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Gait rehabilitation is a common method of postoperative recovery after the user sustains an injury or disabil-
ity. However, traditional gait rehabilitations are usually performed under the supervision of rehabilitation
specialists, which implies that the patients cannot receive adequate gait assessment anytime and anywhere.
In this article, we propose GaitTracker, a novel system to remotely and continuously perform gait monitor-
ing and analysis by three-dimensional (3D) skeletal tracking in a wearable approach. Specifically, this system
consists of four Inertial Measurement Units (IMU), which are attached on the shanks and thighs of the hu-
man body. According to the measurements from these IMUs, we can obtain the motion signals of lower limbs
during gait rehabilitation. By adaptively synchronizing coordinate systems of different IMUs and building
the geometric model of lower limbs, the exact gait movements can be reconstructed, and gait parameters
can be extracted without any prior knowledge. GaitTracker offers three key features: (1) a unified 3D skeletal

model to depict the precise gait movement and parameters in 3D space, (2) a coordinate system synchronization

scheme to perform space synchronization over all the IMU sensors, and (3) an automatic estimation method

for the user-specific geometric parameters. In this way, GaitTracker is able to accurately perform 3D skele-
tal tracking of lower limbs for gait analysis, such as evaluating the gait symmetry and the gait parameters
including the swing/stance time. We implemented GaitTracker and evaluated its performance in real applica-
tions. The experimental results show that, the average error for skeleton angle estimation, joint displacement
estimation, and gait parameter estimation are 3◦, 2.3%, and 3%, respectively, outperforming the state of the
art.
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1 INTRODUCTION

1.1 Motivation

Gait rehabilitation is commonly used for postoperative recovery to assist patients in evaluating
and recovering their ability of walking after sustaining an injury or disability. The potential appli-
cations may include six-minute walking test (6MWT) [18] and postoperative recovery evaluation

[7, 9]. Specifically, the 6MWT is an exercise test to measure the functional status of patients with
moderate and severe heart and lung diseases. For example, the patients after the intensive care in
ICU are usually required to perform 6MWT and accurately evaluate the total walking distance, step
length, step speed, and so on. Moreover, the postoperative recovery evaluation requires gait analysis
of the patients after surgery, including the stride/step length, cycle/swing/stance time, symmetry,
and so on. Traditionally, gait rehabilitation is performed under the supervision of rehabilitation
specialists, because inappropriate and incorrect actions may cause secondary injury. However, in
reality, patients may not be able to receive adequate gait rehabilitation services due to a lack of
rehabilitation specialists. Monitoring and analyzing gaits automatically and remotely has been a
great demand in recent years. In such a paradigm, an intelligent sensing system is typically de-
ployed to reconstruct gait movements so that patients will be able to access rehabilitation services
anytime and anywhere, and gait assessment can be done remotely by rehabilitation specialists.

1.2 Limitation of Prior Art

Existing approaches to gait monitoring fall into three categories, i.e., computer vision based, wire-
less signal based, and wearable sensor based. The computer vision-based approaches [6, 8, 11, 16]
have been proposed since the late 2000s to monitor and capture the gait movements of patients
directly using cameras. However, the use of cameras has several limitations. A camera typically
has a limited angle of view and may be vulnerable to occlusion and poor lighting in indoor envi-
ronments. In addition, real-time monitoring will generate a large volume of video streaming data
that may consume much network bandwidth when uploaded to the server for analysis. Moreover,
the use of camera may violate user privacy, and so far there are no reliable solutions available.
Wireless signals such as WiFi [10, 24, 26], Ultra Wide-Band (UWB) [3], RFID [22], and mmWave
[15, 28] have been exploited to monitor the gait movements of a patient. These approaches offer a
device-free and lightweight solution. However, wireless signals are susceptible to indoor multipath
effects, and thus these approaches may be easily affected by other human subjects in the environ-
ment. Wearable sensors have also been widely used in gait monitoring. These approaches require
attaching wearable sensors, e.g., pressure sensors [14] and Inertial Measurement Units (IMU)

sensors [4, 13, 19, 30], to the limbs of human body for capturing gait movements. Among these
sensors, IMU sensors become increasingly popular nowadays due to their low cost and high relia-
bility. Note that the attached IMU can only reflect the movement of the bounded limb [21, 23, 25, 29].
Since the leg is not a rigid structure, i.e., the movement of the thigh is not identical to the shank,
multiple IMU sensors are required to depict the complete posture of the entire leg. IMU sensors
have been attached to the thighs and shanks of a human subject to monitor gait movements in
Reference [4]. This system uses an inverse pendulum model to estimate gait parameters. However,
the coordinate systems of different IMU sensors are not synchronized, and their model requires
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Fig. 1. GaitTracker System: four IMUs are attached on the shanks and thighs of the human body, according to

the IMU measurements and the geometric model of the gait, the exact gait movements can be reconstructed

in 3D space and the gait parameters can be extracted without any prior knowledge.

prior knowledge of the lower limb length of a subject. Synchronizing multiple sensors can be done
using magnetometer, as demonstrated in Reference [32]. In this way, sensor data collected from
different limbs can be integrated to build a unified 3D gait model. However, indoor magnetic field
may vary from time to time and be susceptible to the surrounding environment. To avoid requiring
the prior knowledge of user-specific parameters, Mannini et al. mount inertial sensors on the foot
to calculate spatial parameters based on machine learning models [13], but they need to collect
enough training data to estimate the user-specific parameters.

1.3 Technical Challenges

In light of the limitations of existing wearable sensor-based approaches, we aim to address the
following two challenges for effective gait monitoring and analysis.

The first challenge is to adaptively synchronize coordinate systems of different IMUs to perform the

multi-sensor fusion. Since the measurements of IMUs are based on the local coordinate system of
each device, which keeps changing all the time, it is essential to synchronize the coordinate sys-
tems of different IMUs in the spatial dimension, such that the IMU measurements can be depicted
in a consistent manner for gait monitoring. To tackle this challenge, we first design an adaptive
complementary filtering algorithm to combine the accelerator and gyroscope measurements dur-
ing a specified time window so as to avoid high-frequency jitters and drift errors caused by sensor
defects. Then, according to the data fluctuation characteristics of acceleration and angular velocity
during the process of walking forward, we use the Principal Component Analysis (PCA) to ex-
tract a consistent forward direction from linear acceleration as the longitudinal axis and extract a
consistent lateral direction from angular velocity as the lateral axis. In this way, by referring to the
consistent forward/lateral direction and the gravity direction, we are able to achieve coordinate
system synchronization for different IMU sensors.

