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Abstract
Facial expression recognition plays a vital role to enable

emotional awareness in multimedia Internet of Things ap-

plications. Traditional camera or wearable sensor based ap-

proaches may compromise user privacy or cause discomfort.

Recent device-free approaches open a promising direction

by exploring Wi-Fi or ultrasound signals reflected from fa-

cial muscle movements, but limitations exist such as poor

performance in presence of body motions and not being able

to detect multiple targets. To bridge the gap, we propose

mmFER, a novel millimeter wave (mmWave) radar based

system that extracts facial muscle movements associated

with mmWave signals to recognize facial expressions. We

propose a novel dual-locating approach based on MIMO that

explores spatial information from raw mmWave signals for

face localization in space, eliminating ambient noise. In ad-

dition, collecting mmWave training data can be very costly

in practice, and insufficient training dataset may lead to low

accuracy. To overcome, we design a cross-domain transfer

pipeline to enable effective and safe model knowledge trans-

formation from image to mmWave. Extensive evaluations

demonstrate that mmFER achieves an accuracy of 80.57% on

average within a detection range between 0.3m and 2.5m,

and it is robust to various real-world settings.

CCS Concepts
• Human-centered computing → Ubiquitous and mo-
bile computing systems and tools.
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1 INTRODUCTION
Multimedia Internet of Things (IoT) applications have be-

come popular in recent years [41], ranging from digital enter-

tainment [23, 45] to digital advertising [19]. To enable better

service quality and user experience, emotional awareness has

been advocated as a key factor in perception to "understand"

audience [50, 57]. Facial expression recognition (FER) plays a

vital role in emotional awareness [32, 46] since facial expres-

sions are intuitive reflections of user’s emotional states. A

FER system infers facial expressions and delivers an assess-

ment of audience’s preference, interest level, engagement

and reactions [9].

FER has been extensively studied over the last decade.

Vision-based approaches [11, 40] achieve state-of-the-art ac-

curacy, but their performance may be vulnerable to ambient

lighting conditions [46], e.g., watching movies with poor

ambient light. The time-of-flight (ToF) camera (e.g., depth
camera [52]) may work better in low lighting, but it still

suffers from natural illumination (e.g., glare from glasses or

exposed to sunlight) and fails with occlusion (e.g., wearing
masks). Most importantly, although security measurement

can be put in place, cameras may raise serious privacy con-

cerns (e.g., from psychology aspect, people do not feel safe

and comfortable with a camera constantly monitoring them

[15]). Without compromising user privacy, wearable-based

approaches have been advocated to recognize facial expres-

sions using wearable sensors, e.g., PPG [53], EEG [12], and

earphones [51, 55], but long-time wearing may cause discom-

fort to users. Device-free approaches have been proposed
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Fig. 1: mmFER use scenario: an example.

leveraging on Wi-Fi or ultrasound signals reflected from fa-

cial muscle movements. However, due to intrinsic limitations

of Wi-Fi signals (i.e., low bandwidth and multipath effect),

the WiFi-based approach [7] may fail in presence of body

motions (e.g., leg shaking). The ultrasound-based approach

[13] can reach 60cm at maximum but the distance of watch-

ing TV is typically in a range between 1m and 3m [4, 16].

Moreover, these device-free FER approaches typically do not

support multi-user applications.

Millimeter wave (mmWave) sensing has recently been

popular due to its high bandwidth and robustness. Com-

pared with Wi-Fi and ultrasound sensing, mmWave sens-

ing provides higher signal resolution, hence being capable

of detecting subtle movements [30]. In addition, it can de-

tect multiple targets due to its high range resolution [17].

mmWave sensing is also illumination free (i.e., working in
the dark) with fair penetration (e.g., see-through glasses and

masks) [54], hence being promising for a wide range of ap-

plications. Fig. 1 shows a typical scenario for multimedia IoT

applications. Moving along this direction, in this paper we

investigate several key challenges in designing an effective

mmWave radar based FER system.

Facial expression usually triggers a series of facial muscle

movements across multiple facial areas (e.g., eyes, forehead,
nose, cheek, lip and mouth) [8], representing as critical spa-

tial information in mmWave signals. To acquire spatial in-

formation, mmWave radar integrates an antenna array with

multiple transmitters (TX) and multiple receivers (RX) to en-

able MIMO (i.e., multi-input and multi-output) in improving

angular resolution [34]. A de-facto way is to acquire a set of

point clouds generated by mmWave radar [36, 43]. However,

due to the limited number of antennas available on an off-

the-shelf mmWave radar (e.g., TI IWR1843BOOST mmWave

radar has 3 TX and 4 RX resulting up to 12 virtual antennas),

the angular resolution is limited to 15-degree in azimuth

only
1
, resulting in limited number of point clouds. Also, to

improve signal-to-noise ratio, point clouds generated from

1
The theoretical angular resolution in elevation is 58-degree on TI

IWR1843BOOST, but it is larger than the 30-degree field of view in ele-

vation, hence it is limited in practice.

raw mmWave signals are intently merged by built-in algo-

rithms [36], hence yielding notable sparsity. Our preliminary

study in Section §2 shows that it is not feasible to detect

facial muscle movements using sparse point clouds. Point

clouds may be enhanced using advanced mmWave radar

with high angular resolution [43]. However, advanced radar

is usually bulky and more expensive (e.g., 10x) compared to

commercial grade radar and is typically used in high-end

automotive. Supervised learning from cross-domain (e.g., co-
labeled LiDAR dataset) can also be used to generate dense

point clouds [35], but its performance relies heavily on large-

scale training datasets, which may be impractical for FER

due to lack of mmWave datasets.

Turning away from sparse point clouds, we pay our at-

tention to raw mmWave signals received from multiple an-

tennas which contain rich Doppler information to generate

spatial information. An immediate question is how to accu-

rately extract rich spatial information representing subject’s

facial muscle movements from raw mmWave signals. Raw

mmWave signals likely contain bodymotion information and

ambient noise due to background moving objects, diffraction,

and complex specular reflections [60]. Also, facial muscle

movements are relatively subtle, e.g., 5mm for cheek and

6mm for month by a "happiness" expression of adult [66],

making it difficult to be distinguished from ambient noise.

Beamforming [18, 59] uses narrow beams which focus on a

relatively small area, hence avoiding ambient noise to some

extent. However, it may not be able to detect multiple targets

at a time, and ends up with much reduced spatial information

since all antennas are phased to narrow the beam compro-

mising on angular resolution [1].

Our idea is to convert the problem to a spatial localization

problem. We first locate each subject by verifying his/her

biometric information (i.e., heart rate and respiration) to

eliminate ambient noise of static/dynamic objects. We then

essentially extract spatial facial information by filtering out

irrelevant body motions. With spatial facial information ob-

tained, we explore correlation between facial muscle move-

ments and features extracted from spatial facial information.

Deep Learning (DL) can potentially achieve high accuracy

and better robustness due to its automated feature extraction

capability [46, 64]. However, deep learning usually requires a

large amount of training data to train an effective model, and

small-scale training dataset may easily end up with poor per-

formance. In reality, collecting large-scale mmWave dataset

can be very costly due to labeling efforts and privacy con-

cerns. Our idea is to leverage on rich image datasets available

for FER [21, 29, 40, 62] and apply cross-domain transfer learn-

ing [27, 33] that enables model knowledge transformation

from the image domain to the mmWave domain.

OurApproach To address the aforementioned challenges,

in this paper we propose mmFER, a novelmmWave radar
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based FER system that extracts and analyzes subtle facial

muscle movements associated with raw mmWave signals to

recognize facial expressions for multiple users. mmFER can

recognize 7 standard facial expressions [10] as shown in Fig.

