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Electrocardiogram (ECG) monitoring has been widely explored in detecting and diagnosing cardiovascular diseases due to
its accuracy, simplicity, and sensitivity. However, medical- or commercial-grade ECG monitoring devices can be costly for
people who want to monitor their ECG on a daily basis. These devices typically require several electrodes to be attached
to the human body which is inconvenient for continuous monitoring. To enable low-cost measurement of ECG signals with
off-the-shelf devices on a daily basis, in this paper, we propose a novel ECG sensing system that uses acceleration data collected
from a smartphone. Our system offers several advantages over previous systems, including low cost, ease of use, location and
user independence, and high accuracy. We design a two-tiered denoising process, comprising SWT and Soft-Thresholding, to
effectively eliminate interference caused by respiration, body, and hand movements. Finally, we develop a multi-level deep
learning recovery model to achieve efficient, real-time and user-independent ECG measurement on commercial mobile phones.
We conduct extensive experiments with 30 participants (with nearly 36,000 heartbeat samples) under a user-independent
scenario. The average errors of the PR interval, QRS interval, QT interval, and RR interval are 12.02 ms, 16.9 ms, 16.64 ms, and
1.84 ms, respectively. As a case study, we also demonstrate the strong capability of our system in signal recovery for patients
with common heart diseases, including tachycardia, bradycardia, arrhythmia, unstable angina, and myocardial infarction.
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(a) Typical application scenario with our system (b) Interface of our An-

droid APP.

Fig. 1. ECG recovery system.

1 INTRODUCTION
According to the World Health Organization [1], cardiovascular diseases (CVD) are the leading cause of death

globally, claiming an estimated 17.9 million lives each year [2–4]. Cardiovascular diseases include coronary

heart disease, acute myocardial infarction (a.k.a. heart attack), and arrhythmia. In these diseases, sudden cardiac

arrest can often occur without warning signs. Therefore, taking preventative measures is crucial for early diag-

nosis and treatment of CVD. Various wearable systems, such as fitness trackers [5–8], chest straps [9–11], and

smartwatches[12–16], are available today that can monitor different aspects of the heart, such as heart rate and

heart rate variability (HRV). However, heart rate and its variability are merely reference indicators and they cannot

be used as definitive proof of the presence of heart disease. In contrast, Electrocardiogram (ECG) signals [17–19]

directly measure the heart’s electrical activity and can detect minor abnormalities in the heart. ECG has been widely

used as an accurate, simple, and sensitive method for detecting and diagnosing cardiac diseases.

Commercial ECG devices can be broadly categorized as medical-grade and commercial-grade. Medical-grade

ECG devices offer various functions such as diagnosis, report generation, and data storage. These devices are

very costly, ranging from $10,000-30,000, and are generally used in clinical settings. Therefore, they may not be

suitable for daily use by the general public [20]. On the other hand, commercial-grade ECG devices cost a few

hundred dollars [21]. However, these devices typically require attaching several electrodes to the human body,

making them less convenient for daily use. Although electrodes can be integrated into wearable devices such as

smartwatches [22–24], their performance highly depends on the precise location and proper contact of the electrode.

There have been attempts to convert heartbeat signals into ECG signals using commercial sensing modalities such

as ultra-wideband (UWB) [25], millimeter wave (mmWave) [26], and geophones [27]. However, these fixed devices

only work when users are located in a particular area, making it challenging to achieve location-independent

(i.e., anywhere) daily heartbeat monitoring. A recent solution proposed by Cao et al. [28] approximates the ECG

signal through the detection of wrist pulse using a smartwatch. Although the solution is location independent, it

relies on specialized equipment and can suffer from poor accuracy when reconstructing ECG signals for unseen

users. In this paper, we propose a novel low-cost ECG sensing system that accurately measures ECG signals using

acceleration data, i.e., Seismocardiogram (SCG) signals, collected from mobile devices. Our system offers several

advantages over previous systems, including low-cost, ease of use, location independence, user independence, and

high accuracy. Fig. 1(a) illustrates a typical scenario where a patient can measure their ECG readings (Fig. 1(b)) by

placing a mobile phone against the chest. The signals transmitted to a cloud server allow physicians to diagnose

heart-related conditions remotely and in real-time.
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Fig. 2. Cardiac structure and cycle.

Although promising, there are various challenges that need to be addressed. The first challenge is noise inter-

ference, where the accelerometer captures not only the heartbeat signal, but also data related to breathing, hand

movements, and system noise. Consequently, contaminated heartbeat signals have to be cleaned prior to recovery. To

address this challenge, we propose a two-step strategy: 1) eradicating the effects of respiration and hand movements

using the Stationary Wavelet Transform Thresholding (SWT-Thresholding) method, and 2) eliminating system

noise by the Soft-Thresholding method. The second challenge is recovering both coarse-grained and fine-grained

ECG characteristics. Simple models like autoencoder (AE) fall short of capturing fine-grained details. We propose

a Multi-level ECG-recovery Model (MEM) that can successfully embed low-, middle-, and high-level features in

the encoder and eventually recover them to ECG with full details. To extract the finest-grained high-level features

from SCG, we extend the vigorous Atrous Spatial Pyramid Pooling (ASPP) module to one-dimensional (1D) data.

Additionally, we use a Huber loss to train the MEM, which can balance convergence speed and robustness to noise

effectively.

In summary, this paper makes the following contributions.

• To the best of our knowledge, we are the first to develop a low-cost ECG sensing system that utilizes acceleration

data from commercially available mobile phones. This system offers several advantages such as user and location

independence, as well as easy accessibility. We successfully demonstrate a promising mobile application that

enables users to obtain real-time ECG readings by placing their mobile phones against the chest. The system allows

physicians to remotely diagnose heart-related conditions, thereby enhancing the feasibility of early-stage disease

screening.

• We design a two-tiered denoising process, comprising SWT and Soft-Thresholding, that effectively eliminates

interference caused by respiration, body, and hand movements. To achieve efficient and user-independent ECG

measurement, we develop a multi-level deep learning recovery model which can embed both coarse- and fine-

grained details of SCG fluctuations and recover ECG signals with full details.

• We implement the real-time ECG recovery system on a commercial mobile phone and conduct extensive

experiments with 30 participants (with nearly 36,000 heartbeat samples) in a user-independent scenario. The results

show that the average errors of the PR interval, QRS interval, QT interval, and RR interval are 12.02 ms, 16.9

ms, 16.64 ms, and 1.84 ms, respectively. In our case study, we demonstrate the strong capability of this system in

recovering signals for patients with common heart diseases, such as tachycardia, bradycardia, arrhythmia, unstable

angina, and myocardial infarction.
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Fig. 3. Accelerometer readings from three types of mobile phones.

2 UNDERSTANDING SCG SIGNALS
2.1 SCG Signal and Cardiac Cycle

Similar to ECG signals which provide clinical information, including five peaks i.e., P, Q, R, S, T, to form the

basis of measuring the cardiac activity [29, 30], SCG signals collected by the accelerometer are also effective in

capturing heartbeat activity information. Therefore, SCG measurements are often used to assist ECG measurement

in the diagnosis of various cardiac disorders [31, 32]. Heartbeat activity characterizes the three-dimensional heart

deformation caused by the stimulation of cardiac muscle [33]. As shown in Fig. 2(a), the human heart consists

of two upper atria and two lower ventricles [34]. A full heartbeat motion cycle goes through the following seven

mechanical events caused by continuous cardiac systole and diastole [35–37], as shown in Fig. 2(b). (i) Atrial

contraction (ATC): The electrical depolarization of the atria begins this stage of atrial muscle contraction. With the

atria contraction, the pressure within the atria increases, forcing more blood to flow through the open atrioventricular

valves and causing a rapid flow of blood into the ventricles. (ii) Mitral valve closure (MC): This stage implies

ventricular depolarization, resulting in mitral valve closure and a rapid increase in pressure inside the ventricular.