The second challenge is to build the user-specific geometric model of lower limbs without requiring

any prior knowledge in advance, i.e., the limb length. Most of the existing work tracks gait move-
ments based on the exact length of user’s lower limbs and requires the user to manually specify
this parameter or provide enough training data to estimate the parameter in advance. This is nei-
ther convenient nor practical for realistic applications. Besides, we realize that it does not work
to estimate the limb length by simply positioning the adjacent thigh/shank sensors, because the
position estimated by the quadratic integration of acceleration leads to non-negligible errors accu-
mulated with time. To tackle this challenge, we investigate the geometric model of human body
and propose a regression model to derive the shank and thigh length according to the relationship
between the stride length and rotation angle/length of lower limbs. This solution does not require
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prior knowledge about the user’s lower limbs. Based on that, we can further compute the gait
parameters without any prior knowledge.

1.4 Our System

In this article, we propose GaitTracker, an IMU-based three-dimensional (3D) skeletal tracking sys-
tem for gait monitoring and analysis. GaitTracker aims to achieve both 3D gait motion tracking
and gait parameter estimation, which facilitate rehabilitation specialists with complete gait analy-
sis and assessment for patients. The system offers three key features: (1) a unified 3D skeletal model

to depict the precise gait movement and parameters in 3D space, (2) a coordinate system synchro-

nization scheme to perform space synchronization over all the IMU sensors, and (3) an automatic

estimation method for the user-specific geometric parameters. In GaitTracker, IMU sensors are at-
tached to the thighs and shanks of a subject to collect motion data. By measuring the acceleration
and angular velocity of the corresponding locations from these IMUs, we can obtain the motion
signals of the lower limbs during gait rehabilitation. By adaptively synchronizing coordinate sys-
tems of different IMUs and building the geometric model of lower limbs, the exact gait movements
can be reconstructed and gait parameters can be extracted without any prior knowledge. There-
fore, GaitTracker is able to accurately perform 3D skeletal tracking of lower limbs for gait analysis,
such as evaluating the gait symmetry and the gait parameters including the swing/stance time.
Figure 1 gives an overview of the model, deployment, and data analysis of GaitTracker. Compared
with the work done in Reference [32] that uses magnetometers to synchronize the coordinates of
different IMU sensors, we use accelerators and apply PCA to align these coordinates, eliminating
the problem of unstable magnetic field in the indoor environments. In addition, different from the
existing approaches [13, 19] that calculate gait parameters based on the prior knowledge of limb
length, empirical coefficients or the large training data, GaitTracker can directly estimate the gait
parameters as well as the limb length based on the multiple inertial sensors without any prior
information.

1.5 Contributions

In this article, we make three main contributions as follows. (1) To synchronize the coordinates of
different IMUs without magnetometer, we introduce PCA to determine the unique global coordi-
nate system. Specifically, we utilize PCA to derive the longitudinal axis from linear acceleration
and lateral axis from angular velocity. Based on these two axes, we can derive a global coordinate
system that is consistent among all IMU sensors. (2) To estimate the spatial parameters of gait
such as the limb length, we use a regression model to derive the shank/thigh length of users by
exploiting the relationship in the geometric model of human body. This does not require any prior
knowledge from the user in advance. (3) We implemented a prototype system of GaitTracker1 and
evaluated its performance in the real environment. Our experimental results show that the aver-
age error of skeleton angle estimation is 3◦, the average error of joint displacement estimation is
0.23 m for every 10 m, and the average error of gait parameter estimation is 3%, outperforming the
state of the art [4, 13, 19, 30].

2 RELATED WORK

Computer Vision-based Approach leverages the camera to capture gait movements. Moataz
et al. [6] utilize the depth camera Kinect to obtain the joint positions in the global coordinate
system and then estimate the gait parameters from these joint positions. Kuhman et al. [11] use a
multiple-camera system and multiple reflective markers to measure the translations and rotations

1A demo of GaitTracker can be downloaded in the following web link: https://cs.nju.edu.cn/lxie/demo/gaittracker.mp4.
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of lower limbs. Gu et al. [8] propose a 3D reconstruction algorithm to estimate the joint positions
on the legs based on the images from a single RGB camera and then calculate the gait parameters.
However, camera has limited angle of view and can be easily affected by indoor occlusion and
poor lighting. Moreover, transferring raw video streaming data to the server can consume large
bandwidth, and the critical gait parameters cannot be efficiently extracted until the whole video
is uploaded.

Wireless Signal-based Approach uses wireless signals and leverages signal variations during
walking to estimate the gait parameters [3, 10, 15, 22, 24, 26–28, 31]. Wang et al. [26] utilize the
variations of WiFi signals reflected by a walking human subject to estimate the temporal gait
parameters. Anderson et al. [3] design a foot-mounted UWB sensor and deploy two UWB sensors
on each foot to estimate the stride length from UWB signals. Wang et al. [22] attach RFID tags to
the limbs of a subject for tracking body movements and estimating the limb rotations through the
extracted phase features. Xue et al. [28] are the first to construct the 3D human mesh using the
mmWave signals that bounce off the human body; they encode a 3D human model by analyzing
the 3D point cloud generated from the mmWave signals based on a deep learning framework. Zhao
et al. [31] design a convolutional neural network architecture to infer 3D human skeletons from
RF signals. Jiang et al. [10] utilize WiFi signals to reconstruct 3D skeletons composed of the joints
on both limbs and torso of the human body based on a deep learning model. However, wireless
signals may be susceptible to multipath effect and easily affected by other moving subjects in the
environment.

Wearable Sensor-based Approach uses multiple motion sensors [4, 13, 19, 30] attached to
lower limbs or pressure sensors [14] for measuring motion signals. Note that the IMU usually only
reflects the movement of the bounded limb [20, 21, 23, 29]. Since the leg is not a rigid structure,
i.e., the movement of the thigh is not identical to the shank, it is difficult to use only a single IMU
to construct the entire leg posture. Shen et al. [21] creatively propose a motion model to track
the arm posture with only one smartwatch. They further design a particle filter-based technique
to improve the arm motion tracking by jointly estimating the location and orientation of smart-
watch [20]. However, both the two works rely on the assumption that the torso is static and the
shoulder position is fixed. While for the gait monitoring, the whole body actually moves in the
3D space during the walking process. Therefore, multiple IMU sensors are required to track the
leg motion. Bennett et al. [4] attach inertial sensors on the thighs and shanks to monitor gait
movements. They use the Extended Kalman Filter (EKF) to model human leg as a two-link
revolute robot. The model and the inertial measurements are used to estimate the human gait
parameters and walking distance. However, the coordinate systems for different IMU sensors are
not synchronized. Thus, high-frequency jitters and drift errors caused by sensor defects could af-
fect the robustness of the system. Moreover, the EKF model requires subjects to manually provide
their user-specific geometric parameters of lower limbs as prior knowledge. To avoid requiring the
prior knowledge of user-specific geometric parameters, Inertial Navigation System (INS) [30]
proposes an inequality-constrained Zero-Velocity-Updates–aided INS algorithm to automatically
estimate the gait parameters. However, different coordinate systems of IMU sensors on the feet are
still not synchronized in this system. Mannini et al. [13] and Sant’Anna et al. [19] mount inertial
sensors on shoes to capture the movement of each step. Mannini et al. [13] calculate the spatial
gait parameters from a machine learning model based on large training data. Sant’Anna et al. [19]
develop a system to deal with several gait abnormalities and evaluate quantitative gait analysis
with both in-lab and in situ evaluations. However, the above two approaches perform gait analysis
without constructing any unified 3D model and coordinate synchronization, and the user-specific
prior knowledge is required.
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Table 1. GairTracker vs. Wearable Sensor-based Approach

3D Model of Lower Limbs Coordinate Synchronization Need Prior knowledge

GaitTracker Yes Yes No
EKF [4] Yes No Yes
INS [30] No No No

Sant’Anna et al. [19] No No Yes
Mannini et al. [13] No No Yes

Fig. 2. The deployment of GaitTracker.