8, delivering valuable assessment of users’ engagement and

reactions to multimedia IoT applications.

To detect subtle facial muscle movements in rawmmWave

signals, we propose a novel dual-locating approach based

on MIMO to locate both subjects of interest and the facial

areas of each subject. Specifically, we first locate subjects

of interest (e.g., who stay relatively stationary to watch TV)

marked as anchor points in the azimuth detection range

(i.e., horizontal plane). This is achieved by sensing biometric

information (i.e., heart rate and respiration) of subject, filter-

ing out background noise (e.g., complex specular reflections

by appliances and walls) and dynamic objects (e.g., people
moving around). We then propose a novel face-matching

mechanism based on a Gaussian Mixture Model (GMM) to

locate each subject’s facial angle range in the elevation de-

tection range (i.e., vertical plane), avoiding body motions. To

fully explore the transferability from image to mmWave, we

design a novel cross-domain transfer pipeline, namely cross-

transfer, using a pre-trained FER image model to train an

mmWave model. Especially, we design a hybrid learning loss

function that comprehensively fuses a set of loss functions

to address the training over-fitting issue due to small-scale

mmWave datasets. We also propose an autoencoder based

feature alignment mechanism that learns the transition of

latent features to progressively reshape complex mmWave

data, eliminating the effect of data heterogeneity.

In a nutshell, enabled by dual-locating, mmFER can ex-

tract spatial information of facial muscle movements from

raw mmWave signals. With cross-transfer, mmFER enables

an effective and safe model knowledge transformation for

mmWave-based FER. We fully implement mmFER using an

off-the-shelf mmWave radar (i.e., TI IWR1843BOOST) and

conduct comprehensive evaluations with 10 subjects for a

set of facial expressions in real-world settings. Results show

that mmFER achieves an accuracy of 84.48% in a subject-

to-radar distance between 0.3 and 1.5m and an accuracy of

80.57% when distance increases to 2.5m. In summary, our

main contributions are as follows:

• A first-of-its-kind mmWave radar based FER system that

detects subtle facial muscle movements associated with

raw mmWave signals for multimedia IoT applications.

• A novel dual-locating approach to accurately locate on

subjects’ faces in space, and extract subtle facial muscle

movements from noisy raw signals.

• A novel cross-domain transfer pipeline, i.e., cross-transfer,
to enable an effective and safe model knowledge trans-

formation for mmWave-based FER with superior model

performance.

(a) (b)

Face

Ambiguity

Ambiguity

Body Motion

Ground Truth

Sparse Point
Clouds

Fig. 2: Preliminary results: (a) Poor detection using highly sparse
point clouds; (b) Challenges in noisy raw mmWave signals.

• An off-the-shelf mmWave radar based mmFER implemen-

tation with extensive experiments. Results show that mm-

FER is resilient to various real-world settings with high

accuracy and robustness, outperforming the baselines.

Implication mmFER moves an important step towards

the promising mmWave-based FER. The proposed mmWave

radar approach easily removes privacy concern and illumina-

tion constraint, and robustlyworks in the scenario of wearing

various accessories (e.g., mask). It is also superior to Wi-Fi

and ultrasonic approaches, providing a higher signal band-

width with a longer detection range and multi-target capa-

bility. While this paper focuses on enabling mmWave-based

FER for multimedia IoT applications, mmFER has opened

possibilities to be widely applied in different domains such

as recommendation systems, healthcare, augmented real-

ity/virtual reality (AR/VR) systems, education, and more,

providing valuable user feedback and survey. For instance,

mmFER can be used in a wide range of recommendation

systems to help sense users’ preferences and reactions in a

privacy-preserving manner. In healthcare systems, mmFER

is able to offer medical professionals timely feedback about

the mental state of patients (e.g., with depression). In addi-

tion, mmFER can provide a robust way to understand users’

attention and intent in an indoor or outdoor environment,

improving the user experience of AR/VR systems.

2 PRELIMINARY
Principles of MIMO in mmWave Radar. mmWave radar

has a linear RX antenna array which enables MIMO to esti-

mate target’s angle of arrival (AoA), hence providing spatial

information for detecting multiple facial areas. In principle,

since RX antenna array is designed with an interantenna

distance (e.g., 2.5mm on TI IWR1843BOOST), the reflected

mmWave signals from a target travel different distances to

reach each RX antenna, yielding phase difference which

can be used to estimate the AoA of signals [34]. Theoret-

ically, to enrich spatial information for detecting multiple

facial areas, it is crucial to increase the angular resolution

𝜃𝑟𝑒𝑠 calculated by the number of RX antennas 𝑁𝑖 , repre-

sented as 𝜃𝑟𝑒𝑠 =
𝜆

𝑁𝑖𝑑 cos( ¯𝜃 ) , where
¯𝜃 equals 0 for a boresight

view, 𝜆 denotes the wavelength of chirp, and 𝑑 represents

the interantenna distance. However, commercial mmWave
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radars only integrate a limited number of antennas, e.g., TI
IWR1843BOOST has a 3x4 antenna array which achieves

12 virtual RX antennas with a 2-dimensional 2x8 antenna

layout, yielding a limited 58-degree and 15-degree angular

resolution in elevation and azimuth, respectively.

Set-up. To investigate the feasibility of mmWave sensing

for FER, we conduct preliminary experiments using a com-

mercial mmWave radar (TI IWR1843BOOST). We set up a

watching movie scenario where we use a 27-inch screen and

place the radar directly below the screen (1.1m height from

the ground). We ask a subject to sit 1m away from the screen

and watch movies. The radar configuration is shown in Table

1. We use "surprise" facial expression for this study since it

triggers a relatively large range of facial muscle movements.

Since the radar has a limited angular resolution especially

in elevation (i.e., 58-degree), the typical setup may cause

loss of useful spatial information in elevation for detecting

facial areas. Hence, we place the radar upright to switch the

15-degree angular resolution from azimuth to elevation.

Sparse Point Clouds. Point clouds represent all motions in

space over time. We generate a set of point clouds based on

raw mmWave signals using a de-facto approach [44]. Fig. 2(a)
presents the changes of motion points in three consecutive

time frames (e.g., 𝑡 − 1 to 𝑡 + 1) with an interval of 0.5s. The

results show that point clouds are sparse and largely con-

tain irrelevant motions or ambient reflections. The red block

marks the location of the subject’s face as the ground truth.

In particular, the zoom-in figure indicates that mmWave

radar can detect the change of point clouds caused by facial

muscle movements, but point clouds are highly sparse and

only one point is available in each time frame. Thus, it is

infeasible to leverage on sparse cloud points to obtain spatial

facial information for FER.

Challenges in Raw mmWave Signals.We instead investi-

gate the feasibility of using raw mmWave signals to extract

spatial facial information. Given a pre-defined subject’s po-

sition (i.e., a set of range bins), we apply angle FFT [34] to

transform time-domain raw data within a 1s time window

to spatial data (i.e., containing range and angle information).

To understand the impact of body motion, we ask the sub-

ject to perform leg shaking in this experiment. To obtain

the ground truth of facial angle range, we use vision-based

face detection [63] to locate face in space. According to the

ground truth lines shown in Fig. 2(b), it is feasible to locate

the spatial facial information in angle-range heatmap (e.g.,
marking with the green block). However, due to the limited

15-degree angular resolution, it is difficult to precisely locate

facial areas and avoid irrelevant spatial information using

angle FFT. Moreover, MIMO-enabled spatial data contain

massive ambient noise represented as the ambiguity with

the blue blocks, and the spatial information of body motion

RX Array

TX Array

mmWave Radar

Multiple 
Facial Areas

Reflected 
mmWave 

Signals

Noisy raw mmWave Data

Dual-locating Approach

Spatial Facial Information

Candidate Range
Localization

Dynamic Object
Removal

Cross-transfer Pipeline
mmWave Model

Azimuth Input

Elevation Input

Face Image Input

Image Model
Transfer

Facial Expressions

S-1 Biometric
Verification

S-2 Face Localization

Fig. 3: Overview of mmFER system architecture.

with the yellow block can be observed in the heatmap. Thus,

it is challenging to extract subtle spatial information of facial

expressions from raw mmWave signals.

