5.6 , the threshold P kT hr d and PkIntvs
re suggested to set as 0.3–0.4 and 0.1–0.2, respectively. 

 EVALUATION 

n this section, we conduct comprehensive experiments to evaluate AudioGuard . First, we evaluate

udioGuard with LOS intrusion in office, laboratory, and home environments. We then test the

erformance for NLOS intrusion detection with five different settings in a real home environment.

inally, we evaluate its robustness. We test the impact of different transceivers, the variation of

ransceiver’s location and orientation, different walking speeds, and various interference. Finally,

e discuss the limitations of AudioGuard . The demo video of AudioGuard is available at https:

/tinyurl.com/4y44pdbk and https://youtu.be/iI-Pk4st75o . 

.1 Prototype Implementation 

e implement AudioGuard on two different acoustic transceivers, shown in Figure 10 . Two

ransceivers have the same commercial microphone (SAMSON MeteorMic, 16 bit, 48 kHz, 96 dB,

0 Hz–20 kHz ) but different speakers. The speaker in transceiver 1 is a commercial speaker (JBL

embe, 6 W, 80 dB, 80 Hz–20 kHz), while the speaker in transceiver 2 is a customized speaker

50 W, 96 dB, 1 kHz–40 kHz). We use transceiver 2 by default and compare the sensing range of

ransceiver 1 and transceiver 2 in Section 5.4.1 . The acoustic transceiver is connected to a Lenovo

aptop (Intel Core i7-7500UCPU, 8 GB RAM). The intrusion detection algorithm is implemented in

ATLAB and runs in real time. The frequency of transmitted signal is 20 kHz. The length of echo

rame is 0.1 second. 
CM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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Fig. 10. Two different transceivers. 

Fig. 11. LOS intrusion evaluation in three different rooms. 

Table 1. Experimental Result of LOS Intrusion Detection 

Room Number of experiments Number of miss report Miss report rate 

Office 105 0 0% 

Laboratory 121 0 0% 

Home 110 0 0% 
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.2 Evaluation for LOS Intrusion 

s shown in Figure 11 , we conduct an LOS intrusion detection experiment in three different rooms,

.e., office (5.2 m × 3 m), laboratory (8.4 m × 5.8 m), and home (irregular shape, 148 m 

2 ). In each

nvironment, four subjects are recruited to enter the room or walk freely in the room for at least

00 times to test the miss report rate (i.e., False Negative Rate). Note that in the home setting, i.e.,

he third setting, to ensure the intrusion is in LOS, the subjects are required to walk in the areas

ighlighted as yellow. 

Table 1 shows the experimental result. We can see that AudioGuard accurately captures all the

ntrusion. Because there is no restriction on subjects’ walking path, subjects change walking path

ynamically during walking in part of the experiments. So, the result also indicates that within its

ensing range (more than 120 m 

2 , refer to Section 5.5 ) AudioGuard is robust to intruder’s location

nd walking direction. 

.3 Evaluation with NLOS Intrusion 

e conduct NLOS intrusion detection experiment in a real home environment. Figure 12 shows

he settings. The red circles mark the location of the transceiver. The areas highlighted as yellow

re the places where intrusion happens. The settings ensure that the intrusion happens in NLOS

rea for transceiver. 
ACM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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Fig. 12. NLOS intrusion evaluation settings. 

Table 2. Experimental Result of NLOS Intrusion Detection 

Setting Num. Number of experiments Number of miss report Miss report rate 

1 105 1 0.95% 

2 121 2 1.65% 

3 110 0 0 

4 114 2 1.75% 

5 100 87 87% 
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In each setting, three subjects are recruited to walk in the yellow area freely for at least 100 times

o test the miss report rate. Table 2 shows the experimental result. We can see that in the first four

ettings AudioGuard can accurately capture intrusions. However, in setting 5, AudioGuard fails

ecause of the lack of effective reflected signal (i.e., the received multipath signal reflected from

ntruder). Similar results occur if the door is closed in settings 1, 2, and 4. In other words, if the

ffective reflected signal is blocked (e.g., door is closed) or the propagation path is too complex,

equiring too many times of reflection (e.g., setting 5), then AudioGuard fails to detect intrusion. 