In this article, GaitTracker aims to perform gait monitoring and analysis by tracking the 3D
skeleton of a subject with inertial sensors. Different from the existing approaches, by performing
coordinate system synchronization, GaitTracker builds a unified 3D skeletal model for lower limbs
to accurately track the precise gait in 3D. Moreover, GaitTracker does not require any user-specific

prior knowledge, offering both convenience and adaptivity to users. A comparison with other wear-
able approaches is given in Table 1.

3 EMPIRICAL STUDY

To investigate the gait parameters from motion data, we first conduct several experiments based
on our system, GaitTracker. As shown in Figure 2(a), GaitTracker consists of four IMUs and a data
collection module powered by a power bank. Each IMU has an accelerometer, measuring both
the earth’s gravitational acceleration and linear acceleration, and a gyroscope, measuring angular
velocity. The data collection module collects sensor data from the IMUs via the cable or Bluetooth.
During our experiments, we attach four IMUs to the lower limbs of a subject, i.e., two IMUs are
placed on the ankles and the other twos are placed on the knees, for collecting both acceleration
and angular velocity as motion data. For ground truth, we deploy OptiTrack [1], a precise motion
capture and 3D tracking system, to capture the positions and orientations of the IMUs. For each
IMU, we attach three reflective markers of OptiTrack on the surface of IMU, which are used to
estimate the corresponding positions and orientations.

In GaitTracker, we define the global coordinate system as shown in Figure 2(b), where the initial
facing orientation of the subject is the Yд axis, the opposite direction of the gravity is the Zд axis,
and the direction to the right relative to the body is the Xд axis. Each IMU has a local coordinate
system as shown in Figure 2(c), where the Xl axis is to the right of IMU’s surface, the Zl axis
is perpendicular to IMU’s surface, and the Yl axis is to the up of IMU’s surface. Since OptiTrack
captures the orientations of IMUs relative to the global coordinate system, we convert the mo-
tion data from the local coordinate system to the global coordinate system. Specifically, we use a
3×3 rotation matrix Rlg (t) measured from OptiTrack to project IMU’s measurements to the global
coordinate. We can then extract the linear acceleration ag (t) and angular velocity wg (t) in the
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Fig. 3. The mean and standard deviation of motion data in different axes.

global coordinate from accelerometer al (t) and gyroscope measurements wl (t), respectively, as
follows: {

ag (t) = Rlg (t) · al (t),
wg (t) = Rlg (t) ·wl (t).

(1)

We further use the extracted motion parameters ag (t) and wg (t) to investigate the gait features.

3.1 Observation 1

As the human subject is walking along a straight line in the Yд axis, the fluctuation of acceleration is

concentrated on the forward direction, i.e., Yд , and the fluctuation of angular velocity is concentrated

on the lateral direction, i.e., Xд in the global coordinate system.

We let the subject wear GaitTracker and walk along theYд axis for 20 s. Meanwhile, we measure
motion data and then convert to the global coordinate system according to the rotation matrix of
OptiTrack. Figure 3 shows the mean and standard deviation of linear acceleration and angular
velocity in different axes of the global coordinate. We observe that the linear acceleration variance
of thighs and shanks in the Yд axis is significantly larger than that in other axes, and the angular
velocity variance of shanks and thighs in the Xд axis is significantly larger than that in other axes.
This implies that when the human subject walks in the straight line, the acceleration of shanks
and thighs fluctuates mainly in the walking direction, and the angular velocity fluctuates mainly
in the lateral direction of human body.

3.2 Observation 2

The length of lower limbs is an essential factor for estimating the spatial gait parameters, e.g., step

length and step width. It can be estimated based on the stride length and the rotation angles of lower

limbs.

The Stride length, step length, step width, and knee joint angles are common and important spatial
parameters in gait analysis. Furthermore, the temporal parameters in gait analysis such as cycle

time, swing time, as well as stance time are further used together with the spatial parameters to
analyze the gait movements and generate more complex parameters, e.g., the symmetry of the
gaits. In addition to these gait parameters, the user-specific parameters, e.g., the length of lower
limbs (including the shank length and thigh length), are important parameters to calculate the gait
parameters, especially the spatial parameters. As shown in Figure 4(a), thigh length is the distance
between hip and knee as lt , and shank length is the distance between knee and ankle as ls .

We find that the length of lower limbs can be estimated from the measurements of the stride

length. Stride length is a common gait parameter that can be used to measure the symmetry charac-
teristics of gait rehabilitation. It can be calculated using the following methods. The first method
is to directly measure the distance between successive ground contacts of the same foot. As shown
in Figure 4(a), p(i) and p(i + 1) are successive ground contacts of the left foot. The stride length is
equal to the distance between p(i) and p(i + 1), i.e., d (i ), which can be calculated based on motion
data collected from the IMU attached to the specific foot. The second method is to calculate the
stride length by summing up two successive step lengths. As shown in Figure 4(a), the stride length

is equal to the sum of two adjacent step lengths, i.e., s (i ) and s (i+1), when the human subject takes
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Fig. 4. The relationship between the length of lower limbs and stride length.

two continuous steps. For each step length s (i ) or s (i + 1), we use the geometric model [22] to cal-
culate the step length according to the length and rotation angles of shanks and thighs. Therefore,
we can manually measure the length of lower limbs and calculate the rotation angles from the IMU
measurements, then further use these parameters to calculate the stride length.

We conduct experiments by asking the subject to walk at different speedsv , i.e., slow (v ≤ 1 m/s),
mid(1m/s ≤ v ≤ 2 m/s), and fast speed (v ≥ 2 m/s), and evaluate the two methods by comparing
the similarity between stride lengths. As shown in Figure 4(b), we find that the results of these two
methods are consistent. Based on our observations, by combining the two measurements of stride
length, given the stride length d as well as the rotation angles of thighs α and shanks ϕ, we can
deduce the length of thighs lt and shanks ls , respectively. In this way, we can further figure out the
spatial gait parameters, e.g., step length and step width. We will introduce the detailed solution in
Section 4.2.