3 mmFER DESIGN
Fig. 3 presents an overview of mmFER system architecture.

Due to ambient noise existing in raw mmWave signals, we

first transform the problem to spatial face localization, and

propose a dual-locating approach to extracting spatial facial

information. This approach takes raw mmWave signals as

input and outputs the angle (𝐴) range (𝑅) heatmaps of mul-

tiple facial areas, as shown in Fig. 4(a). We then propose a

cross-transfer pipeline and feed the outputs into an mmWave

FER model for classification.

3.1 Dual-locating Approach
Challenge ofMassiveAmbientNoise. Facial musclemove-

ments caused by facial expressions are subtle in millimeter-

level [13]. mmWave radar is capable of detecting millimeter-

level movements, but raw mmWave signals received indoors

usually contain massive ambient noise due to dynamic and

stationary objects, e.g., people moving around, multi-path

reflections by home appliances and walls. To further under-

stand the impact of ambient noise, we conduct an experiment

in the living room (e.g., 2.9mx4.2m) with the same setup as in

our preliminary study. We operate a fan 1.5 m behind the sub-

ject, and ask another subject to walk randomly in the room.

Fig. 4(b) shows the range profile heatmap generated from

raw mmWave signals, and it clearly shows that mmWave

signals contain massive ambient noise. To address, based

on the MIMO capability on mmWave radar, we propose the

dual-locating approach which consists of a two-step process

to first locate subjects, then locate the facial areas of each

subject, as shown in Fig. 3.

3.1.1 Subject Localization
In Step-1, the dual-locating approach locates subjects of

interest (i.e., who stay stationary to watch TV), marked as

anchor points in the azimuth detection range, and eliminates

background noise and dynamic objects.

Dynamic Object Removal. Since dynamic objects (e.g.,
people walking) have speed information, we can use range
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Ambient Noise 
Reflected by Objects

Target User

Appliance

Walking
People

User Range 
in Azimuth (R)

Face Angle 
in Elevation (A)

mmWave
Radar

Verified
User

(a) (b)
Fig. 4: (a) Face localization illustration; (b) Massive ambient noise in
raw mmWave signals.

Doppler information to distinguish the difference between

stationary and dynamic objects in velocity for range detec-

tion [31, 61]. In a simple way, a fixed speed threshold (e.g.,
0.11m/s suggested in [31]) can be used to filter out dynamic

objects which move faster than this threshold. However, we

observe that applying range Doppler information for com-

puting velocity is very sensitive to speed, often resulting in

unsafe object removal (i.e., subject removed due to his/her

body motions). In reality, a subject may have body motions

at different speeds, e.g., 0.4-0.6m/s for leg shaking, and 0.9-

1.2m/s for waving hands [25]. Due to radar’s Doppler widen-

ing effect (i.e., the area of Doppler spectrum is widened by

the changes of object’s speed and range) [22], the Doppler

spectrum of body motions may largely overlap with that

of facial movements (note that body movement may have

a higher speed than facial movement). Due to the overlap-

ping, removing body motion spectrum will result in loss

of facial movement spectrum. Hence, the fixed threshold

method may lead to subject localization failure. To enable

a safe dynamic object removal, we use range profile infor-

mation directly to estimate moving objects if they trigger

range shift. Specifically, we define a time difference function

as 𝑅𝑃𝑡𝑑 (𝑡) = 𝑅𝑃𝑡 −𝑅𝑃𝑡−𝑛 , where 𝑅𝑃𝑡 is range profile on time

𝑡 , and 𝑛 is time slot. We also develop an adaptive velocity

threshold formulated as 𝑣𝑡 = Δ𝑅𝐸𝑆
𝑛×𝐹 , where Δ𝑅𝐸𝑆 is range

resolution (e.g., 4.2cm), 𝐹 is frame periodicity (e.g., 10ms). In

addition, the range of dynamic object is in [𝑃𝐾𝑖𝑡 −𝐵, 𝑃𝐾𝑖𝑡 +𝐵],
where 𝐵 = 1/2|𝑃𝐾𝑖𝑡+1

− 𝑃𝐾𝑖𝑡 |, 𝑃𝐾 denotes a find peak func-

tion based on 𝑅𝑃𝑡𝑑 (𝑡), and 𝑖 denotes each dynamic object.

Once the time difference function detects peaks in 𝑅𝑃𝑡𝑑 , it

indicates in presence of moving objects whose velocity is

greater than the threshold, and a set of range bins (i.e., ob-
ject positions) will be computed for accurate dynamic object

removal. Conversely, the objects whose velocity is less than

the threshold are recognized as stationary to safely protect

subjects with body motions. Thus, dual-locating can safely

remove dynamic objects and preserve subjects of interest

based on the range shift over time.

Candidate Range Localization. After removing dynamic

objects, we now locate subjects of interest (i.e., stationary
objects) marked by a set of range bins, as candidates for

(a) (b)

Corrupted Range 
Doppler Information

by Fan
Invalid Subject

Range Detection WallFanSubject
Removed

Moving Object

Fig. 5: (a) Invalid subject range detection in range Doppler heatmap;
(b) Candidate object selection using adaptive CFAR.

FER. Due to complex indoor reflections, raw mmWave sig-

nals contain massive ambient noise which impact candidate

range localization. Existing works [31] obtain a resilient

noise threshold by the cell-averaging constant false alarm

rate (CFAR) algorithm [49] based on range Doppler infor-

mation. When applied in our case, however, we reveal that

range Doppler information may be easily corrupted by am-

bient motion noise (e.g., regular vibration caused by fan or

air conditioner) due to the Doppler widening effect. Fig. 5(a)

shows that the range frequency caused by a running fan is

largely widened in the range Doppler heatmap, and such en-

larged noise frequency notably increases the noise threshold

of CFAR. With the increased noise threshold, the selected

range bins of subject using CFAR in red lines is reduced by

60% compared to the ground truth in white lines. Reduced

spatial information may easily result in invalid removal of

facial areas of subjects. Alternatively, we leverage the range

profiles generated by the first FFT to detect the presence of

objects with higher amplitudes than the noisy background.

To accurately detect subject range (i.e., no range bin reduc-

tion) and remove ambient noise, we propose an adaptive

CFARwith a body knowledge based Gaussian distribution. In

our work, accurately selecting subject’s range (i.e., covering
subject’s body) is the key to obtain spatial facial information.

Our basic idea is to build a Gaussian distribution 𝐺 (𝜇, 𝜎) us-
ing the reported body shape statistics [20] to improve CFAR

with a robust noise threshold function. Specifically, we de-

fine range profile 𝑅𝑃 as input of 𝐶 (·) (i.e., CFAR), and the

output of CFAR denotes a set of range bins formulated as

𝐶 (𝑅𝑃𝑖 ) = 𝑅𝑃𝑖 − 𝑇𝑖 , where 𝑇𝑖 is an adaptive resilient noise

threshold calculated from Eq. 1.