(iii) Aortic valve opening (AO): At this stage, blood rushes into the aorta from the left and right ventricles. Ejection

begins when the pressure inside the ventricle exceeds the pressure inside the aorta, causing the aortic valve to open.

(iv) Point of maximal blood acceleration in the aorta (MA): In this stage, the blood flows from the left ventricle

to the aorta with maximal acceleration. (v) Aortic valve closure (AC): Sudden closure of the aortic valve causes

isovolumic relaxation. The valve closure is associated with a small amount of blood returning to the ventricle and a

characteristic notch in the aorta. (vi) Mitral valve opening (MO): During the left ventricular diastole, blood flows

from the left atrium to the left ventricle as the left ventricular myocardium diastole and the mitral valve opens after

a decrease in left ventricular pressure. The filling is due to the diastole of the ventricular myocardium, leading to a

pressure gradient that allows blood to flow rapidly from the left atrium over the mitral valve. (vii) Rapid filling of

the left ventricle (RF): This stage occurs when the pressure of the left atrial exceeds that of the left ventricular, and

the mitral valve opens, allowing passive blood to flow into the left ventricle.
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Fig. 4. Comparison between SCG and ECG signals.

These cardiac events in one heartbeat cycle can be easily captured and identified using a miniaturized accelerom-

eter on the human sternum [36]. Inspired by this, we press three types of mobile phones vertically on the same

chest, respectively, while the user holds his/her breath, as shown in Fig. 1(a). Then, we record the acceleration data

of the Y-axis direction (i.e., the readings from the bottom pointing to the top of the phone) in Fig. 3. It shows that

each motion stage can be identified, and the patterns of the waveform from the readings of these phones are similar,

demonstrating that the accelerometer readings provided by commercial mobile phones can be used for capturing

SCG.

2.2 Relationship between SCG and ECG
Although SCG signals can be used to characterize cardiac activity, current medical analysis and diagnosis of

heart disease still rely on ECG. In this light, we focus on the in-depth “translation” of SCG signals collected from

commercial mobile phones into ECG signals. In this section, we discuss the intrinsic relationship between SCG

signals and ECG signals to illustrate the feasibility of recovering SCG to ECG waveform.

Although the SCG signals describe the mechanical vibration of the sternum and the ECG signals measure the

corresponding electrical activity, they essentially characterize the same heartbeat activity resulting from periodical

cardiac muscle systole and diastole. Therefore, we believe that there is a strong correlation between these two

time-series waveforms. To verify this point, we invited a volunteer to press the mobile phone in front of the sternum,

as shown in Fig. 1(a) and collected the accelerometer signal for 2.3 seconds, which corresponds to 230 sampling

points, given that the sampling rate is fixed at 100 Hz. At the same time, we recorded the ECG measurements as a

reference signal. Fig. 4 shows that the SCG signal depicts the same systolic and diastolic heartbeat activity as the

ECG signal in each cardiac cycle. The P wave in the ECG signal corresponds to the ATC state in the SCG signal,

implying atrial systole. Upon that, the QRS wave in the ECG signal corresponds to the range of states from MC

to MA in the SCG signal, indicating ventricular systole. Finally, the T wave in the ECG signal is associated with
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the range of states from AC to RF in the SCG signal, which indicates ventricular diastole. Based on the above

observations, we can conclude that SCG signals collected from mobile phones and ECG signals are inherently

correlated, demonstrating the great feasibility of “translating” SCG signals from mobile phones to ECG signals. In

addition, although the accelerometer readings show periodic patterns in the X, Y, and Z axes, the signal-to-noise

ratio (SNR) in the Y-axis is significantly higher than that in the other two axes because the phone is pressed

vertically against the chest. Therefore, in the default scenario, our system employs only the accelerometer readings

in the Y direction to reduce noise interference.

3 TWO-TIERED SIGNAL PURIFICATION
Much effort has been devoted to removing noise from biological signals. These studies can be divided into

the following categories: high-pass filters [38] or low-pass filters [39, 40], notch filters [41], empirical mode

decomposition (EMD) [42, 43], and adaptive filters [44]. Although high-pass or low-pass filters can remove

interference noise, some key features would also be eliminated. Likewise, the notch filters also filter out signals

outside the specific frequency range, thus affecting the integrity of a signal. Another commonly used technique is

EMD, which decomposes the signal into a series of frequency- and amplitude-modulated components to enable

denoising. However, the low-frequency components are also wiped off, leading to the loss of useful information.

Consequently, the challenge lies in efficiently extracting the SCG signal induced by heartbeat movement using

the accelerometer data collected from mobile phones. In this section, we introduce a two-tiered denoising scheme

specifically designed to eliminate various forms of noise, such as motion-induced signals and other residual noise.

3.1 Motion-induced Noise Removal
Recent studies [28, 45] have demonstrated the efficiency of Stationary Wavelet Transform (SWT) in mitigating

artifact-induced noise from heart-induced signals due to its superiority of struggling against the shifts of signals in

the time domain. We are inspired to use the SWT-based technique to extract the components related to cardiac

movements from the accelerometer data contaminated with motion-induced signals from respiration, body, and

hand movements. In detail, it first decomposes raw signals in Fig. 5(a) to derive the wavelet coefficients sequence

and scaling coefficients sequence by performing the SWT operation. Specifically, the wavelet coefficient sequence

and scaling coefficients sequence can be represented as {𝑑1, 𝑑2, . . . , 𝑑𝑀 } and {𝑎1, 𝑎2, . . . , 𝑎𝑀 }, respectively, where

𝑀 is denoted as the level of decomposition. Here, we select the Coif5 as the wavelet due to its superiority in

time-frequency localization and smoothness. Given that the frequency range of heartbeat components falls within

0.8 ∼ 50 Hz, we set 𝑀 to 6, based on a sampling rate of 100 Hz. As a result, levels 1 to 6 represent signal

components within the frequency ranges of 25 ∼ 50 Hz, 12.5 ∼ 25 Hz, 6.25 ∼ 12.5 Hz, 3.13 ∼ 6.25 Hz, 1.56 ∼ 3.13
Hz, and 0.78 ∼ 1.56 Hz, respectively. Since respiration falls within the frequency range of 0.2 ∼ 0.33 Hz [46], we

can effectively eliminate the impact of respiration during the decomposition step. Fig. 5(b) shows the corresponding

SWT output of wavelet coefficient sequences. Second, we focus on removing the noise from body/hand movements.