.4 Robustness Evaluation 

5.4.1 Impact of Different Transceiver. The sensing range is related to transmitting power. In the

ame environment, larger transmitting power results in larger sensing range. We conduct exper-

ments in a laboratory (8.4 m × 6 m × 3.4 m) and a large lobby (38 m × 8 m × 9 m) to compare

he sensing range of two different transceiver mentioned in Section 5.1 . Specifically, as shown in

igures 13 (a) and 13 (b), we divide the space of laboratory and lobby into 1 × 1 m 

2 squares. To

ake full use of the space, we first place the transceiver at one corner of the laboratory and lobby

o measure the sensing range in front of the transceiver. Two subjects are asked to walk away

rom the transceiver at each square. The blue arrows and the dots in Figure 13 (a) and (b) denote

he walking direction and the start point of walking. The red circles linked with arrow denote

he location and orientation of transceiver in Figure 13 (a)–(f). If AudioGuard successfully detects

he walking events, then the square where the subject starts walking from is detectable, else the

quare is undetectable. To estimate the detectable area in the back of transceiver, the transceiver

s placed facing toward the wall and the subject walks in the area in the back of transceiver. 
CM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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Fig. 13. Sensing range of different transceivers in different environment. 

 

1  

d  

T  

a  

t

 

t  

p  

o  

s  

t  

s  

t  

L

 

d  

c  

a  

a  
The sensing range of transceiver 1 in the laboratory and lobby are shown in Figures 13 (c) and

3 (d). The sensing range of transceiver 2 is shown in Figures 13 (e) and 13 (f). The green squares

enote that AudioGuard successfully captures the walking events of both subjects in these squares.

he yellow squares colored denote that AudioGuard only captures the walking event of one subject

nd fails to detect the walking event of another subject in these squares. The red squares denote

hat AudioGuard fails to capture the walking events of both subjects in these squares. 

We observe some interesting phenomena. First, the sensing range of transceiver 2 is larger

han that of transceiver 1, especially in the lobby. It is reasonable that the larger transmitting

ower of the transceiver results in a larger sensing range. Second, comparing the sensing range

f transceiver 1 in the laboratory and lobby (as shown in Figures 13 (c) and 13 (d)), we find that the

pace of the lobby is much larger than that of the laboratory, but the detectable area in the labora-

ory is larger than that in the lobby. However, the detectable area of transceiver 2 in the lobby (as

hown in Figure 13 (f)) is larger than that in the laboratory (as shown in Figure 13 (e)). It indicates

hat the sensing range is related to both the transmitting power and the space of the environment.

arger rooms may have weaker multipath reflections and result in a smaller sensing range. 

5.4.2 Impact of NLOS Distance. From the experimental results in Section 5.3 , we know that the

etectability of NLOS intrusion depends on the complexity of signal propagation path, which is

losely related to NLOS distance (i.e., the distance along wall that blocks LOS between transceiver

nd intruder). In this section, we evaluate the impact of NLOS distance on intrusion detecting

ccuracy. Specifically, the evaluation environment is shown in Figure 14 (a). Two adjoining rooms
ACM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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Fig. 14. Impact of NLOS distance. 

Fig. 15. Evaluation with various location and walking direction of intruder. 
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6 m × 3 m) are connected by a door. The transceiver is placed in one room, and the intrusion hap-

ens in the other room. The black arrows denote five walking paths that have different distances

rom the wall, 1–5 m. For each path, the one subject is recruited to walk 50 times. Figure 14 (b)

hows the miss report rates when the subject walks along different paths. When the distance is

arger than 3 m, the miss report rate increases significantly. Though increasing transmitting power

ay mitigate this problem, as NLOS distance increases, failing to detect intrusion is inevitable. 