𝑇𝑖 =
1

2(𝑁𝐶𝑛 − 𝑁𝐶𝑔 )

𝑖−𝑁𝐶𝑛∑︁
𝑖+𝑁𝐶𝑛

𝑅𝑃𝑖 −
𝑖−𝑁𝐶𝑔∑︁
𝑖+𝑁𝐶𝑔

𝑅𝑃𝑖 , 𝑁𝐶𝑛 > 𝑁𝐶𝑔 (1)

where 𝑁𝐶𝑛 denotes number of noise cells. 𝑁𝐶𝑔 denotes num-

ber of guard cells formulated as 𝑁𝐶𝑔 = 1

2
( 𝜇+3𝜎

Δ𝑅𝐸𝑆 ), where 𝜇
and 𝜎 obtained from 𝐺 (𝜇, 𝜎), and Δ𝑅𝐸𝑆 is range resolution
(e.g., 4.2cm). Fig. 5(b) demonstrates that subject’s range bins

can be successfully located without information loss, and

most of the ambient noise can be effectively removed using

the adaptive CFAR.
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(a) (b)

(c) (d)
Fig. 6: (a) Heartbeat detection; (b) Respiration detection; (c) Heartbeat
detection with body motions; (d) Respiration detection with body
motions.

Biometric Verification. After candidate range localization,
a number of stationary objects may be selected as candidates

which may still contain ambient noise (e.g., fan and wall) as

shown in Fig. 5(b). To further validate subjects of interest

in a list of candidates, we essentially leverage on biomet-

ric information (i.e., heartbeat or respiration) to effectively

distinguish human from other objects. Given a range bin

of each candidate, we first access phase change defined as

𝜙 (𝑏𝑖𝑛, 𝑡) in mmWave signals over time. We then apply the

4th-order Butterworth band-pass filter [14] to extract heart-

beat and breath signals from the phase change. To compare

with the ground truth reported in existing vital sign detec-

tion works [38], we calculate chest displacement Δ𝑅 (mm)

with phase change Δ𝜙 using Δ𝜙 = 4𝜋
𝜆
Δ𝑅, where 𝜆 is the

mmWave wavelength. We can then verify the results with

the chest displacement metrics (e.g., 0.1-0.5mm for heart-

beat and 1-12mm for respiration [38]). As shown in Fig. 6(a)

and Fig. 6(b), the results of both fan (0.054mm for heartbeat

and 0.109mm for respiration) and wall (0.018mm for heart-

beat and 0.073mm for respiration) are invalid compared to

the displacement metrics, while the subject is successfully

verified by accessing both heartbeat (0.15mm) and respira-

tion (1.22mm). Besides, since body motions may remain at

this step, we test the impact of these motions (e.g., playing
games, typing, and leg shaking) on heartbeat and respiration

detection. The results from Fig. 6(c) and 6(d) indicate that

the phase change of both heartbeat and respiration can be

accurately detected with no impact, e.g., the verified displace-
ment of 0.36mm on average for heartbeat with motions and

1.54mm on average for respiration with motions. After bio-

metric verification, dual-locating is able to accurately locate

subjects of interest with correct bins in azimuth.

Body Motion

(a) (b)
Fig. 7: Face-matching performance: (a) Face localization avoiding
body motion; (b) Face matching similarity in elevation.

3.1.2 Face Localization
In Step-2, given a subject’s location in azimuth (i.e., anchor

point), dual-locating locates subject’s face with a specific

angle range in the elevation detection range while avoid-

ing irrelevant body motions. As aforementioned, due to the

limited angular resolution of 15-degree on mmWave radar

[36], it is difficult to locate small facial areas by angle range.

To achieve high-resolution AoA estimation (e.g., theoreti-
cally 1-degree in azimuth), we adopt CAPON [5] to generate

enhanced angle range heatmaps. With enhanced angular

information, we propose a face-matching mechanism that

uses a greedy search based on GMM [48] for matching sim-

ilarity of facial features in elevation. Once facial features

are matched with angle range, dual-locating extracts the fa-

cial areas in the enhanced angle range heatmap (i.e., spatial
information) for the next process.

Face-matching Mechanism. Due to the advanced capabil-

ity of approximating spectral features using GMM [31], we

train a GMM model on pre-processed mmWave dataset 𝑥𝑝𝑟𝑒
with manual labels for generalization performance. Since the

spectral features of facial muscle movements represent as a

set of angle range heatmaps in a time slot (e.g., 3s) with rich

information in time-domain, we transform the angle range

heatmaps to angle time heatmaps by collapsing the range

information to enhance the features. We then define that

𝑥𝜃 as input data of GMM is obtained from the angle time

heatmap on 𝜃 -degree. To measure the similarity between

input 𝑥𝜃 and output by GMM, we use cosine similarity [42]

as the loss function. Hence, our objective is to locate facial

angle range 𝜃 by maximizing the similarity between the tem-

plate distribution 𝐺𝑀𝑀 (𝑥𝑝𝑟𝑒 ) and the searched distribution

𝐺𝑀𝑀 (𝑥𝜃 ), as formulated in Eq. 2.

𝜃𝑚𝑎𝑥 = arg max

(𝜃,𝜓 ) ∈𝐹𝑂𝑉
(𝑙𝑜𝑠𝑠 (𝐺𝑀𝑀 (𝑥𝜃 ),𝐺𝑀𝑀 (𝑥𝑝𝑟𝑒 ) ) )

(2)

where𝜓 denotes an experimental offset for angle range com-

pensation, and 𝜃𝑚𝑎𝑥 is the optimized facial angle range. In

particular, 𝐹𝑂𝑉 is a 120-degree search grid in space. In short,

Fig. 7(b) presents the greedy search process by maximizing

similarity, and face-matching can locate subject’s face with

maximum similarity along with related angle range (in both

azimuth and elevation). Fig. 7(a) shows that face-matching

can accurately locate face with angle range, and effectively
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Fig. 8: Comparison between the facial expressions with landmarks
and the located facial angle ranges in elevation.

avoid body motions (i.e., playing games and leg shaking). In

a nutshell, Fig. 8 demonstrates the outputs of dual-locating,

comparing to different facial expressions.

3.2 Cross-transfer Pipeline
Challenges of Small-scale Dataset. Collecting a large-

scalemmWave dataset to train a FERmodel can be very costly

in reality due to high labor cost and user privacy, while small-

scale training dataset may lead to poor performance. To fully

understand this issue, we collect both mmWave and video

datasets with 10 subjects (e.g., 40 samples per expression per

subject) in a watching-iPad scenario, as shown in Fig. 12(b).

To obtain the ground truth, we use a pre-trained ResNet18

(i.e., image model) [3], and fine tune it on the collected video

dataset (face images cropped by [63]). We employ a conven-

tional supervised approach with the manual truth labels (i.e.,
T-label) to train an mmWave model after the dual-locating

process. Fig. 9(a) reveals that the training accuracy of T-

label severely degrades (i.e., 45.71%) compared to the ground

truth (i.e., 95.28%). The underlying impediment is that T-label

learns insufficient latent features based on a much limited

data distribution provided by the small-scale training dataset.

The key idea of cross-domain transfer learning [27, 33] is to

transform domain-invariant latent features learned from a

well-developed source domain (e.g., image model) to a lim-

ited target domain (e.g., mmWave model), enhancing latent

feature extraction. Following this idea, we apply a Knowl-

edge Distillation (KD) based cross-domain approach [56]

(i.e., teacher-student learning scheme) to both mmWave and

video datasets. We use the image model as a teacher and

the mmWave model as a student. As shown in Fig. 9(a), the

KD based approach achieves a higher training accuracy (i.e.,
74.38%). However, we reveal that the KD based approach

suffers from suboptimal training performance, yielding a

critical accuracy gap between KD and the ground truth. The

following two issues remain as impediments.