The basic idea behind this step is that the amplitude of the vibration caused by body movements is much greater

than the vibration in response to the heartbeat. Specifically, in each wavelet coefficient sequence, we first calculate

the energy within a period of 0.1 s and then locate all the peaks (local maximum points) 𝑃𝑚 (𝑖), where 𝑖 indicates

the order in time. We then calculate the mean 𝜇𝑚 and standard deviation 𝛿𝑚 of all peaks in each level and set the

empirical threshold𝑇ℎ𝑟𝑚 to 𝜇𝑚 + 2𝛿𝑚 . If the peak 𝑃𝑚 (𝑖) is higher than𝑇ℎ𝑟𝑚 , the peak will be identified as the body

or hand-induced activity. Third, the waveform related to heart-induced activity exhibits a quasi-periodic pattern,

unlike those associated with minor noisy movements. This distinction can be effectively leveraged to identify and

isolate such noise. In detail, we denote the interval between two adjacent peaks, e.g., 𝑃𝑚 (𝑖) and 𝑃𝑚 (𝑖 + 1), as 𝜏𝑚 (𝑖).
Similarly, the empirical threshold of interval 𝜏𝑇ℎ𝑟𝑚 (𝑖) is calculated as the median value of 𝜏𝑚 (𝑖). Since the peak

induced by the heartbeat should appear periodically in the SCG signals, 𝑃𝑚 (𝑖) is determined within the heartbeat

cycle when there are two consecutive time adjacent intervals (i.e., 𝜏𝑚 (𝑖), 𝜏𝑚 (𝑖 + 1)) that are larger than 𝜏𝑇ℎ𝑟𝑚 (𝑖).
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Fig. 5. Illustration of Denoising Process.
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Otherwise, 𝑃𝑚 (𝑖) is identified as the noise induced by other tiny movements. By locating the start and end points of

the heart-induced peaks, we can separate the heart-induced segment and noisy segment in each level of wavelet

coefficients. Upon that, we replace the noisy time segment with zero. Thereafter, by performing the inverse SWT,

we can recover the purified SCG signals. Fig. 5(c) shows that the influence of the artificial movements can be

significantly reduced and the heartbeat pattern of the purified signal is much clearer than that of the original signal.

Note that we can clearly observe that the SCG signal’s amplitude partially decreases following the SWT-based

process. This is primarily because the SWT-based method retains components within the frequency range of 0.78

to 50 Hz, while the parts outside this range are classified as noise and hence discarded. This reduction in heartbeat

amplitude information will inevitably influence our system’s recovery capability to a certain degree. However, since

the proportion of the signal that falls outside this frequency range is relatively minor and often contaminated by

high-frequency noise, for instance, random system noise, the system’s overall impact from this direct removal is

marginal.

3.2 Small Noise Reduction
Although the SWT-based technique is highly effective in removing most of the motion-induced noise, some

residual movement noise may still remain in the wavelet coefficient sequences of each layer. This is due to the

heartbeat’s pseudo-periodic nature, which could potentially have a destructive effect on ECG recovery. Therefore, an

additional purification step is required to enhance the quality of the SCG signals. Recent works have demonstrated

the feasibility of using the adaptive filter to remove this residual noise [47, 48]. However, this technique is

constrained by the following limitations. First, it necessitates a reference signal, either from another sensor or the

original signal which is not feasible for practical applications. Second, the adaptive filter employs an adaptive

algorithm (e.g., Least Mean Squares [47, 48]), adjusting its parameters at every time step, to efficiently respond to

signal variations. However, this process necessitates a significant expenditure of computational resources.

In this paper, we use the Soft-Thresholding algorithm [49–51] to design a new denoising scheme based on wavelet

coefficient sequences to further facilitate the extraction of clear vibrations of heartbeat motion. It can reconstruct

unknown waveforms from data containing independent and identical Gaussian distributions. Our Soft-Thresholding
based denoising scheme undergoes the following two steps. First, it calculates the empirical global threshold [50]

which can be represented as: 𝜆 = �̂�
√
2 ln(𝑁 ), where 𝑁 is the length of data and �̂� indicates the noise level. Second,

to derive the filtered wavelet coefficient, we apply the soft thresholding on each element of the wavelet coefficient

based on the chosen global threshold as: 𝜈𝑚 (𝑛) = sign( |𝑑𝑚 (𝑛) | − 𝜆)+, where 𝑥+ is defined as 𝑥 when 𝑥 ≥ 0 and

otherwise 0. Then, by performing inverse SWT on the filtered result, the random noise is significantly weakened,

and we can see the clearer heartbeat pattern, as shown in Fig. 5(d).

4 ECG MEASUREMENT
4.1 Data Normalization

When the mobile phone’s built-in accelerometer captures the SCG signal, our system will leverage the character-

istics of its waveform to recover the ECG signal through our deep learning model (details in Section 4.1). However,

several factors may influence the accuracy of ECG recovery owing to the lack of data diversity, e.g., body posture,

pressing strength. Therefore, we appeal to data normalization so that the data can cover most potential scenarios.

Users may want to use their mobile phones in different ways, e.g., with different postures or pressing strengths.

To simulate these scenarios, we first ask a subject to keep two different postures, sitting and lying, with the phone

always perpendicular to the chest. Then, the subject was asked to hold the phone toward his chest with different

intensities, i.e., light and hard press. Although the heartbeat waveform pattern of the subject is consistent in both

scenarios, their absolute accelerations and scaling range differ significantly due to the effect of the gravity [36]

and the amount of pressure, respectively. To reduce the variations of the SCG signals, we employ the Min-Max
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Fig. 6. Schematic of the Multi-level ECG-recovery Model. It is an encoder-decoder architecture that takes a
processed SCG sequence as input and an ECG sequence as output.

Normalization method [52] to normalize the SCG magnitude measurements, which can be described as:

𝑆𝑠𝑐𝑎𝑙𝑒𝑑 (𝑛) =
𝑆 ′𝑛 −Min(𝑆 ′𝑛)

Max(𝑆 ′𝑛) −Min(𝑆 ′𝑛)
(1)

where 𝑆 ′𝑛 denotes the magnitude of the 𝑛-th point in filtered SCG measurements after Soft-Thresholding. In this

way, all the SCG readings will be scaled to the same level (i.e., 0 ∼ 1), indicating that the impacts of posture and

pressing strength have been significantly mitigated. Note that we perform normalization to all SCG measurements

before the ECG recovery.

4.2 Multi-level ECG-recovery Model
In this section, we first formally define the ECG recovery problem and notations and then detail the architecture

of our proposed Multi-level ECG-recovery Model (MEM).

4.2.1 Problem Definition. In data recording, the accelerometer emits univariate SCG time series 𝑿 = {𝒙𝑖 }𝑡𝑖=0,
where 𝑡 is the number of SCG time steps. The ECG recovery problem is then defined as:

𝑌 = 𝑓 (𝑿 ), where �̂� = {�̂�𝑖 }
𝑝
𝑖=1 (2)

is the recovered ECG signals. The length 𝑝 of the recovered ECG signals is arbitrary compared to the length 𝑡 of

input SCG signals. Our aim is to find an optimal model 𝑓 ∗ so that the discrepancy between the recovered ECG �̂�
and the actual ECG 𝒀 is minimized:

𝑓 ∗ = argmin
𝑓

L(𝒀 , �̂� ), (3)

where 𝒀 = {𝒚𝑖 }
𝑝
𝑖=1 is the actual ECG signals recorded from a professional ECG instrumentation and L(., .) is the

loss function that measures the difference between 𝒀 and �̂� .

4.2.2 Recovery Model. In light of the above problem definition, the ECG recovery problem can be cast as a

sequence-to-sequence transformation. Encoder-decoder architectures have achieved great success in a sequence-

to-sequence transformation in various domains [53–55]. Typically, an encoder-decoder architecture is composed
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Fig. 7. Schematic of depthwise separable convolution.