3.3 Summary

We now summarize the key findings as follows based on the above empirical study. (1) For each
IMU, the forward and lateral directions of walking are the major fluctuation directions of linear
acceleration and angular velocity, respectively. Therefore, we can estimateXд andYд by calculating
the major fluctuation directions of motion data. This provides a chance to align local coordinate
systems of all the IMUs to the common global coordinate system. (2) The length of lower limbs,
which is essential for the gait parameters, can be estimated from the measurements of the stride
length and the rotation angles of the joints on lower limbs. Specifically, the length of lower limbs
can be inferred from stride length and rotation angles of shanks and thighs without any prior
knowledge. Based on the length of lower limbs, we can further calculate the spatial gait parameters.

4 MODELING

4.1 Coordinate System Transformation

As shown in Figure 2(c), each IMU contructs its Local Coordinate System (LCS) and collects
its motion data. However, when the subject walks, the LCSs will be changed continuously. It is
essential to synchronize the coordinate systems of different IMUs in the spatial dimension so that
IMU measurements can be depicted in a consistent manner for gait monitoring. Instead of directly
using the Earth’s coordinate system (i.e., magnetometer), which is unreliable in the indoor envi-
ronments, we build a global coordinate system based on the moving direction of the human sub-
ject, as shown in Figure 2(b). To perform the coordinate system transformation, we first define a
Reference Coordinate System (RCS) for each IMU at the initial time t0. For each IMU, we trans-
form its local coordinate system at time t to the reference coordinate system at time t0. Then, we
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Fig. 5. Local coordinate vs. reference coordinate during walking.

transform different reference coordinate systems to the Global Coordinate System (GCS), which
can be deduced according to the data fluctuation characteristics of acceleration and angular
velocity.

4.1.1 Local Coordinate System to Reference Coordinate System. For each IMU, its LCS keeps
changing as it moves along with the human subject. Therefore, we need to choose a RCS, which is
relatively stable to the earth coordinate system, and then transform the dynamic LCS to the stable
RCS. We define RCS for each IMU as shown in Figure 5, which is determined at the initial time t0
when the system starts. For the RCS, the Zr axis is opposite to the direction of gravity, Xr axis is
the projection of Xl axis in LCS at the initial time t0 on the ground plane and Yr axis is defined
as the vector product Zr × Xr . Then, for the consecutive time t , we use the quaternion qlr (t) to
transfer LCS to RCS.

At the initial time t0, because the accelerometer only measures the gravitational acceleration
when the IMU is stationary, we can identify the initial qlr (t0) from the accelerometer measurements
for the coordinate system transformation. Assuming that the acceleration at t0 is al (t0), we can

calculate the initial Euler angles with roll φ = arctan
al,y (t0 )

al,z (t0 ) , pitch θ = arctan
−al,x (t0 )√

al,y (t0 )2+al,z (t0 )2
and

yaw ψ = 0. Then, the transformation quaternion qlr(t0) can be inferred from these Euler angles
[5] as

qlr (t0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos φ

2 cos θ
2 cos ψ

2 + sin φ

2 sin θ
2 sin ψ

2

sin φ

2 cos θ
2 cos ψ

2 − cos φ

2 sin θ
2 sin ψ

2

cos φ

2 sin θ
2 cos ψ

2 + sin φ

2 cos θ
2 sin ψ

2

cos φ

2 cos θ
2 sin ψ

2 − sin φ

2 sin θ
2 cos ψ

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

In the consecutive time t , qlr (t) can be updated by either the angular velocity or the accelerated
velocity. For the angular velocity, we can calculate the updated quaternion qw

lr
(t) as

{
qw

lr
(t) = qlr (t − 1) + δqlr

(t)�t ,
δqlr

(t) = 1
2 qlr (t − 1) ⊗ wl (t).

(3)

Here wl (t) is the gyroscope measurement at time t and �t is the sampling interval. For the acceler-
ated velocity, the updated quaternion qa

lr
(t) can be estimated by the accelerometer measurements

with the gradient descent algorithm [12].
Even though we can estimate the quaternion from the acceleration or the angular velocity, the

updated quaternion qw
lr

(t) exists a slow drift, and the updated quaternion qa
lr

(t) suffers from sig-
nificant jitters around the high-frequency band. To solve the problem, we design an adaptive com-

plementary filter [12] to combine the two quaternions. Assuming that the divergence rate of qw
lr

(t)
is βw and the convergence rate of qa

lr
(t) is βa , the weighted βw is equal to the weighted βa when

the IMU is moving. Since qa
lr

(t) is more credible when IMU is stationary, we give qa
lr

(t) a higher
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weight when IMU moves slowly. Therefore, the complementary filter can be expressed as

⎧⎪⎨
⎪
⎩

qlr (t) = γ (t ) · qa
lr

(t) + (1 − γ (t ))qw
lr

(t),

γ (t ) =
βa ·η (t )

βw+βa ·η (t ) .
(4)

Here η(t ) is used to adjust the weight of qa
lr

(t). It guarantees that qlr (t) is calibrated when IMU is
stationary, and it is expressed as

η(t ) =
⎧⎪⎨
⎪
⎩

ek (
c−‖wl (t)‖

c when ‖wl (t)‖ < c
1 when ‖wl (t)‖ ≥ c

. (5)

Here ‖wl (t)‖ is the magnitude of the angular velocity, c is the threshold to determine whether the
sensor is moving, and k is the experiential parameter. In our system, we set c to 0.1 and set k to
2.5, empirically.

4.1.2 Reference Coordinate System to Global Coordinate System. Since different IMUs of Gait-
Tracker may have different initial attitudes, their RCSs at time t0 are different from each other.
Thus, we need to align all the RCSs to a consistent GCS. According to the observation in Sec-
tion 3.1, all the IMUs attached on the lower limbs share a consistent forward direction and lateral

direction when the human subject walks forward. Therefore, we define GCS according to the initial
moving direction of the human subject as shown in Figure 2(b) and then align the RCSs of all the
IMUs to the unique GCS. Specifically, the Zд axis in the GCS is consistent with the Zr axis in the
RCS, the Yд axis in the GCS is consistent with the forward direction, and the Xд axis is consistent
with the lateral direction on the horizontal plane. Therefore, the difference between RCS and GCS
can be expressed by the rotation angle θ between theYд andYr (orXд andXr ) axis in the horizontal
plane.