Training Over-fitting: Fig. 9(b) shows that while KD train

loss descent performs well, KD test loss notably fails to de-

crease. The result demonstrates the training over-fitting issue

(i.e., unsafe training) that the model is too closely aligned to

the small-scale training dataset, hence resulting poor gener-

alization on testing dataset. To further understand the issue,

we employ the t-distributed stochastic neighbor embedding

(a) (b)
Fig. 9: Training performance comparison on small-scale mmWave
dataset: (a) Training accuracy; (b) Loss descent.

(t-SNE) (i.e., clustering analysis for loss optimization) based

on the Euclidean distance (ED) function to visualize the dis-

tribution of the latent features for six expressions using both

image and KD based mmWave models. As shown in Fig. 10(a)

(e.g., each color represents an expression), the feature dis-

tribution using a KD based mmWave model is messy and

scattered compared to the ground truth (i.e., clustered nicely

using the image model), hence it implies that the underlying

loss function of KDmay perform poorly based on small-scale

training dataset.

Domain Shift:Based on transferabilitymetrics (i.e., distance-
based similarity analysis between domains) [28], we observe

that there is a notable domain shift (i.e., lack of similarity) be-

tween the feature distributions using both models shown in

Fig. 10(a). Due to high data heterogeneity (i.e., different raw
data structures and shapes) between image and mmWave,

model performance may easily degrade if the latent features

between both domains are not well aligned (i.e., domain shift).

A keypoint-based approach has been proposed in [51, 65]

to extract relevant key points (i.e., less data heterogeneity)
from images to achieve image-to-sensing transformation. To

validate its effectiveness, we employMediapipe [37] to gener-

ate facial landmarks from images and use a keypoint-based

approach to train an mmWave model, but the results re-

veal that this approach still suffers from training over-fitting

caused by the small-scale dataset, severely degrading model

accuracy (i.e., 62.38%) shown in Fig. 10(b).

We hence propose a novel cross-transfer pipeline to enable

effective and safe model knowledge transformation from im-

age to mmWave. Specifically, to address training over-fitting,

we design a hybrid learning loss function that comprehen-

sively fuses a set of loss functions including a supervised

loss by mmWave labels, a Kullback–Leibler (KL) divergence

loss inspired by KD, and a contrastive loss based on positive-
negative correlation to achieve superior model performance.

To eliminate the impact of data heterogeneity, we also de-

velop an autoencoder based feature alignment mechanism

that learns the transition of latent features to progressively

help align both domains, thus improving transferability.

3.2.1 Training Scheme Design Fig. 11 presents the de-

tailed training scheme design of the cross-transfer pipeline.
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(a) (b)

Domain Shift

Fig. 10: (a) t-SNE result using KD; (b) Training over-fitting.
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Fig. 11: Cross-transfer pipeline.

We keep the pre-trained ResNet18 as the image model, and

fine-tune it on the collected face images for learning the

latent features. We next freeze it (i.e., model inference only)

as a learning anchor point throughout the process of cross-

transfer pipeline. Once mmWave data is processed by dual-

locating, all of the spatial facial information will be used as

the input of the mmWave model.

3.2.2 Feature Alignment Since mmWave data input con-

sists of both azimuth and elevation heatmaps with different

data shapes, simply combining them may result in loss of

key features. Hence, we design two separated blocks with

four convolutional neural network (CNN) layers for each to

reshape and explore the key features, avoiding information

loss. After this, both outputs of the heatmaps can be safely

summed to prepare for the next process, as shown in Fig. 11.

To align the latent features with different data structures

for image to mmWave, we design a CNN-based autoencoder

to essentially learn from the transition of both latent feature

distributions during training. In theory, autoencoder [2] is

advocated to fully explore the latent information to improve

training performance. In mmFER, due to data heterogeneity,

the transition of feature distributions between both domains

can be very complex, therefore fully exploring useful latent

features is the key. We intuitively design an autoencoder

to not only reshape the dimensionality of latent features

(i.e., data shape alignment), but also enhance transferability

to contribute in loss optimization for training performance

improvement. Since we set the image model as the learn-

ing anchor point, we place the proposed autoencoder in an

mmWave model as a middleware to reshape the latent fea-

tures from the mmWave model, aligning with the feature

shape in the image model presented in Fig. 11.

3.2.3 Hybrid Learning Loss As aforementioned, exist-

ing cross-domain approaches may suffer from training over-

fitting due to small-scale mmWave dataset. We reveal that

the underlying impediment is due to an ineffective design

of loss function. To address, we propose a hybrid learning

loss function to improve the loss optimization for image to

mmWave. Intuitively, according to the principle of loss opti-

mization [26], if the feature distribution of each class is more

tightly clustered (i.e., smaller intra-class distance) and the

distance between the feature distribution of each class pair

is farther apart (i.e., larger inter-class distance), it will result
in much better training performance (i.e., high accuracy and

generalization). Inspired by this principle, we design our

hybrid learning loss function with three key elements.

Cross Entropy Loss. Based on the T-label approach with

manual truth labels, we define that cross entropy loss 𝐿𝑔𝑡 is

calculated with mmWave data 𝑥𝑚 and its ground truth label

𝑦𝑚 using Eq. 3.

𝐿𝑔𝑡 = 𝐻 (𝑦𝑚, 𝑥𝑚 ) = −
∑︁
𝑥 ∈𝑋

𝑦𝑚 (𝑥 ) log(𝑝 (𝑥 ) )
(3)

where 𝐻 is the cross entropy loss function, 𝑦𝑚 (𝑥) and 𝑝 (𝑥)
denote related probability computed by an mmWave model.

KL Loss. Referring to accuracy improvement using KD in

Fig. 9(a), we utilize KL divergence as one of key metrics to

measure the difference between the distribution of logits (i.e.,
𝑙𝑣 and 𝑙𝑚) computed by both image and mmWave models in

Fig. 3.2, hence the KL loss 𝐿𝑘𝑙 is formulated in Eq. 4.

𝐿𝑘𝑙 = 𝐾𝐿 (𝑙𝑚 | |𝑙𝑣 ) =
∑︁
𝑥 ∈𝑋

𝑙𝑚 (𝑥 ) log( 𝑙𝑚 (𝑥 )
𝑙𝑣 (𝑥 )

) (4)

Contrastive Loss. Based on the principle of loss optimiza-

tion, we design contrastive loss 𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 to essentially opti-

mize two distance-based metrics in cross-domain. Our ob-

jective is to first minimize the distance between the latent

feature distributions that have the same label (i.e., intra-class
distance) marked as positive pair, and then maximize the

distance between the feature distributions that have differ-

ent labels (i.e., inter-class distance) marked as negative pair,
in training image to mmWave. We visualize the positive-
negative correlation as a 2-color matrix in Fig. 11, in which

the green diagonal line denotes all positive pairs that each

𝑥𝑚,𝑁 in the mmWave domain has the same label (e.g., "happi-
ness") with each 𝑥𝑣,𝑁 in the image domain, where 𝑁 denotes

the number of classes, and the rest in the matrix denotes all

negative pairs. Hence, we formulate 𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 in Eq. 5.