5.4.3 Impact of the Location and Walking Direction of Intruder. Adapting to the variation of

ntruder’s location and walking direction is necessary for intrusion detection in real application

nvironment. We now conduct experiments to test the impact of the location and walking

irection of intruder on intrusion detection. As shown in Figure 15 (a), we divide the room (10 m ×
 m × 3.4 m) into eight areas with different shapes. The transceiver is placed at the center facing

eft (highlighted as the yellow circle with an arrow). Fifteen participants (including 5 females

nd 10 males) are recruited to walk in each area toward nine different directions (direction 9 is

lockwise circle) to test the missing report rate. Each subject walks for two times toward each

irection in each area. From the layout of the areas, areas 1 and 3, areas 7 and 5, areas 8 and 4 are

ll symmetric, respectively. So, we only need to test AudioGuard in areas 1, 2, 6, 7, and 8. 

We summarize the experimental results from two aspects. Figure 15 (b) shows the missing report

ate in each area. We observe that except for area 6, the missing report rates of other areas are

ower than 5%. The missing report rates of area 6 are slightly higher, because area 6 is directly

ehind the transceiver. From the result of experiments in Section 5.4.2 , the detectable area behind

he transceiver is smaller than other orientations. In other words, the detectability of area 6 is

elatively lower than other areas. Figure 15 (c) shows the statistics of missing report rate of each
CM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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Fig. 16. Evaluation with various location and orientation of transceiver. 

Fig. 17. Effect of walking speed. 
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irection. We see that all the missing report rates are lower than 4%. In summary, the results

ndicate that AudioGuard is robust against intruder’s location and walking direction. 

5.4.4 Impact of the Location and Orientation of Transceiver. Robustness to the variation

f transceiver’s location and orientation is important for practical application. We place the

ransceiver randomly to test the missing report rate. 

Figure 16 (a) shows the transceiver’s location and orientation in eight experiments. In each ex-

eriment, three subjects are recruited to enter the room or walk freely in the room (8.4 m × 5.8 m).

igure 16 (b) shows the miss report rate in each experiment. We observe that the miss report rates

re all lower than 4%. It indicates that AudioGuard is robust against the variation of transceiver’s

ocation and orientation. 

5.4.5 Impact of Walking Speed. Different people have different walking speeds. It is necessary

o test the robustness against different speeds. Five subjects are recruited to evaluate the miss

eport rate of AudioGuard . Subjects are required to walk at four speed levels: 0.5–0.8 m/s,

.8–1.2 m/s, 1.5–2 m/s, and 2–3 m/s. There is no restriction for walking path. The experimental

esult is shown in Figure 17 . We observe that there is no miss report when the walking speed is

ower than 1.2 m/s, which is a normal walking speed. When walking fast, i.e., the speed reaches

.5–2 m/s, the miss report rate is still lower than 10%. When running, i.e., the speed reaches

–3 m/s, the miss report rate increases significantly. It is reasonable that when running the stride

requency is about 2–4 steps per second, i.e., 2–4 Hz. As mentioned in Section 4.2 , the length

f the received echo frame is 0.1 second. It means that the sampling rate of Doppler shift is

 / 0 . 1 = 10 Hz , which is too low to clearly depict the periodicity of Doppler shift sequence caused

y running. Thus, when running, the miss report rate increases significantly. 
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Table 3. Interference 

Interference Number of experiments 

Talking 20 

Knocking door 20 

Playing music 20 

Opening or closing door and window 20 

Object falling 20 

Curtain fluttering 20 

Fig. 18. Confusion matrix. 

Fig. 19. Impact of two key thresholds, P kT hr d and PkIntvs . 
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5.4.6 Impact of Interference. We now conduct an experiment to test the robustness against

oise interference (talking, knocking door, playing music) and movement interference (opening

r closing door and window, object falling, curtain fluttering). 

As shown in Table 3 , there are six different interferences, and each interference is repeated for

0 times. A total of 120 times interference randomly mixed with an equal number of walking are

sed to test both the miss report rate and false alarm rate (i.e., False Positive Rate, FPR). Figure 18

hows the confusion matrix. 