Since GCS and RCS share the same Z axis, we propose to determine GCS based on two methods:
(1) the acceleration-based method (calculating the Yд axis from the forward direction) and (2) the
angular velocity-based method (calculating the Xд axis from the lateral direction). For the first
method to figure out the Yд axis, since the fluctuation of acceleration is concentrated on the Yд

axis, we use PCA to extract the principal component in acceleration and regard the direction as Yд .
Because Xд and Yд are on the consistent horizontal plane, Xд can be inferred from Yд ×Zд , which
simply rotatesYд 90◦ counterclockwise around Zд . Finally, we can deduce the rotation angle based
on the acceleration measurements as shown in Figure 6, which is denoted as θa . For the second
method to figure out Xд axis, we can similarly use PCA to extract the principal component based
on the angular velocity and regard the direction as Xд . Then, we can extract the rotation angle θw

from angular velocity.
Due to the inevitable measurement error of the two estimations, we further combine the two

rotation angle estimations as a hybrid method. We use a weighted average of the two estimations
to obtain the optimal results. Specifically, when we use PCA to calculate the principal fluctuation
component, we can obtain its explained variance. The larger explained variance means that the

fluctuation of corresponding component is more obvious. Therefore, the optimal rotation angle θ̂
can be calculated by fusing θa and θw as follows:

θ̂ =
va

va +vw
θa +

vw

va +vw
θw , (6)

where va and vw are corresponding explained variances. θ̂ indicates the rotation angle between
the x̂ and XR as shown in Figure 6. Thus, the rotation matrix Rrg between RCS and GCS of each
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Fig. 6. Lateral direction estimation. Xa is an estimation of Xд derived from the acceleration. Xw is an esti-

mation of Xд derived from the angular velocity. X̂ is a hybrid estimation from Xa and Xw .

Fig. 7. PCA results vs. ground truth.

IMU can be calculated as follows:

Rrg =

⎡⎢⎢⎢⎢⎢⎢⎣

cos θ̂ sin θ̂ 0

− sin θ̂ cos θ̂ 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

. (7)

The quaternion qlr (t) can be expressed as rotation matrix Rlr (t) according to Reference [5]. There-
fore, the transformation from IMU’s LCS at time t to GCS can be expressed in rotation matrix
formation as Rlr (t)Rrg. Thus, each IMU at every sampling time can align its LCS to GCS.

To evaluate the performance of the PCA-based solution, we conduct an experiment when the
subject is walking along a straight line. Specifically, we plot the PCA results from the acceleration-

based method, i.e., ya , as well as the PCA results from the hybrid method, i.e., ŷ, and compare with
the ground truth in Figure 7(a). The correlation between the ground truth and ya result is around
0.875, and the correlation between the ground truth and ŷ result is around 0.941. We also plot the
PCA results from the angular velocity-based method, i.e.,yw , as well as the PCA results from the hy-

brid method, i.e., ŷ, and compare with the ground truth in Figure 7(b). The correlation between the
ground truth and xw result is around 0.900, the correlation between the ground truth and x̂ result
is around 0.923. It shows that the PCA-based solution can accurately derive the forward direction
and the lateral direction; moreover, the hybrid method can further improve the performance in
forward/lateral direction estimation.

4.2 Estimation of Lower Limb Length

Next, we introduce how to estimate the lower limb length based on the stride length. Stride length,
step length, and step width are common and important spatial parameters in gait analysis. As shown
in Figure 8(a), the stride length d is the distance between successive ground contacts of the same
foot along the forward direction, the step length s is the distance along the forward direction be-
tween the heel contact point of one foot and that of another foot, and the step width w is the
distance along the lateral direction between the heel contact point of one foot and that of another
foot.
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Fig. 8. The stride length calculated by geometric model.

In principle, they can be estimated by tracking the positions of IMUs near left and right feet.
However, since small errors in linear acceleration may accumulate large errors after double inte-
gration, it is difficult to accurately estimate the positions of IMUs, especially when we calculate
the relative positions of multiple IMUs. For stride length d , we can still estimate it by double in-
tegrating linear acceleration of only one IMU near the foot over a gait cycle. The reason is that
the error in estimating d can be limited, since it only needs to double integrate the acceleration of
one IMU within a small time window. However, it is hard to calculate step length and step width,
because they are relative to the positions of two IMUs. Nevertheless, since we can obtain the rota-
tion angles of IMUs around Xд , Yд , and Zд based on the rotation matrix of LCS to GCS, it provides
us a new opportunity to calculate step length and step width according to the geometric model of
human body [22]. As shown in Figure 8(b), we can infer the positions of knees and feet relative to
hips based on the rotation angles around Xд and Yд , thigh length lt , and shank length ls .

Based on the understanding, we need to first obtain the thigh length lt and shank length ls and
then estimate the corresponding gait parameters. Based on observation 2, the stride length calcu-
lated from acceleration should be equivalent to the result calculated from the geometric model.
Hence, we build a regression model between lt , ls , rotation angles of thighs α , rotation angles of
shanks ϕ, and the stride length d . Then we can infer lt and ls from this model.

4.2.1 Stride Length Estimation from Geometric Model. We first propose to estimate the stride

length according to the geometric model. As shown in Figure 8(a), the ith stride length d (i ) is the
sum of two consecutive step lengths s (i ) and s (i + 1). For each step length s (i ), it is the distance
between two feet on the forward direction when one foot’s toes are about to leave the ground.
Thus, we build the geometric model shown in Figure 8(b), which is a snapshot of lower limbs
when the toes are about to leave the ground. In this model, assuming that the positions of hips
are known, let the rotation angles of thighs and shanks be α and ϕ, respectively, we can calculate
the positions of feet based on the geometric model. Recall that based on the IMUs attached on
thighs and shanks, we can obtain the rotation matrix converted from LCS to GCS aforementioned
in Section 4.1. With the rotation matrix, the corresponding Euler angles can be inferred as in
Reference [5] as the rotation angles.

We take the right foot as an example. Here, we use the superscript to distinguish the right leg
from the left one. As shown in Figure 8(b), the position of right hip is pr

h
, the thigh length is lt , and

the shank length is ls . For the ith step, the rotation angle of thigh is α r (i ) and the rotation angle
of shank ϕr (i ). Then, we can extract the rotation angle around Xд axis as α r

x (i ) and ϕr
x (i ), respec-

tively, and extract the rotation angle around Yд axis as α r
y (i ) and ϕr

y (i ), respectively. Therefore, the
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position vector of right foot relative to right hip pr
hf

can be expressed as follows:

pr
hf = pr

hk + pr
kf . (8)

Here, pr
hk

is the position vector of right knee relative to right hip and pr
kf

is the position vector of
right foot relative to right foot. pr

hk
and pr

kf
can be expressed by thigh length and rotation angles

as

pr
hk = lt

⎡⎢⎢⎢⎢⎢⎢⎣

− sinα r
y (i )

cosα r
y (i ) sinα r

x (i )

− cosα r
x (i ) cosα r

y (i )

⎤⎥⎥⎥⎥⎥⎥⎦

, (9)

pr
kf = ls

⎡⎢⎢⎢⎢⎢⎢⎣

− sinϕr
y (i )

cosϕr
y (i ) sinϕr

x (i )

− cosϕr
x (i ) cosϕr

y (i )

⎤⎥⎥⎥⎥⎥⎥⎦

. (10)

Similarly, we can also figure out the position vector of left foot relative to left hip.
Since the step length is the distance between two feet on the Yд axis, the left and right hips have

the same coordinates on the Yд axis. The ith step length s (i ) can be then estimated as follows:

s (i ) =|lt (cosα r
y (i ) sinα r

x (i ) − cosα l
y (i ) sinα l

x (i ))

+ ls (cosϕr
y (i ) sinϕr

x (i ) − cosϕl
y (i ) sinϕl

x (i )) |.
(11)

Thus, the length of ith stride d (i ) can be calculated as follows:

d (i ) = s (i ) + s (i + 1). (12)

4.2.2 Stride Length Estimation from Acceleration. Instead of calculating the stride length from
the geometric model, the stride length can also be calculated as the displacement of one identical
IMU attached on the shank. Since continuous integrating acceleration may lead to a huge error,
we segment the time-series acceleration and integrate the acceleration in each segment. Therefore,
the estimation can be divided into two steps: gait cycle segmentation and stride length estimation.