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =𝐿 (𝑥𝑚, 𝑥+𝑣 ,
{
𝑥−𝑣,𝑖

}𝑁 −1

𝑖=1
; 𝑓𝑚, 𝑓𝑣 )

=𝑙𝑜𝑔 (1 +
𝑁 −1∑︁
𝑖=1

𝜎𝑖𝑒𝑥𝑝 (𝑓 𝑇𝑚 𝑓 −𝑣,𝑖 − 𝑓 𝑇𝑚 𝑓 +𝑣 ) )
(5)

where 𝑥+𝑣 and 𝑥−𝑣 denote the positive and negative inputs in

an image model, respectively. Also, 𝑓𝑚 , 𝑓
−
𝑣,𝑖 , and 𝑓

+
𝑣 denote

the sets of latent features computed by input 𝑥𝑚 , 𝑥
−
𝑣,𝑖 , and
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𝑥+𝑣 , respectively. In particular, we design a regularizor 𝜎𝑖 as

𝑆 (𝐷 (
{
𝑥+𝑣

}
,
{
𝑥−𝑣,𝑖

}𝑁−1

𝑖=1

)−1) to further contribute optimizing

the negative pairs, where 𝐷 denotes a standard ED function,

and 𝑆 denotes a default SoftMax function.

Combined with all elements, our hybrid learning loss func-

tion is formulated as 𝐿ℎ𝑦𝑏𝑟𝑖𝑑 = 𝐿𝑔𝑡 + 𝐿𝑘𝑙 + 𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 . In short,

cross-transfer pipeline enables an effective and safe model

knowledge transformation for mmWave-based FER.

4 EVALUATION
4.1 System Implementation
Fig. 12(a) gives an overview of mmFER system setup. We

implement mmFER using an off-the-shelf mmWave radar kit

which consists of a TI IWR1843BOOST sensor board operat-

ing at 77-81GHz ($299) and a TI DCA1000EVM data capture

board ($599). The IWR1843BOOST board has 58-degree and

15-degree angular resolution in elevation and azimuth, re-

spectively. Thus, we place it upright to configure a 15-degree

angular resolution in elevation for face localization. We use

TI mmWave studio version 02.01.01 for radar processing and

PyTorch version 1.4.0 for model training on a Windows PC

with an AMD Ryzen 7 3700X CPU and a NVIDIA GeForce

RTX 3090 GPU. Table 1 shows our radar configuration in

detail. In particular, since we fully enable 3x4 MIMO on the

IWR1843BOOST board, the chirps per frame generated are

limited up to 32 [24]. Based on the default radar configura-

tion in TI mmWave studio, we use the frame periodicity of

10ms (i.e., frame rate of 100Hz). Since the frame periodicity

limits the ramping time, we set the frequency slop of 100.0

MHz/us to maximize the radar bandwidth of 3.6GHz. In addi-

tion, we apply a coordinate calibration method to align both

mmWave and image data configuration (e.g., timeline and

displacement between hardware).

In real-world deployment, we use the first 3s radar data

for dual-locating, hence no additional privacy concern is

raised by biometric verification. Our prototype is powered

using a 5V power jack and connected to the PC for real-time

processing. Specifically, the proposed face localization takes

400ms on average for processing including range localization

of 180ms, biometric verification of 10ms, and face-matching

of 210ms. We employ a 500ms sliding window with a 3s time

window to feed data to the mmWave FER model, and the

latency of each model inference is 4.5ms or 13ms on average

in the GPU- or CPU-enabled mode, respectively. Besides,

we employ the psutil version 5.9.0 to track resource usage.

In watching a 10mins video, the CPU utilization of dual-

locating is 6.2% on average, and the memory footprint is up

to 368MB (the usage may vary on different platforms). For

model inference, the CPU utilization is 49.8% on average and

the memory footprint is up to 610MB in the CPU-enabled

mode, while the GPU utilization is 44.5% on average and the

Table 1: mmWave radar configuration.
Frequency Slop 100.0 MHz/us Range Resolution 4.2cm

ADC Samples/Second 7200K Idle Time 7 𝜇𝑠

Chirp Cycle Time 46 𝜇𝑠 Chirps/Frame 32

Frame Periodicity 10.0ms Samples/Chirp 256

Table 2: Devices with recommended viewing distances.
Device Screen Size Distance
iPad Pro 2021 11 inch 0.3 m

Lenovo ThinkBook Gen2 15.6 inch 0.7 m

Samsung CF390 Monitor 27 inch 1 m

LG C1 4K TV 55 inch 1-3 m

peak memory footprint reaches 3890MB in the GPU-enabled

mode. In practice, our prototype can be placed on top/bottom

of or next to the multimedia device, as shown in Fig. 12(b)-(f).

In addition, our prototype can be integrated with different

embedded platforms (e.g., Raspberry Pi or NVIDIA Jetson

series) for portable deployment.

4.2 Evaluation Setup
We use a range of multimedia IoT devices which provide dif-

ferent viewing distances, as shown in Table 2. We set up var-

ious scenarios in a living room (2.9mx4.2m) of a residential

apartment, as shown in Fig. 12(b)-(f). We recruit 10 subjects

(3 females and 7 males, age ranging from 23 to 32, height

ranging from 156cm to 189cm). We collect both mmWave

and video datasets with 7 standard facial expressions ("neu-

tral", "happiness", "sadness", "surprise", "fear", "disgust", and

"anger") defined in [10] over a period of three weeks. A depth

camera (i.e., Zed 2 Camera operates at 30fps) is used to collect

videos. Data collection has been approved by the Human

Research Ethics Committee of our institute. During data col-

lection, we ask subjects to perform different postures (e.g.,
sit on sofa, sit on the ground, and stand) and body motions

(e.g., playing games, typing, and leg shaking) at a subject-to-

radar distance ranging from 0.3m to 3m. We do not require

subjects’ faces strictly to the radar as this may affect their

facial expressions. Subjects perform these activities in a nat-

ural way, hence a slight variation (e.g., less than 10-degree)

may be possible. As aforementioned, we use the pre-trained

ResNet18 based on the FER Plus expression dataset [3], and

fine tune it on our video dataset collected from the camera

as the ground truth.

4.3 Dual-locating Performance
We first evaluate the performance of the dual-locating ap-

proach and its impact on face localization. We employ vision-

based face detection in [63] to locate face and output angle

ranges as the ground truth. We use the root mean squared er-

ror (RMSE) divided by the vision angle range as metric of face

localization error drift, defined as 𝑑𝑟𝑖 𝑓 𝑡 =

√
1

𝑛

∑𝑛
𝑖=1

(𝐶𝑑𝑙
𝑖
−𝐶𝑣

𝑖
)2

𝐴𝑅𝑣 ,

where 𝐶𝑑𝑙𝑖 and 𝐶𝑣𝑖 denote the center of facial angle range
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Fig. 12: (a) mmFER implementation and system setup; (b)-(f) mmFER use scenarios.

(a) (b)
Fig. 13: Face localization performance: (a) Error drift by distances;
(b) Multi-target face localization.

located by dual-locating and vision, respectively, and 𝐴𝑅𝑣

denotes the ground truth angle range.

Impact of Different Distances. Facial angle range may

inversely vary as the subject-to-radar distance increases, e.g.,
a far distance results in a relatively small facial angle range. In

this experiment, we evaluate the impact of different distances

on face localization in dual-locating. We ask three subjects to

sit at seven different viewing distances from a 27-inch screen

(i.e., the same experimental setup as in Fig. 12(d)) in turn and

perform facial expressions following a recorded video. Fig.

13(a) demonstrates that the distance increase yields a slight

increase of error drift on face localization, e.g., the error drift
rate is settled in the range from 5.7% at 0.3m to 18.9% at 3m.

We also observe a little increase of error drift as distance

increases. This may be due to a small angle range offset

added in the process of face-matching. Moreover, due to

physical variation, the standard deviation of error drift (e.g.,
red error bar) has a minor increase as distance increases (e.g.,
from 1.7% at 0.3m to 4.8% at 3m). Thus, the results indicate

that dual-locating can effectively enable face localization at

different subject-to-radar distances with minor error drift.