Fig. 8. Schematic of (a) 1D atrous convolution and (b) 1D
transposed convolution.

of (1) an encoder module that extracts key information while filtering redundant information, and (2) a decoder

module that reconstructs desired both coarse-grained and fine-grained details from the distilled information. Our

MEM follows the encoder-decoder routine but with specialized encoder and decoder modules that can successfully

explore the underlying vibration of heartbeats and recover them into ECG waveform.

Encoder with depthwise separable convolution and ASPP. As shown in Fig. 6, our encoder module starts

with a deep Depthwise Separable Convolution (DSConv) module. The DSConv features a depthwise convolution
(DWConv) followed by a pointwise convolution (PWConv) (see Fig. 7) to achieve reduced computational complexity

while competitive or even better performance compared to conventional convolutional networks. As shown in

Fig. 7, DWConv executes convolution on each input channel independently. We apply 1D DWConv to the input

sequence:

DWConv(W,𝑿 )(𝑖,𝑘) =
𝑀∑
𝑚=0

w(𝑚, 𝑘) · 𝒙 (𝑖+𝑚, 𝑘) , (4)

where DWConv(W,𝑿 )(𝑖,𝑘) is the 𝑖-th element of the 𝑘-th output channel, 𝑿 is the input sequence, W is the weight

matrix, and 𝑀 is the kernel size. The PWConv is a simple 1 × 1 convolutional network (see Fig. 7) with minimal

computation and model parameters to fuse information from each output channel of DWConv. The 1D PWConv is

formalized as follows:

PWConv(W,𝑿 )(𝑖,𝑞) =
𝐾∑
𝑘=0

w(𝑖,𝑘) · 𝒙 (𝑖, 𝑘) , (5)

where PWConv(W,𝑿 )(𝑖,𝑞) is the 𝑖-th element of the 𝑞-th output channel and 𝐾 is the number of input channels.

Then, by combining DWConv and PWConv, a DSConv block is:

DSConv(W𝑝 ,W𝑑 ,𝑿 )(𝑖,𝑞) = PWConv(W𝑝 ,DWConv(W𝑑 ,𝑿 )(𝑖,𝑘) )(𝑖,𝑞) , (6)

where W𝑑 and W𝑝 are weight matrices for DWConv and PWConv, respectively. Our deep DSConv module has six

cascade DSConv blocks with a progressively doubled number of channels {32, 64, 128, 256, 512, 512} and halved
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Fig. 9. Comparison between ground truth and recovered ECG waveform.

channel size {640, 320, 160, 80, 40, 20}. After each DSConv block, we insert a Batch Normalization layer [56]

and Leaky ReLU activation [57]. This deep structure is able to extract features with gradually refined granularity.

To fully recover both the coarse-grained fluctuations and fine-grained details of ECG, we take features of three

sorts of granularity, low-level features, mid-level features, and high-level features, as input into the subsequent

decoder (see Fig. 6). For each feature level, we use a convolution layer to cast the feature size to be compatible for

later concatenation.

Since the high-level feature contains the most condensed and fine-grained information, we employ an Atrous

Spatial Pyramid Pooling (ASPP) module [55, 58] for a more aggressive representation. As shown in Fig. 6, the

ASPP module employs multiple parallel 1D atrous convolution (AConv) with pyramid atrous rates to explore

multi-scale representations. It also has a PWConv for the finest-grained representation and a global average pooling

for the coarsest-grained representation. The AConv enables magnifying the receptive field of filters with normal

computation and parameter amounts:

AConv(W,𝑿 )(𝑖,𝑞) =
𝐾∑
𝑘=0

𝑀∑
𝑚=0

w(𝑚, 𝑘) · 𝒙 (𝑖+𝑟 ·𝑚, 𝑘) , (7)

where AConv(W,𝑿 )(𝑖,𝑞) is i-th element of the q-th output channel, 𝑟 is the atrous rate, 𝑀 is the kernel size, and 𝐾
is the number of input channels. Fig. 8(a) depicts the schematic of atrous convolution with various atrous rates. An

atrous convolution with an 𝑟 atrous rate has 𝑟 −1 holes (i.e., without kernel values) between successive kernel values.

This setting is able to expand the receptive field of conventional convolution from 𝑘 ×𝑘 to 𝑘 + (𝑟 − 1) (𝑘 − 1) without

extra network parameters and computation. In this way, the ASPP module offers an extraordinary competence to

deal with both short- and long-range dynamics of input sequences. We carefully select the atrous rate as 4, 6, and 8
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Fig. 10. Experimental setup.

considering the high-level feature size. DSConv and AConv in the encoder enable a lightweight ECG recovery

model which is desired by mobile devices.

Decoder. The decoder takes the concatenated multi-level features as input and upsamples it to the size of the

corresponding actual ECG signals. As shown in Fig. 6, it consists of two upsample blocks, each of which has one

DSConv layer for feature extraction and one 1D Transposed Convolution (TransConv 1D) layer for upsampling.

Through the decoding process, the size and number of features are gradually enlarged and reduced, respectively.

Different from naive interpolation technology, TransConv upsamples the input feature map to a desired size of

the output feature map using learnable filters. Fig. 8 (b) shows the schematic of a 1D TransConv layer. We take

a 1 × 5 kernel as an example (Fig. 8 (b)): one input feature point will multiply with every weight of the kernel,

resulting in a 1 × 5 output feature. By combining a DSConv and TransConv, an upsample block can well interpret

the condensed features from the encoder and recover them into desired ECG signals.

4.2.3 Training and Validation Scheme. We use the Huber loss [59], which makes the best of both the mean

squared error (MSE) and the mean absolute error (MAE), as the training loss function in Eq. 3. It is defined as:

L(𝒚𝑖 , �̂�𝑖 ) =

{
0.5(𝒚𝑖 −𝒚𝑖 )2 if |𝒚𝑖 −𝒚𝑖 | < 1,
|𝒚𝑖 −𝒚𝑖 | − 0.5 otherwise.

(8)

The Huber loss has shown extraordinary robustness on various regression tasks [60–62]. It penalizes linearly for

large errors while quadratically for small errors so that can accelerate the convergence speed and ignore noise

at the beginning of training and then gradually reduce optimization steps to ensure global minima. We use the

Adam optimizer for training with possible early stopping. After full training, we obtain an end-to-end model with

SCG as input and recovered ECG as output. Due to factors like smartphone positions (subject-agnostic) and body

weight (subject-related), the correspondence between SCG and ECG varies from one subject to another making

it challenging to build a unified recovery model for different subjects. However, it is always preferred to directly

apply the trained model without lengthy subject-specific calibration or model retraining for practical use. Therefore,

different from Cao et al. [28], we validate our ECG recovery system in a subject-independent setting, where training

and test are performed on different subjects. Our experimental results, as detailed in Section 6, well justify the

effectiveness of our recovery system. There are two reasons accounting for our outstanding subject-independent

performance. First, we construct a large dataset consisting of many subjects for model training, which lays the

foundation for our ECG recovery model to extract the common patterns of SCG-to-ECG correspondence across

different subjects. Second, we propose a Multi-level ECG-recovery Model, which is capable of extracting low-,

mid-, and high-level patterns of SCG-to-ECG correspondence. Unlike extracting only high-level deep features and
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thus being prone to overfitting specific subjects, our multi-level structure allows for better extraction of common

patterns across different subjects and facilitates direct application to unseen subjects. In addition, the ASPP module

is capable of capturing not only short-term dynamics but also gradually increasing long-term dynamics, enhancing

feature extraction capabilities. By training it with the subject-diverse dataset, our Multi-level ECG-recovery Model

can well discover the underlying subject-independent patterns of SCG-to-ECG correspondence.