Gait cycle segmentation is based on the rotation angles of shank around Xд , i.e., ϕx . Figure 9(a)
shows the process of a typical gait cycle. During the process, theϕx turns from positive to negative
when the foot touches the ground completely, as shown in Figure 9(b). Therefore, we can segment
the acceleration into gait cycles by calculating the zero crossing point of the rotation angles.

For each segment, its corresponding stride length can be calculated by double integrating accel-
eration from the start time ts to the end time te of the segment. Supposing the measured accelera-

tion is ag (t), we first calculate the velocity v(i) by integrating the acceleration as

v(i) =

∫ i

ts

ag (t)dt . (13)

Ideally, v(te) is zero, since te corresponds to the time when foot touches the ground completely.

However, v(te) is not zero due to the error e(t) in ag (t), as shown in Figure 9(c). Therefore, we
introduce Zero Velocity Calibration to reduce the error. We assume that the e(t) is a constant and
calibrate the acceleration as follows:

e(t) =
v(te)

te − ts
, (14)

ag (t) =ag (t) − e(t). (15)

Then the displacement d(i) can be estimated by quadratic integration of acceleration ag (t). Finally,
we can obtain d(te) on Yд axis as the stride length.
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Fig. 9. Segment gait cycles based on the rotation angles of thighs around Xд . Calibrate acceleration within

a segment by zero velocity calibration.

4.2.3 Lower Limbs Length Estimation Model. Since the stride length can be calculated from the
linear acceleration and the geometric model, respectively, the results obtained by these two meth-
ods are theoretically consistent. Therefore, we combine the two methods of stride length estima-
tion and introduce a regression model to estimate lt and ls :

lt , ls = argmin
lt ,ls

n∑
i=0

(s (i ) + s (i + 1) − d (i ))2. (16)

Here, d (i ) is the length of ith stride calculated from acceleration and s (i ) and s (i +1) are lengths of
two steps in the ith stride calculated from geometric model. Based on the estimated stride length,
we can obtain the lengths of thighs and shanks, i.e., lt and ls . The length of the lower limbs can be
further used to calculate other gait parameters.

4.3 Shift of Origin for Each IMU

After we perform the estimation of the lower limb length, including the thigh length and shank
length, we can estimate the shift of origin for each of the IMUs based on either the geometric
model or the acceleration measurement in the GCS. Specifically, on the one hand, according to
the geometric model with the knowledge of the thigh length and shank length, GaitTracker can
effectively estimate the shift of origin for each of the IMUs, based on the angle measurement from
the gyroscopes in the IMU. On the other hand, the shift of origin for each of the IMUs can also be
estimated by directly calculating acceleration measurement in the unified and synchronized GCS.

5 SYSTEM DESIGN

GaitTracker consists of three modules: Data Collection, Feature Extraction, and Gait Monitoring. As
shown in Figure 10, Data Collection module collects motion data including the linear accelerations
and rotation angles. Feature Extraction module extracts the gait features from raw motion data.
Gait Monitoring module estimates the specified gait parameters and performs 3D skeletal tracking,
including the rotation and displacement of the lower limbs, according to the extracted gait features.
Conventionally, the Data collection module is implemented locally in the IMU sensors. The Feature
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Fig. 10. System overview.

Extraction module can be implemented either locally in the mobile device or remotely in the server,
which depends on the processing capability of the mobile device. Then the raw sensor data or the
gait features can be uploaded to the server via the mobile device. Gait Monitoring module can be
implemented in the server. The end users such as the rehabilitation specialists can use the APPs
in the smart phone or the browsers in the PC to access the GUI of Gait Monitoring module.

5.1 Data Collection

As shown in Figure 2(a), GaitTracker has four IMUs, one MicroController Unit (MCU), one blue-
tooth agent, and a power bank. IMUs are deployed on the thighs and shanks of the two legs with
straps to measure acceleration and angular velocity. The sampling rate is set to 100 Hz by default.
The MCU collects motion data, including acceleration and angular velocity, and then forwards the
data to a Bluetooth-paired smartphone. A rechargeable power bank is used to power the entire
system.

5.2 Feature Extraction

Feature Extraction module is designed to extract the metadata from the original motion signal to
achieve the gait monitoring, including the motion signal in the GCS, the occurrence time of key
events in the gait cycle, and the length of the lower limbs.

5.2.1 Data Cleaning. After collecting motion data from the MCUs, we first clean the data by
removing high-frequency noise and canceling the measurement offset. Since the noise of electronic
components is concentrated on the high frequencies, a low-pass filter is used to remove the high-
frequency noise. For the offset, because the gyroscope measurements are ideally equal to zero
when the IMU is static, before the user performs gait rehabilitation, we ask the subject to stand
still for 5 s and calculate the signal offset for canceling.

5.2.2 Coordinate Transformation. As aforementioned in Section 4.1.1, we need to transform the
motion data from the LCS to the GCS. First, when the user stands still for offset estimation, we can
use the corresponding motion data to build the RCS and calculate the rotation matrix from LCS to
RCS, according to Section 4.1.1. Then we further transform RCS to GCS when the subject starts
walking along a straight line, which can provide a consistent fluctuation among all the IMUs for
space synchronization. Since the subject usually walks forward and backward along a straight line
for gait rehabilitation, without loss of generality, we just consider the two walking directions. For
the forward direction, we directly use the algorithm in Section 4.1.2 to align all the IMUs to GCS.
For the backward direction, we just replace θ with θ +π in Equation (7) and then align all the IMUs
to GCS similarly. The direction change can be determined by integrating angular velocity along Zr

during one step length. If this angle approaches π , then it means the subject turns backward. If the
subject turns to other directions, then we can also update the GCS after the turning and transform
the RCS to the updated GCS, similarly.
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Fig. 11. Gait cycle.

Fig. 12. Gait cycle estimation by calculating the distance between peaks of autocorrelation of acceleration.

5.2.3 Gait Cycle and Phase Detection. A gait cycle is the time period between the ground contact
of one foot and the subsequent contact of the same foot [2]. Each gait cycle has two phases: stance

phase and swing phase. Stance phase is the period during which the target foot contacts with the
ground and the swing phase is the period during which the target foot is swinging in the air. As
shown in Figure 11, we can detect the occurrences of the toe off (TO) and foot strike (FS) [13]
events to segment the stance phase and swing phase. Here, TO is used to detect the beginning and
ending of each gait cycle, and FS is used to split one gait cycle into swing phase and stance phase.