Multi-target Detection.We next evaluate the performance

of dual-locating for locating multiple faces. We set up a sce-

nario of watching TV with two subjects. Due to the upright

radar setup, the azimuth FOV is limited, hence we ask one

subject (S1) to sit on the ground 1m away and another subject

(S2) to stand 2m away, as shown in Fig. 12(f). Fig. 13(b) shows

that both subjects’ faces can be successfully located in angle

range heatmap when performing "surprise" facial expres-

sions simultaneously. The results show that dual-locating

can locate multiple subjects with accurate range bins and

facial angle ranges marked by highlighted blocks. Also, com-

pared to the ground truth of facial angle range, dual-locating

(a) (b)
Fig. 14: (a) Training comparison; (b) Transferability performance.

achieves low error drift for both subjects, e.g., 3.3% for S1 and

8.3% for S2. In addition, the visual results present that the heat

face area (i.e., spatial facial information) of S2 is relatively

smaller than that of S1 due to the impact of subject-to-radar

distance. Thus, dual-locating can locate face accurately for

multiple targets.

4.4 Cross-transfer Performance
We now evaluate the performance of the proposed cross-

transfer pipeline with the respect to performance of feature

alignment and loss optimization compared to the state-of-

the-arts. For a fair comparison, we select both small-scale

image and mmWave datasets in a scenario of watching iPad

to avoid the impact of viewing distance, as shown in Table 2.

We collect 40 samples per expression per subject, and each

sample is recorded in a 3s time window [7] by both camera

and mmWave radar.

Baselines.We select the following cross-domain learning

approaches as our baselines. All of approaches share with

the same pre-trained ResNet18.

• KD [56] is a conventional cross-domain learning approach

that uses knowledge distillation techniques without latent

feature alignment support.

• Keypoint [51] is a facial landmark based image-to-sensing

transformation approach. It uses Mediapipe [37] to gener-

ate facial landmarks.

• S-cross [65] is a standard unsupervised cross learning

approach that leverages on a distance-based loss function

to train a student model. It uses a vanilla autoencoder for

latent feature alignment.

• Image [3] uses the fine-tuned image model as the ground

truth.

Feature Alignment Performance. To quantify the effec-

tiveness of the proposed feature alignment mechanism in the
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(a) (b)
Fig. 15: (a) Training ROC curve; (b) FER accuracy by subjects.

cross-transfer pipeline, we first employ the mean squared

error (MSE) as metric to measure the ED loss descent (i.e.,
distance-based similarity) between the latent features of im-

age and mmWave models. As shown in Fig. 14(a), mmFER

remains the lowest MSE loss during training and achieves

0.39 at 50-epoch, outperforming both KD (2.73) and S-cross

(0.61). Since we essentially design two separated CNN blocks

to safely explore key latent features without information loss

in the proposed mechanism, mmFER successfully achieves

a lower MSE loss than S-cross that uses a vanilla autoen-

coder. The results demonstrate that mmFER outperforms

both KD and S-cross in achieving the highest model accu-

racy of 86.36%, indicating that a lower MSE loss enabled by

the cross-transfer pipeline leads to higher model accuracy.

Loss Optimization Performance. In this experiment, we

compare the performance of the proposed hybrid learning

loss function with the baselines. We follow a widely-used

clustering benchmark [47], and employ the silhouette score

(i.e., ranging from -1 to 1 and being better if closing to 1) mea-

sured by both intra-class and inter-class distances
2
. We also

compute the silhouette score of Image as the ground truth.

Fig. 14(b) show that, mmFER achieves the best silhouette

score of 0.52 on average, outperforming both KD (0.12) and

S-cross (0.21). In particular, mmFER achieves the highest sil-

houette scores across all expressions over both baselines. Be-

sides, the silhouette scores achieved by mmFER are closer to

the ground truth, implying that the proposed hybrid learning

loss can reduce intra-class distance and enlarge inter-class

distance for improving loss optimization in training image

to mmWave. Moreover, we use the receiver operating char-

acteristic (ROC) curve to compare the training performance

of mmFER with the baselines. Fig. 15(a) shows that mmFER

achieves the highest AUC (i.e., area under the curve) of 97.17
and the best training model accuracy of 86.36% on average,

outperforming the baselines. This experiment demonstrates

that cross-transfer pipeline can notably enhance model per-

formance and transferability in cross-domain.

4.5 mmFER Performance
We now evaluate the overall performance of mmFER from

different aspects.

2
The silhouette score will be closer to 1 if intra-class distance is smaller

while inter-class distance is larger.

(a) (b)
Fig. 16: (a) FER confusion matrix; (b) User-independent model per-
formance.

FER Performance.We first evaluate the FER accuracy of

mmFER in this experiment. We train an mmWave FER model

based on all subjects’ dataset with user-dependent setting.

We randomly split the dataset to 80% for training and 20% for

testing by 3 rounds and train a model per round. Fig. 15(b)

shows that mmFER achieves a FER accuracy of 86.19% on

average. The accuracy for each subject falls into the range

between 81.43% to 93.00% with a small standard deviation of

3.74% on average. We also calculate the confusion matrix for

each facial expression. Fig. 16(a) shows that the FER accuracy

of mmFER for all expressions is settled in the range between

83.0% to 89.1% with a small standard deviation of 2.10%. In

particular, "surprise" expression achieves the highest accu-

racy among all expressions. The experiment demonstrates

that mmFER is effective to recognize different subjects’ facial

expressions with high accuracy.

User-independent Model. The physical variations among

different subjects may challenge the generalization perfor-

mance of mmWave FER model especially for unseen subjects.

In this experiment, we evaluate the generalization of mmFER

in user-independent condition. To quantify variations, we

first select three subjects and visualize their facial mmWave

data distribution by each expression using t-SNE shown in

Fig. 17. The results demonstrate that different subjects lead to

notable data pattern variations even for the same expression.

We also apply the leave-one-subject-out validation (i.e., leav-
ing one subject independent as unseen and training model

based on the remaining subjects’ dataset). We train 10 user-

independent models and test using 10-fold cross-validation.

Fig. 16(b) shows that the FER accuracy by expressions drops,

but it still remains at 71.70% on average with a standard

deviation of 6.54%. In particular, the accuracy of "surprise"

expression is decreased by 22.1%, implying that the varia-

tions may be enlarged due to the intrinsic large range of

facial muscle movements (e.g., data distribution is more scat-

tered shown in Fig. 17). This experiment demonstrates that

mmFER has good generalization performance to recognize

unseen subjects’ facial expressions.

Impact of Detection Distance. The subject-to-radar dis-
tance may impact on spatial facial information extraction

(i.e., a far distance may yield a small heat face area shown

in Fig. 13(b)). In this experiment, we evaluate the impact of
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Fig. 17: Notable variations among different subjects.

distances on FER accuracy. We use the same experimental

setup as in Section §4.3 and test mmFER in a range between

0.3m to 3m to cover use scenarios in Table 2. Fig. 18(b) plots

that the FER accuracy decreases from 86.18% at 0.3m to 64.5%

at 3m on average with a standard deviation of 3.65%. Since

the angular resolution of mmFER is limited and the actual

facial angle range becomes smaller as distance increases, the

spatial facial information extracted from mmWave signals

may be reduced, resulting in accuracy drop. However, the

results prove that mmFER can still effectively achieve a good

FER accuracy of 80.57% on average within 2.5m, which can

be applied in a wide range of multimedia IoT applications.