5 IMPLEMENTATION
We have implemented our system on a Samsung Galaxy S10 mobile phone with a built-in accelerometer and

running Android 10.0 OS, as shown in Fig. 10(a). To facilitate evaluation, we use the mobile phone to collect data,

which is then transferred to a PC for further processing. The sampling rate is set to 100 Hz, which is sufficient to

cover the frequency range of heartbeat activity. We utilize a commercial 3-lead ECG monitor (Heal Force PC-80B),

which has proven accurate [63] and been extensively employed in research [64–66], to obtain the ground truth

[67], which serves as the reference for experimental evaluation and as labels for training the ECG recovery model.

Given that the ECG device’s default sampling rate is 150 Hz, we employ cubic spline interpolation to decrease

the sampling rate to 100 Hz, which matches the sampling rate of the mobile phone. The accelerometer data are

then sent to a LENOVO Y7000P PC via WiFi for further processing in Python 3.9, including denoising, data

augmentation, deep learning model training, and ECG recovery.

The proposed MEM is trained on NVIDIA GeForce GTX 1060 GPU with 6 GB of GDDR5 memory. Next, we

report specific parameter settings of the MEM. The kernel size and the stride size of DWConv in the Deep DSConv

module are 1 × 3 and 2, respectively, to gradually shrink the feature size. The transposed convolution layer uses a

kernel size of 2, which expands the input feature size by a factor of 2. We use the batch normalization and Leaky

ReLu activation function in the Deep DSConv module. Dropout with a rate of 0.5 is used to alleviate potential

overfitting. The model is trained using the Adam optimizer with an annealing learning rate starting from 10−3 and

ending at 10−6. The training proceeds for 500 epochs with possible early stopping.

6 EVALUATIONS
6.1 Experimental Setup

To evaluate system performance, we recruit 30 participants (15 females and 15 males) aged between 22

to 83 years. The average age of the participants is 45.9 years, with a standard deviation of 22.18. Of the 30

participants, 15 are healthy, and the remaining 15 have been diagnosed with a range of heart conditions including

tachycardia, bradycardia, arrhythmia, unstable angina, and myocardial infarction. Each disease is represented by

three participants. All participants have not participated in similar experiments before. Their heart rate is ranged

from 53 to 125 BPM (Beats Per Minute) with an average of 85 BPM. We start each experiment by providing a
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Table 1. Overall performance of the MEM (ours) and comparison with the baselines. The best results are shown in
bold.

Metric Model Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub9 Sub 10 Mean

CS

AE 0.9386 0.9276 0.8148 0.806 0.8098 0.8381 0.861 0.9446 0.9344 0.8466 0.8722

VAE 0.8989 0.9101 0.8068 0.7800 0.8987 0.7480 0.8648 0.955 0.9138 0.7204 0.8497

LSTM 0.9093 0.9015 0.5904 0.7984 0.9398 0.824 0.8503 0.9511 0.9172 0.8712 0.8553

GRU 0.9104 0.9046 0.6049 0.8053 0.9812 0.8517 0.8414 0.9525 0.9537 0.9149 0.8721

Seq2Seq 0.9247 0.9154 0.8201 0.8222 0.9071 0.8301 0.9112 0.9362 0.9404 0.9026 0.8910

Ours 0.9455 0.9351 0.8302 0.8543 0.9582 0.8514 0.9598 0.9800 0.9634 0.9187 0.9197

PR

(ms)

AE 17.16 15.30 25.61 19.75 7.182 11.97 18.99 12.33 27.43 7.488 16.32

VAE 36.42 35.72 37.67 26.83 38.27 44.51 40.01 37.26 46.43 40.47 38.36

LSTM 45.10 55.64 51.11 39.76 36.27 29.99 44.57 43.75 48.16 26.64 42.10

GRU 41.37 49.38 50.79 40.63 33.71 26.63 40.92 37.51 43.07 22.73 38.67

Seq2Seq 10.62 19.37 31.22 22.53 9.730 12.11 25.09 11.43 27.62 7.911 17.76

Ours 8.997 11.79 17.12 15.98 5.413 8.596 16.67 10.34 19.01 6.301 12.02

QRS

(ms)

AE 19.232 17.34 45.92 18.13 31.65 29.94 26.04 17.77 51.53 26.67 28.42

VAE 117.2 143.7 121.2 85.97 131.3 96.56 111.9 97.81 93.25 106.5 110.5

LSTM 118.3 141.9 90.9 140.8 143.4 113.1 114.1 119.7 168.7 85.21 123.6

GRU 164.7 131.6 57.06 124.2 89.72 90.12 135.7 53.76 173.8 100.7 112.1

Seq2Seq 28.78 25.64 42.01 20.65 36.89 27.21 30.64 25.67 38.32 23.94 29.98

Ours 14.221 16.25 16.98 21.28 17.50 16.19 14.64 16.69 18.58 16.71 16.90

QT

(ms)

AE 30.62 21.3 33.74 23.76 21.75 21.82 32.25 33.13 25.81 31.8 27.60

VAE 52.41 65.55 61.74 65.51 61.81 91.65 81.01 65.91 91.62 86.31 72.35

LSTM 105.1 97.07 59.48 67.05 81.93 85.18 63.71 107.5 127.83 63.77 85.86

GRU 90.88 82.34 71.13 60.49 86.47 76.46 81.44 86.64 94.71 70.95 80.15

Seq2Seq 42.03 31.22 24.72 25.94 31.63 17.25 22.04 27.62 20.16 25.51 26.81

Ours 20.03 19.71 14.24 19.73 11.39 15.81 20.52 15.73 14.32 14.9 16.64

RR

(ms)

AE 1.987 4.096 6.633 0.485 0.765 4.092 1.503 2.803 4.807 2.444 2.962

VAE 37.41 49.34 21.72 17.44 15.92 26.73 15.82 41.63 40.64 37.02 30.37

LSTM 15.27 18.32 14.54 21.26 17.92 32.58 10.80 23.70 19.33 13.91 18.76

GRU 19.72 23.61 12.08 5.428 14.51 22.28 4.326 3.918 12.43 9.872 12.82

Seq2Seq 5.931 11.78 10.58 1.211 15.19 7.514 2.229 5.933 3.434 6.829 7.063

Ours 0.733 3.281 3.064 0.919 0.536 2.845 0.687 1.127 2.874 2.337 1.840

10-minute briefing session to introduce the experimental equipment and data collection methods. Ethical approval

has been obtained from our institutional review board (IRB) prior to all experiments. For each subject, data

collection lasts for 2 minutes and is repeated 10 times. If not specified, each subject is instructed to remain still

and use a smartphone to capture the SCG signal by placing it against their chest, as shown in Fig. 10(b). Unless

otherwise specified, each subject participates in all experiments, and we use leave-one-out cross-validation to

evaluate system performance with a user-independent data set. Specifically, for 𝑛 subjects, we divide the raw data

into 𝑛 sets, and the testing is iterated 𝑛 times. In each iteration, we use the set of (𝑛 − 1) subjects as the training

samples and the set of the remaining subject as the testing samples. Unless otherwise specified, for all experiments,

we use the QRS interval, a commonly used indicator in medical diagnosis [68, 69], and cosine similarity, which is

to measure the morphological similarity (a common function in MATLAB) between the recovered ECG signal and

the ground truth, to evaluate the system’s performance.
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Fig. 12. Error for different postures.
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Fig. 13. Error after different movements.