We use the motion signal of IMUs to estimate the gait cycle and detect the two events according
to the gait cycle. Because the gait cycles are periodic, we calculate the pitches as the rotation angles
around Xд in GCS and use the autocorrelation coefficient of pitches to estimate the gait cycle as
shown in Figure 12. Gait cycle duration tд can be estimated by the average of interval between the
peaks in autocorrelation coefficient.

For the TO point, it is corresponding to the moment when the thighs swing backward the most.
Therefore, we determine the TO points from the valleys of pitches of IMUs attached on the thighs
as shown in Figure 13(a). Due to the periodical feature, false detection of valleys can be efficiently
filtered out based on the gait cycle tд . Due to the periodical feature, we detect the TO points as the
minimum valleys of pitches in the window of size τ · tд ; τ is an empirical parameter and we set τ
as 2

3 .
For the FS point, it occurs when the foot first strikes. The height of the IMU decreases before

the FS event and increases after the FS event. Here, the height of IMU, i.e., the displacement in the
Zд , is obtained from a double integration on the linear acceleration in the Zд . Therefore, the FS
point is detected as the valley of the IMU’s height, as shown in Figure 13(b).

5.2.4 Lower Limbs Length Estimation. According to the model in Section 4.2.3, we can estimate
the lower limb length from the stride length and the joint rotations. For the stride length, we collect
the linear acceleration in GCS of IMUs attached on shanks and calculate it as the displacement of
IMU during the time period from the TO event to the FS event in each gait cycle. Particularly, we
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Fig. 13. Phase detection.

use Zero Velocity Calibration to remove errors in acceleration. The displacement can be estimated
by double integrating the calibrated acceleration.

Besides, the stride length can also be calculated by summing up two step lengths in one stride.
Each step length can be expressed as a function of the length of thighs and shanks and rotation
angles of thighs and shanks when TO happens. Thus, we collect the rotation angles of thighs and
shanks at the moments of two TO events and use the rotation angles to calculate the length of lower
limbs. We estimate the length of lower limbs over all the stride cycles during the gait rehabilitation
process and then use the average value as the final estimate.

5.3 Gait Monitoring

After extracting the features, we obtain the linear acceleration ag in GCS, the rotation angles
of thigh α and shank ϕ, the length of thigh lt and shank ls , and the occurrence time of TO
and FS. Based on these extracted features, we can track the movement and further estimate gait
parameters.

5.3.1 Gait Movement Tracking. Gait movement tracking is to track the rotation and position of
a human subject’s lower limbs. For the rotations, we can calculate them from the rotation matrix
between GCS and LCS. For the positions, since one of the two feet touches on the ground at any
time during the gait rehabilitation, we can treat this foot as the anchor and calculate the positions
of other limbs from the rotation angles of each joint based on the geometric model as shown in
Figure 8.

Suppose that the right foot is on the ground for the ith step, and we obtain the corresponding
position of this foot. Then in the consecutive time, we can obtain the rotation angles of both the
right thigh and shank as well as the left thigh and shank. As shown in Figure 14, assume that the
left and right hips share the same position or have a fixed space length, then we can regard the
right foot as an anchor and leverage the geometric model to calculate the position of each joint
until the FS event of left foot happens. When the FS event of left foot happens, the left foot starts
to stand on the ground. Then we can further take the left foot as the anchor and calculate the
other joint positions. Finally, we can track the gait movement by treating one of the two feet as
the anchor alternately.

5.3.2 Gait Parameters Estimation. In addition to gait movement tracking, GaitTracker also cal-
culates the gait parameters according to the features extracted from motion data.

Stride Length is the distance between successive heel contact points of the same foot along the
forward direction, as shown in Figure 8(a). We segment the acceleration on Yд based on the TO
event and then apply Zero Velocity Calibration in Section 4.2.2 and double integrate the accelera-
tion to calculate the stride length.

Step Length is the distance between the heel contact point of one foot and that of another foot
along the forward direction, as shown in Figure 8(a). Based on the model in Section 4.2.1, the step
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Fig. 14. Gait movement tracking.

Fig. 15. Gait phase segmentation.

length can be calculated as |pl
hf
− pr

hf
|y , where pl

hf
is the position vector from left hip to left foot

and pr
hf

is the position vector from right hip to right foot.
Step Width is the distance between the heel contact point of one foot and that of the other foot

along the lateral direction, as shown in Figure 8(a). Step width is calculated similarly to the step
length, as |pl

hf
− pr

hf
|x .

Cycle Time is the time between successive foot contacts of the same foot. Assuming the ith time
of TO event is tT O (i ), the cycle time is tT O (i ) − tT O (i − 1), as shown in Figure 15.

Swing Time is the period of the gait cycle during which the foot is in the air. Assuming the time
of FS between tT O (i ) and tT O (i + 1) is tF S (i + 1), the swing time is tF S (i + 1) − tT O (i ), as shown in
Figure 15.

Stance Time is the period of the gait cycle during which the foot touches the ground. Similarly
to the swing time, the stance time can be calculated by tT O (i ) − tF S (i ), as shown in Figure 15.

Knee Joint Angles are the angles between the thighs and shanks. Knee joint angles can be calcu-
lated by α − ϕ.

Symmetry [17] is used to delineate the differences of gait movements of two limbs. Symmetry
is calculated based on the following equation:

Symmetry = 100 ∗ abs (Ml −Mr )

0.5 ∗ (Ml +Mr )
, (17)

where M is the step length or swing time of left or right limb.

6 PERFORMANCE EVALUATION

6.1 Experimental setup

We fully implement GaitTracker, which consists of four MPU 9250 IMUs, an STM32F103C8 MCU,
and an FBT 06 Bluetooth module, as shown in Figure 2(a). As shown in Figure 16, during our
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Fig. 16. The experimental setup.

experiments, GaitTracker is attached to a human subject on her/his lower limbs to track the 3D
skeletal gait movements and estimate the corresponding gait parameters. An OptiTrack System
is deployed to collect the ground truth. Specifically, three reflective markers are attached on each
one of the IMU sensors, and thus in total 4× 3 = 12 markers are used. Four OptiTrack cameras are
deployed in the indoor environment to track the 3D position of the reflective markers as ground
truth. Since the monitoring area of OptiTrack is fairly limited, during the evaluation process, we let
the human subject walk in a straight line in a back and forth manner. In this way, the experiment
can be effectively set up to capture the ground truth of gait movements. To evaluate the perfor-
mance of GaitTracker, we conduct several experiments to examine the performance of coordinate
transformation, estimation of lower limb length, gait movement tracking and gait parameters es-
timation in realistic settings.