5.4.7 Impact of Key Thresholds. We now evaluate the impact of two key thresholds, i.e., k T hrd
nd PkIntvs (refer to Section 4.4 ), on miss report rate and false alarm rate. We know that common

mbient noise cannot incur false alarms, as they do not incur Doppler shift. So, in this experiment,

e only add three kinds of movement events (including opening or closing door and window,

bject falling, and curtain fluttering) as interference. Specifically, intrusion and movement inter-

erence randomly happen for 100 times and 60 times respectively. Figure 19 (a) shows the ROC

urve when PkIntvs = 0 . 1 and kT hrd varies from 0.1 to 0.6 with a step of 0.1. Figure 19 (a) shows
CM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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Table 4. System Runtime and Latency 

Number of Iterations Mean Variance Minimum Maximum 

No any movement 1,000 0.027 0.000 0.025 0.036 

Movement interference happens 1,000 0.027 0.000 0.025 0.041 

Intrusion happens 1,000 0.028 0.003 0.026 0.049 
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he ROC curve when kT hrd = 0 . 3 and PkIntvs varies from 0 to 0.2 with a step of 0.05. According

o above results, P kT hr d and PkIntvs are suggested to set as 0.3–0.4 and 0.1–0.2, respectively. 

.5 Consuming Time Evaluation 

n this section, we conduct an experiment to test the computational overhead of AudioGuard . As

resented in Section 4.2 , the length of the received audio frame by the microphone is 0.1 second.

he iteration cycle of AudioGuard is equal to the length of audio frame. To ensure that AudioGuard

uns in real time, the consuming time of signal processing have to be shorter than 0.1 second,

r else frame drop occurs. We test the consuming time of the signal processing of AudioGuard

nder three different settings: (i) no movement occurs, (ii) movement interference occurs, and (ii)

ntrusion occurs. For each setting, 

AudioGuard iterates for 1,000 times, and we record the consuming time. Table 4 shows the sta-

istics of the consuming time under three settings. We observe that the maximums of consuming

ime of signal processing under three settings are all smaller than 0.049 seconds, which is far less

han the upper bound 0.1 second. 

.6 Discuss 

e now discuss limitations in the current implementation. 

(1) AudioGuard can only detect the intrusion caused by single intruder. It cannot detect intru-

sion caused by multiple intruders. AudioGuard detects intrusion by measuring the period-

icity of Doppler shift. When multiple intruders walk simultaneously, their different stride

frequencies (non-multiple) incur aperiodic Doppler shift, which will be regarded as inter-

ference by AudioGuard . A promising way to tackle this problem is decomposing Doppler

shift sequence using the method such as time-frequency domain analysis and independent

component analysis. 

(2) AudioGuard is sensitive to periodical movement interference. As mentioned in Section 3.3 ,

the basic idea of AudioGuard is to capture the periodical Doppler shift sequence; when

periodical movement interference happens, AudioGuard may experience false alarms. It

is worth noting that the periodical sound interference (such as the sound of knocking

door, the sound of footsteps outside the room, the sound of periodical music, etc.) will

not result in false alarm, because pure sound will not introduce a Doppler shift. To avoid

periodical movement interferences, other features of Doppler shift need to be extracted to

distinguish the category of moving object. 

(3) AudioGuard may miss the intrusion when intruder is running. As mentioned in Section 5.4.5 ,

running will blur the periodicity of Doppler shift sequence, which may finally lead to miss

report. 

(4) AudioGuard may miss the intrusion in NLOS condition if the reflected signal is seriously

blocked. As mentioned in Section 5.3 , if the reflected signal is completely blocked by door,

then AudioGuard fails. Additionally, if the propagation path between the area where the

transceiver locates and the area where the intruder locates is too complex, requiring too
ACM Transactions on Internet of Things, Vol. 5, No. 1, Article 4. Publication date: December 2023. 
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many times of reflection, then AudioGuard fails. This problem may be solved by exploiting

room Channel Impulse Response (CIR) estimation, which is able to quantify both the

time delay and amplitude attenuation of the multipath signals. CIR is more sensitive to

movement than Doppler effect in indoor environment. 
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