6.2 Overall Performance
To evaluate system performance, we define five evaluation metrics. The first one is a coarse-grained recovery

metric, cosine similarity (CS), which measures the similarity between the recovered and ground truth signals, with

a higher value indicating better performance. The remaining four metrics are fine-grained clinical recovery metrics,

which evaluate the difference between the recovered and ground truth values of key ECG intervals including PR

interval, QRS interval, QT interval, and RR interval. Lower values of these metrics indicate better performance.

These intervals correspond to specific distances between the peaks and valleys in the ECG waveform, and they are

important diagnostic references for various heart diseases[25].

Table 1 shows the overall performance of our system (ours) and its comparison to using alternative popular deep

learning models for sequence-to-sequence transformation, autoencoders (AE), variational autoencoders (VAE),

Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Sequence-to-Sequence (Seq2Seq). Note

that for some cardiac diseases, it is impractical to measure some key ECG intervals so physicians diagnose them

by observing the ECG wave pattern. For example, the key diagnostic feature of unstable angina is an inverted T

wave (see Fig. 24) so the QT interval cannot be achieved. Therefore, we only include healthy subjects in the overall

performance evaluation but present the ECG recovery evaluation for patients in Section 6.6. In addition, due to

the page limit, we present the evaluation results of 10 randomly selected out of 15 healthy subjects in Table 1.

Our system achieves a high resolution of ECG recovery, around 10 ms, compared to the normal PR/QRS/QT/RR

intervals which have resolutions in tens to hundreds of milliseconds. This demonstrates the outstanding capability

of our system in fine-grained ECG recovery, making it suitable for real-world heart disease diagnosis applications.

Table 1 clearly illustrates that while our system and its comparison models have similar performance in coarse-

grained recovery as measured by CS, our proposed system outperforms them in all fine-grained evaluation metrics.

For example, the Seq2Seq has a similar coarse-grained recovery performance to our system (0.8910 vs 0.9197) but

significantly worse fine-grained recovery performance (PR: 17.76 vs 12.02; QRS: 29.98 vs 16.90; QT: 26.81 vs

16.64; RR: 7.063 vs 1.840). This highlights the importance of designing specific ECG recovery models, such as our

MEM, rather than simply using existing models from other domains. Additionally, it is important to note that the

acceptable measurement deviation for QRS interval, which is defined as the time interval from Q wave to S wave,

in clinical practice is 10-20 ms [70–72], and our average measurement error is 16.90 ms, which perfectly meets

this accuracy requirement. While this deviation could potentially result in misdiagnosis of certain heart conditions,

such as bundle branch block [27, 73, 74] (given that the QRS interval of an incomplete right or left bundle branch

block may be approximately 20 ms wider than a normal QRS interval), physicians take into account of other factors

such as ECG waveforms (which our system recovers exceptionally well with a cosine similarity of 0.9197) and the

patient’s clinical presentation during the diagnostic process. As a result, even with some degree of measurement

error, a reasonably accurate diagnosis can typically be achieved.
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Fig. 15. Robustness over different positions for data
collection.

In addition to the time interval, we also evaluate amplitude changes of the key intervals in the ECG, such as

PR, QR, RS, and QT intervals. Specifically, we compute the relative percentage change in amplitude during these

intervals for both recovered and ground truth ECG signals, and subsequently calculate the amplitude estimation

error. As illustrated in Fig. 11, the average amplitude errors during PR, QR, RS, and QT intervals are 13.06%,

5.9%, 5.21%, and 9.69%, respectively. The average error across these intervals is 8.36%, which falls within the

acceptable range for amplitude estimation according to previous studies [75].

6.3 Evaluation on Usage Scenario
In this section, we investigate the performance of our system under different application scenarios, including

various postures and motion states. Since it is challenging for the system to directly remove noise interference

caused by body movements, all experiments are conducted with the body keeping still during data collection.

Posture: In order to evaluate the impact of body posture, we collect data while the subjects keep sitting, standing,

semi-lying, and lying down. Data collected while sitting serves as the standard training set to train the system. As

shown in Fig. 12, we observe that the states of standing and semi-lying have minimal interference with heart rate

recovery. However, in the semi-reclining state, the system’s average measurement error is slightly increased from

5.28 ms to 8.66 ms compared to the sitting state. This is reasonable since the phone’s level is not horizontal with

respect to the ground, and the signal-to-noise ratio (SNR) along the Y-axis decreases, leading to an increase in the

influence of hand movement. Additionally, the recovered heartbeat waveform in all three postures is highly similar

to the actual waveform, showing that the system can work well in different postures.

Motion: Due to the extreme sensitivity of the built-in accelerometer, we can only evaluate the robustness of the

system when the user is relatively stationary. Here, we are just committed to verifying the system’s recovery

capability after different motion states. We first have each user maintain three different motion states, namely

standing, walking, and running, and collect their data after 1 minutes. Note that we use the samples in a all motion

state as the training dataset to involve the data diversity. As illustrated in Fig. 13, we observe that the variations

in heart rate following walking do not influence the recovery of the QRS interval or the waveform similarity.

However, the recovery performance after running declines to 18.13 ms. This decline is predominantly due to the

body remaining in a heightened state for a minute following the run, causing the accelerometer signal to be more

susceptible to bodily movement. Nevertheless, even with this running-induced error, the accuracy is sufficient for

everyday monitoring needs. These results suggest that our system delivers robust ECG recovery performance across

varying motion states.
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Fig. 17. Robustness over different phone modules.

6.4 Evaluation on Robustness
In this section, we assess the system’s robustness in recovering ECG waveforms under various conditions. We

use the original standardized data as the training data and newly collected data under different conditions as the

testing data. For example, when evaluating the system’s robustness to angle changes, we use data collected by

mobile phones at different angles as test data.

Respiration: To investigate the impact of respiration on the system, we direct the subjects to breathe at different

levels, namely, holding breath, normal breathing, deep breathing, and intense breathing. We consider the data

obtained from normal breathing as the standard training sample. As illustrated in Fig. 14, the average QRS interval

errors for holding breath, normal breathing and deep breathing are 11.16 ms, 17.78 ms, and 23.75 ms, respectively,

which are sufficient for daily monitoring. However, the error jumps to an unacceptable 52.85 ms during intense

breathing, while the similarity between the recovered waveform and the ground truth displays a corresponding

decreasing trend. This can be mainly attributed to the fact that intense breathing is typically accompanied by body

movements. In general, our system is capable of withstanding the effects of normal and deep breathing.

Position: To evaluate the impact of pressing position on ECG recovery, we first mark the reference point’s position

on the volunteer’s clothing. Next, we instruct the volunteers to press the phone 5 cm to the left, right, up, and down

from the reference point to measure the QRS interval errors. We use the samples collected from the reference point

as training data and the samples collected from the other positions as testing data. As shown in Fig. 15, the error in

the left position is similar to that of the reference point. This is reasonable since the heart is located to the left of

the chest. However, the performance of the other three positions has decreased to varying degrees, mainly due to

a reduction in amplitude in the SCG signals. It is worth noting that although the measurement performance has

declined, it is still sufficient for daily monitoring needs.