Impact of Face Orientation. In this experiment, we eval-

uate the impact of face orientation (i.e., the angle of head
towards the radar) on FER accuracy as subject-to-radar dis-

tance increases. We set up 4 different angles of head in az-

imuth: 0-degree (i.e., facing directly to the radar), 30-degree,

60-degree, and 90-degree. Subjects may turn their faces left

or right randomly. We compare the performance of mm-

FER with the image model. Fig. 18(a) plots the FER accuracy

heatmaps with different orientations and distances using

image and mmWave models. We observe that the accuracy

of the image model at 0-degree is decreased from 96.64% to

83.3% as distance increases, and mmFER achieves a similar

result. The results also reveal that the accuracy drops for

both models as angle of head increases at each distance, e.g.,
down to 53.80% (image) and 46.94% (mmWave) from 0-degree

to 30-degree. In particular, both models fail when angle of

head is larger than 30-degree.

Impact of Body Motions. In this experiment, we evaluate

the impact of body motions on performance. We consistently

ask the same three subjects in Fig. 17 to perform different

body motions (e.g., playing games, typing, and leg shaking)

in turn when watching videos (e.g., 10 rounds each subject).

We use the same experimental setup as in Fig. 12(d). Fig.

19(a) shows that mmFER achieves an accuracy of 82.2% on

average when performing these body motions. In particular,
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Fig. 18: (a) Face orientation comparison by distances; (b) Impact of
different distances.

(a) (b)
Fig. 19: Impact: (a) Body motions; (b) Different postures.

the result of leg shaking has a slightly lower accuracy of

80.06% compared to that of playing games and typing, im-

plying that a larger range of body motions has more impact

on face localization. Overall, the results prove that mmFER

can avoid body motions to ensure system robustness.

Impact of Different Postures. In this experiment, we eval-

uate the impact of different postures on FER accuracy. We

use the same experimental setup as above, and ask the three

subjects to perform three regular body postures (i.e., sit on
chair, sit on ground, and stand). Fig. 19(b) shows the accuracy

with three postures for three subjects. The result shows that

mmFER achieves an accuracy of 81.15% on average with a

standard deviation of 2.59%. We observe that the accuracy

of both Stand and Sit on Ground drops slightly to 78.33%

and 80.75%, respectively. This implies that spatial facial infor-

mation extracted from mmWave signals may be affected by

different postures due to the change of face orientation in el-

evation. Overall, this experiment demonstrates that mmFER

is robust and resilient to a range of postures.

Impact of Wearable Accessories. Since wearing acces-

sories on head or face is common in reality, different acces-

sories may impact on FER performance due to materials (e.g.,
plastic or metal frames) and occlusions (e.g., partial or full
face occlusions). We then investigate the impact of wearing

accessories. We use the setup in a scenario of watching iPad

in Table 2, and ask the subject to wear regular accessories in

five different ways (e.g., mask, glasses, cap, 3D glasses, and

3D glasses & mask) when reacting videos for 10 rounds. Fig.

20 plots that mmFER successfully achieves a FER accuracy of

80.47% on average with a standard deviation of 2.8% by wear-

ing accessories. Especially, wearing a cap has less impact

with an accuracy of 83.86% on average, while the accuracy

of wearing glasses (81.52% on average) and 3D glasses (80%
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Fig. 20: Impact of regular wearable accessories.

on average) slightly drops as the frame materials may affect

the reflection of mmWave signals. In addition, wearing mask

yields an accuracy decrease, but mmFER still achieves an

accuracy of 80% on average due to fair penetration. Even for

wearing 3D glasses & mask, mmFER achieves a good accu-

racy of 77.07% on average. It implies that mmFER canwork in

a scenario with wearing mask regulations. Thus, the results

indicate that mmFER is robust for wearing accessories.

5 DISCUSSION AND FUTUREWORK
Limited Field of View. As aforementioned in Section §2,

due to hardware limitation, we place the IWR1843BOOST

board upright, resulting in 58-degree of azimuth angular

resolution and 30-degree of FOV. This setup may limit multi-

target detection in azimuth in reality. Since the dual-locating

approach is designed to locate multiple targets in azimuth for

any angle resolution and FOV, this situation can be improved

by using an mmWave radar with wider FOV or deploying

multiple radars. We plan to further evaluate mmFER with the

most recent mmWave radars from TI, i.e., TI MMWCAS-RF-

EVM (imaging radar equipped cascaded mmWave sensors)

with 140-degree FOV.

Detection Range and Angular Resolution. In principle,

the detection range ofmmFER is subject to angular resolution

which is limited by the number of RX antennas. Although

we apply high-resolution AoA estimation to enhance angu-

lar resolution, the accuracy of mmFER may still drop when

detection range increases (see Fig. 18). However, the pro-

posed technical approach works with any mmWave radar

device. To fundamentally improve angular resolution for a

longer detection range, we plan to use TIMMWCAS-RF-EVM

mmWave radar that provides an angular resolution of 1.4-

degree by 86 virtual RX antennas in azimuth and 18-degree

by 4 virtual RX antennas, and further evaluate mmFER.

mmWave Dataset Diversity. Our experiments show that

cross-transfer pipeline significantly improves the perfor-

mance of mmFER based on small-scale mmWave datasets.

According to Fig. 17, we observe that different subjects may

generate a large data distribution shift caused by individ-

ual face and expression variation, hence the performance

of mmFER may vary with the diversity and scale of dataset.

Since data collection can be very costly, achieving effective

FER based on an extremely smaller dataset (e.g., few-shot
learning [58]) has its merits, which we leave for future work.

6 RELATEDWORK
Device-free FER. Very few studies have been done in de-

veloping device-free FER systems that analyze Wi-Fi or ul-

trasound signals reflected from facial muscle movements.

WiFace [7] exploits the unique changes of channel state in-

formation (CSI) in Wi-Fi signals caused by facial muscle

movements. Although it has proven its effectiveness with

fair accuracy in different settings, due to intrinsic limitations

of Wi-Fi signals (i.e., low bandwidth and multipath effect)

[39], it may not be able to eliminate the impact of body mo-

tions. Also, it requires an extra antenna setup with manual

placement configuration, hence leading to poor applicabil-

ity. SonicFace [13] uses a customized microphone array that

emits ultrasound signals for FER, but its detection range is

limited to 60cm maximum due to the fact that ultrasound

signals may be brittle by ambient noise [6], hence hindering

the deployment of most multimedia IoT applications. Differ-

ent from these works, mmFER leverages on mmWave radar

to detect subtle facial muscle movements with higher signal

resolution, capable of sensing multiple targets with a flexible

detection range. mmFER is also robust and resilient to enable

FER in different indoor scenarios.

Cross-domain Transfer Learning for FER. Due to lim-

ited FER datasets available in sensing domain, cross-domain

transfer learning [27, 33] can be useful for image-to-sensing

transformation. FaceListener [51] presents a teacher-student

learning scheme based on knowledge distillation that learns

the latent correlation between facial landmarks in images

and reflected acoustic signals, achieving fair accuracy for

FER. Similar idea can be applied to mmWave-based FER, how-

ever, our study shows that the performance may significantly

degrade due to training over-fitting caused by small-scale

mmWave training dataset. In mmFER, we propose the cross-

transfer pipeline to address the issue, achieving effective

model knowledge transformation for mmWave-based FER.

7 CONCLUSION
This paper presents a novel mmWave radar based FER sys-

tem that detects subtle facial muscle movements caused by

facial expressions for facial expression recognition. mmFER

is a device-free solution that enables robust FER and delivers

valuable assessment of users’ engagement and reactions to

multimedia IoT applications. Extensive evaluations demon-

strate that mmFER is resilient to various real-world settings

with high accuracy, hence it is capable of deployment in a

wide range of scenarios with a flexible detection range for

multiple users.
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