Angle: Under standard conditions, we define the angle when the user holds their phone vertically against their chest

as 0◦. When the phone is facing upward, the angle is defined as positive and negative when facing downward. As

shown in Fig. 16, we observe that when the angle is in the range of 0◦ to 45◦, our system achieves equally excellent

performance in recovering the heartbeat. This indicates that the angle has little effect on heartbeat recovery in the

range of 0◦ ∼ 45◦. However, when facing downward, the impact slightly increases, resulting in a larger error. This

is mainly due to the fact that the heartbeat is mostly concentrated above. The upward phone can collect signals

almost identical to those collected in normal conditions. However, sufficient quality signals cannot be obtained in

the downward direction, leading to a low SNR. Overall, our system can tolerate angle changes in the range of 75◦

(i.e., −30◦ ∼ 45◦). Therefore, when the user slightly adjusts the phone’s angle, the collected heartbeat samples can

still be used for recovery.
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Fig. 18. Robustness over different types of clothes.
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Fig. 19. Robustness over time.

Phone type: We deploy our system on three smartphones, Samsung Galaxy S5, Samsung Galaxy S10, and

OnePlus7P, to study the recovery capabilities of different phone modules. As shown in Fig. 17, the average errors

of the QRS interval for the Samsung Galaxy S5, Samsung Galaxy S10, and OnePlus7P are 13.63 ms, 8.42 ms, and

15.51 ms, respectively. Despite exhibiting significantly more noise than the Samsung Galaxy S10 and OnePlus 7P,

the Samsung Galaxy S5 demonstrates a recovery performance that is on par with two other phone models. This

is mainly due to our two-tiered noise removal scheme which can effectively remove system noise. Overall, the

experimental results demonstrate the effectiveness of our system for different smartphone modules.

Clothing: To simulate summer, autumn, and winter clothing, we ask subjects to wear T-shirts, coats, and sweaters

when collecting the accelerometer data. We use the data collected while wearing T-shirts as the standard training

data. Fig. 18 illustrates that the average interval errors of the QRS complex for T-shirts, coats, and sweaters are

10.69 ms, 13.14 ms, and 12.87 ms, respectively, which is consistent with the trend of cosine similarity. Although

the measurement error increases with the thickness of the clothing, our system still has the capability in recovering

the ECG waveform accurately.

Time period: To explore the long-period stability of the system, we initially select a reference time and use the

data collected at that time as the standard training data. We then ask the same subjects to collect data again for

testing at 90 and 180 days later. Fig. 19 shows that the performance of our system is highly stable over a six-month

period. This is mainly because we develop a multi-level deep learning recovery model that can effectively address

the user-independent issue, which indicates that even if there is a slight change in the heartbeat pattern, the system

still has strong capability in recovery.

6.5 Ablation Study
We conduct an ablation study to justify the effectiveness of each component in our deep learning recovery model.

Specifically, we implement a group of variants by removing several of the components and observed their impact

on all evaluation metrics. The variants include v1 (w/o Deep DSConv) which only uses the ASPP module in the

encoder, v2 (w/o ASPP) which does not use the ASPP module, v3 (w/o mid- and low-level features) which only

has the Deep DSConv module directly connected to the decoder, v4 (w/o mid-level features) which only has low-

and high-level features, and v5 (w/o low-level features) which only has mid- and high-level features.

Fig. 20 shows the results of the ablation study with different evaluation metrics. Note that all variants have

very small RR interval recovery errors so we only show the results with the other evaluation metrics. Ours, which

refers to our recovery model, generally outperforms all variants demonstrating the effectiveness of each adopted

component. Specifically, ours not only has the highest cosine similarity and the lowest QRS/PR/QT interval errors

but also the smallest variance regarding these evaluation metrics. This demonstrates that all components greatly

contribute to the results regarding both coarse- and fine-grained ECG recovery. When comparing with v1 and

v2, we conclude that both the Deep DSConv and ASPP modules are essential to compelling high-level feature
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Fig. 20. Ablation study on different evaluation metrics. Please refer to section 6.5 for the details of each variant v∗.

extraction. The comparison with v2, v4 and v5 demonstrates the necessity of feature extraction of each level for

the success of ECG recovery. Moreover, v5 achieves the performance closest to ours indicating that the low-level

features are less powerful than the other counterparts.

6.6 Case Study on Cardiac Diseases
To further evaluate the performance of our system in recovering ECG, we recruit 15 patients, each with a different

heart condition, including tachycardia, bradycardia, sinus arrhythmia (SA), unstable angina (UA) and myocardial

infarction (MI). Three patients are selected for each condition. The aim is to explore the feasibility of our system

for early disease screening. We employ a leave-one-out cross-validation strategy to assess system performance

using a user-independent dataset, as detailed in Section 6.1. For instance, to evaluate the system’s performance

on tachycardia, we repeat the testing process three times, corresponding to the three patients diagnosed with this

condition. In each iteration, only one patient’s data is used as the testing set. Ultimately, all the results are collated

to evaluate the overall system performance.

Tachycardia: Tachycardia is a condition characterized by a heart rate exceeding 100 BPM, which is beyond the

normal range (60 to 100 BPM) of adults at rest. It should be noted that all patients participating in the experiment

are instructed to sit quietly and maintain emotionally stable to mitigate potential physiological effects. Fig. 21

presents a comparison between the ground truth and the recovered ECG waveforms, which show the heart rates

of 104.8 BPM and 104.3 BPM, respectively, as calculated using the RR interval. The high degree of similarity

between the recovered waveform and the ground truth is evident. As demonstrated in Figure 26, the average QRS

interval error for tachycardia is 24.65 ms, and the average similarity is 95.29%. These results show that the system

is capable of accurately recovering ECG signals for patients with tachycardia.
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Fig. 21. Recovered ECG waveform from a patient with tachycardia.

Bradycardia: In contrast to tachycardia, bradycardia is diagnosed when an adult’s resting heart rate falls below 60

BPM. It is essential to diagnose bradycardia promptly and accurately since tachycardia can potentially develop

into conditions such as pathological sinus bradycardia, sinus arrest, sinus block, and atrioventricular block. Fig. 22

compares the waveforms between the ground truth and the recovered ECG with heart rates of 53.8 BPM and 53.7

BPM, respectively. The similarity in their heartbeat patterns is evident. As shown in Fig. 26, the average QRS

interval error for bradycardia is 19.01 ms with an average similarity of 97.19%.

Sinus arrhythmia: Sinus arrhythmia, a cardiac condition characterized by irregularities in heartbeat rhythm, can

potentially lead to serious complications such as myocardial infarction, heart failure, or stroke if not accurately

and timely diagnosed. The diagnosis of sinus arrhythmia is based on the intervals between waveforms in the ECG

signal (i.e., RR interval). As depicted in Fig. 23, our system can successfully recover ECG waveform even when

the raw SCG data has no obvious patterns. The experimental results in Fig. 26 demonstrate an average QRS interval

error of 13.87 ms and a similarity of 86.53%. Although there is a slight reduction in similarity, the accuracy is

adequate for preliminary arrhythmia diagnosis.

Unstable angina: Unstable angina is a cardiac condition that poses a significant risk of progressing rapidly into a

myocardial infarction or heart attack, leading to irreversible heart damage and potential fatality. Thus, it is essential

to accurately and timely diagnose unstable angina. In the ECG waveform, unstable angina is usually recognized

by the T wave inversion. As illustrated in Fig. 24, our system demonstrates excellent capabilities in accurately

recovering the ECG waveform for unstable angina, including the distinctive T-wave inversion. These results suggest

the potential of our system for the preliminary diagnosis of unstable angina. As shown in Fig. 26, the average QRS

interval error and similarity in estimating unstable angina are 25.91 ms and 96.03%, respectively.

Myocardial infarction: Myocardial infarction, a widespread cardiac condition, poses a significant threat as it

may result in permanent heart damage, potentially leading to complications such as heart failure, or even sudden

death. In the ECG, myocardial infarction is typically characterized by T-wave inversion, similar to unstable angina.
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Fig. 22. Recovered ECG waveform from a patient with bradycardia.

However, a distinguishing feature of myocardial infarction is the presence of ST-segment elevation [76]. As shown

in Fig. 24, a subtle elevation is noticeable during the ST-segment in the ground truth ECG signal. Impressively,

our system effectively recovers the distinctive heartbeat pattern, including both T-wave inversion and ST-segment

elevation. The robust performance of our system is further demonstrated by the statistical results presented in

Fig. 26, which indicate an average QRS interval error of 22.81 ms and an average similarity of 93.12%, respectively.

6.7 Unseen Heart Conditions
Although the disease tests previously were user-independent, it required the model to contain samples of the

same disease during training. In this subsection, we study the system’s ability to recover ECGs for diseases it

has never seen before. We still use the leave-one-out method, that is, when testing tachycardia cases, all of these

cases are used for testing. As shown in the Fig. 27, we found that the system’s recovery capability for tachycardia,

bradycardia, and sinus arrhythmia is competitive with previous results. However, the recovery capability for

Unstable angina and myocardial infarction significantly decreases. This is mainly because the first three diseases

primarily involve changes in the occurrence cycle, with little waveform variation. In contrast, the latter two primarily

involve waveform changes, and our deep learning model’s ability to recover ECG for such diseases is inferior.

7 SYSTEM LATENCY AND POWER CONSUMPTION
Our system achieves low latency, making it suitable for real-time monitoring. To analyze its performance, we

implement our system on a Samsung Galaxy S10 smartphone, equipped with a Qualcomm SM8150 Snapdragon

2.9 GHz Octa-core CPU. Our implementation operates on a two-thread architecture consisting of the display thread

and the recovery thread. To process SCG signals, our system uses a buffer size of 500 data samples, representing a

time duration of 5 seconds under a 100 Hz sampling rate). This buffer is updated every 10 ms. On average, our

system takes 2.31 ms and 1.29 ms for SWT-based denoising and Soft-Thresholding, respectively, to process one
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Fig. 23. Recovered ECG waveform from a patient with sinus arrhythmia.
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Fig. 24. Recovered ECG waveform from a patient with unstable angina.

segment. The processing time of the MEM-based ECG recovery for one buffer is 2.55𝑚𝑠. Therefore, the overall

latency for our system is only 2.31 + 1.29 + 2.55 = 6.15 ms (< 10 ms), which is acceptable for real-time monitoring.
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Fig. 25. Recovered ECG waveform from a patient with myocardial infarction.
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Fig. 26. Accuracy of ECG recovery for five cardiac diseases.

Our system exhibits moderate power consumption, with a measured average of 132.2 ± 7.3 mW when running
on commercial mobile phones. We utilize PowerTutor [77] to explore the power usage of our system on a Samsung

Galaxy S10. We measure the average power consumption over one hour, which is divided into six sessions, each

consisting of six minutes. In each session, the user performs ten rounds of ECG recovery. We exclude the power

consumption of the LCD display from our measurements, resulting in an average CPU power consumption of

132.2 ± 7.3𝑚𝑊 .

8 RELATED WORK
We discuss the related work and group them into the following categories.
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Fig. 27. Accuracy of ECG recovery for unseen diseases.

Device-based ECG monitoring: Recent years have seen a surge of interest in ECG monitoring as an important

method for diagnosing cardiac disease. Currently, heartbeat monitoring is primarily achieved through wearable

devices or sensors. Traditional commercial ECG devices [78] capture the electronic activity of the heart by attaching

electrode pads to specific locations on the body. To facilitate ubiquitous ECG monitoring, several studies have

focused on using flexible textile electrodes embedded in fabrics to monitor heart diseases in real-time [79, 80].

However, these schemes mainly rely on specialized equipment, which may not be suitable for the general public.

With the increasing popularity of smartwatches, heart-related activity monitoring has become a standard feature.

Companies such as Apple [81] and Samsung [82] have embedded electrodes in their devices to support cardiac

monitoring. However, the current methods require a user to clip their finger to an ECG board to make contact with

the electrodes, which may be inconvenient and uncomfortable. In addition, their accuracy is highly dependent on

precise electrode location and proper contact. Recently, a study in [28] proposed using wristwatch vibrations to

estimate ECG signals, but it relies on specialized equipment and experiences poor accuracy for new users who

haven’t been previously recorded. In comparison to all prior studies, we present a novel ECG sensing system

that uses acceleration signals collected from a mobile device. Our system offers several advantages over previous

methods, including almost zero cost, ease of use, location and user independence, and high accuracy.

Device-free ECG monitoring: Device-free ECG monitoring, which offers a comfortable user experience, has the

potential for widespread adoption. Recent research has mainly focused on estimating ECG signals through wireless

signals. Chen et al. [26] have developed a millimeter-wave radar system that can measure cardiac mechanical

activity and reconstruct ECG signals without physical contact. Wang et al. [25] have employed a UWB device to

achieve ECG-grained cardiac monitoring for the first time. Park et al. [27] have presented a low-cost, accurate, and

non-intrusive geophone-based sensing system for extracting accurate ECG patterns using heartbeat vibrations that

penetrate through a bed mattress. However, these fixed devices only work when users are located in a particular area,

making it challenging to meet the requirement for daily, location-independent heartbeat monitoring. In contrast, our

system is based on mobile phones, allowing for convenient heartbeat monitoring from any location.

9 LIMITATION AND DISCUSSION
We now discuss several limitations in our system. First, the current version of the system requires the user to

remain still while collecting data due to the accelerometer’s sensitivity to body movements. This restriction may

limit the system’s reliability in recovering the ECG waveform during activities such as running or walking. To

address this limitation, we plan to explore contrastive learning techniques to extract heartbeat signals in future

work. Second, at present, given the constrained computing resource of mobile phones, it’s necessary to train deep

learning models on computers. This approach, however, is not particularly favourable for real-time data and model
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Table 2. Time consumption

SWT-based
Denoising

Soft-Thresholding
Denoising

MEM based ECG
Recovery

Total

Time 2.31𝑚𝑠 1.29𝑚𝑠 2.55𝑚𝑠 6.15𝑚𝑠

updates, thereby diminishing the system’s robustness. In the future, we plan to proactively design lightweight deep

learning models that can be trained directly on mobile devices so as to enable online model updates. Third, at

present, our system has a relatively poor recovery capability for unseen cardiac diseases, especially those samples

with drastic pattern changes in waveforms. In the future, we will consider other more advanced deep learning

models to improve the recovery effect.

10 CONCLUSIONS
This paper introduces a novel low-cost ECG measurement system based on acceleration signals collected from

smartphones. Our system offers several advantages over previous systems, including its low cost, ease of use,

location independence, user independence, and high accuracy. To eliminate interference caused by respiration,

hand movements, and system noise and increase the variability of the training data, we apply two-tiered denoising

method. We also develop a multi-level deep learning recovery model to achieve fine-grained and user-independent

ECG measurement. We have implemented the real-time ECG monitoring system using a single mobile phone and

conducted extensive experiments demonstrating the strong capability of our system in ECG measurement, even for

patients with various heart diseases.
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