6.2 Performance of Coordinate System Transformation

Since the rotation representation of quaternion and rotation matrix is not intuitive, we convert
it to Euler angles to evaluate the performance of coordinate system transformation. We use s1,
s2, s3, and s4 to represent the sensors on the left shank, right shank, left thigh, and right thigh,
respectively. For transformation from LCS to RCS, 10 human subjects are given an instruction
to walk in a straight line at a moderate speed (1 m/s) for 30 s, repeating 10 times. We compare
the extracted angle error of our algorithm with the Kalman filter [4] and the ordinary gyroscope

tracking algorithm [30], based on the sensors attached on the different positions. As shown in
Figure 17(a), the results show that our adaptive complementary filtering algorithm achieves very
close accuracy to Kalman filter, with an error of about 3◦. Moreover, the error of gyroscope tracking
algorithm drifts with time, and the drift becomes larger over time. We also evaluate the tracking
performance when walking at different speeds. Particularly, a subject walks at a low speed of
0.5 m/s, a medium speed of 1 m/s, and a high speed of 1.5 m/s. The error of the sensor on thigh is
shown in Figure 17(b). The results show that our adaptive complementary filter algorithm maintains
a calculation error of about 3◦ at different speeds.

For transformation from RCS to GCS, we use the angle between Xr and Xд as the evaluation
metric. As shown in Figure 17(c), the error of our method is around 1.5◦. As a comparison, the
error of magnetometer-based solution is around 12.4◦. We also consider the performance at dif-
ferent walking speed as show in Figure 17(d). As the speed increases, the error of our solution
increases slightly, but remains around 2◦. However, the errors of magnetometer-based solution are
all above 12◦ in all the situations. The reason of the large error of a magnetometer-based solution is
due to the issue of unstable magnetic field in the indoor environment. Specifically, magnetometer
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Fig. 17. Performance evaluation.

readings are often notoriously inaccurate in indoor environments, due to the magnetic interference
caused by the massive steel embedded in building concrete structures and other metallic objects.
Therefore, when the user walks to different positions in the indoor environment, the indoor mag-
netic field may vary from position to position and be susceptible to the surrounding environment.
Hence, the magnetometer-based solution cannot identify a consistent direction to synchronize the
coordinates of different IMU sensors. In contrast, our system accurately synchronizes the coordi-
nates, outperforming the magnetometer-based solution.

Moreover, we compare the performance of different window sizes. As shown in Figure 17(e),
when the window size increases from 0.5 to 2 s, the errors of all four sensors decrease dramatically.
After that, the increment of the window size has little impact on the performance, because 2 s of
window is enough to calculate the direction of the global coordinate system.

6.3 Performance of Lower Limbs Length Estimation

Before validating the estimation of lower limb length, we first verify the accuracy of stride length
calculation with zero velocity calibration. Similarly, 10 human subjects are given an instruction to
walk in a straight line at a moderate speed (1 m/s) for a minute and calculate the stride length from
the sensing data. We further calculate the error by comparing with the ground truth. As shown in
Figure 17(f), the error of calculation with zero velocity calibration is around 3 cm. As a comparison,
the error of calculation without zero velocity calibration is almost 3 m. This is because when the
velocity is not calibrated, the error accumulates rapidly, which leads to large accumulative error.

After calibration, the error of each stride will not affect the next stride, which ensures that the
error will not accumulate over time. Then, we further evaluate the performance of lower limb
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Table 2. Gait Paramters Estimation

Gait Paramters
Left lower limb Right lower limb

estimation ground error percentage estimation ground error percentage
truth error truth error

Stride length (m) 1.23 1.25 −0.02 1.6% 1.21 1.24 −0.03 2.4%
Step length (m) 0.67 0.66 0.01 1.5% 0.66 0.68 −0.02 2.9%
Step width (cm) 3.78 4.21 0.43 10.2% 3.84 4.35 0.51 11.7%
Cycle time (s) 1.22 1.20 0.02 1.7% 1.24 1.21 0.03 2.5%
Swing time (s) 0.46 0.47 −0.01 2.1% 0.47 0.48 −0.01 2.1%
Stance time (s) 0.76 0.73 0.03 3.9% 0.74 0.73 0.01 1.4%

Knee joint angle (deg) — — 1.17 — — — 1.32 —

length estimation based on the same sensing data of the stride length estimation. As shown in
Figure 17(g), as the subject walks forward over time, the estimation scheme gradually obtains
enough training data, the estimation error of thigh and shank length gradually converges to a
fixed value, e.g., it is around 1.5 cm after the number of strides is over 40. The result shows that
GaitTracker accurately calculates the length of lower limbs after a certain number of strides, e.g.,
40 strides.

6.4 Performance of Gait Tracking

We evaluate the gait tracking by examining the accuracy of rotation angles and the displacement
calculation. Since the rotation angles are calculated from the coordinate system transformation
in Section 6.2, we only evaluate the accuracy of displacement calculation. Particularly, 10 human
subjects are given an instruction to walk at three different speeds, and we calculate the rotation
angles and the displacements. As shown in Figure 17(h), the displacement calculation of the sensor
at the shanks and thighs has an average error of 0.23 m and 0.24 m for every 10 m, respectively.

We further evaluate the error drift of the displacement calculation. We ask the subjects to walk
at a moderate speed (1 m/s) for 200 m. Then we divide the displacement into four segments and
evaluate the calculation error of each segment. As shown in Figure 17(i), the error accumulates
slightly over time but the cumulative speed is small. Considering that it is difficult to completely
eliminate the error of displacement calculation only by inertial sensor, the small cumulative speed
already satisfies the demand in the field of gait monitoring.

6.5 Performance of Gait Parameter Estimation

Finally, we compare the gait parameter estimated from GaitTracker with the ground truth obtained
from OptiTrack so as to evaluate the performance of gait parameter estimation. We ask the subjects
to walk with a normal posture, and the statistical results are shown in Table 2. The estimation errors
of most parameters are maintained at about 3% except for the step width. Because the ground truth
of the step width itself is small, the error percentage is about 10%. For the knee joint angle, the
error is around 1.5◦. The results indicate that GaitTracker accurately estimates the gait parameters
even though the subject only walks for a small distance.

7 CASE STUDY

7.1 System Design and Real Deployment

We implemented a remote gait monitoring system for GaitTracker and further performed case
study in real applications. Figure 18 shows the main components of the system: (1) Perception

Module is provided for the patients, which includes a wearable kit shown in Figure 2(a) for motion
data collection, as well as a mobile application to transmit the data to the cloud server, as shown in
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Fig. 18. Remote gait monitoring system.

Fig. 19. Graphical user interface of GaitTracker system.

Figure 19(a). (2) Gait Monitoring Server extracts the gait features from the raw sensing data on the
cloud server, which are further used to track the gait movement and estimate the gait parameters.
(3) Gait Analysis Module reconstructs the gait animation and displays the charts of gait parameters
for specialists to analyze on the web, as shown in Figure 19(b).

We deployed the system in a rehabilitation center and evaluated the system with different kinds
of patients. Specifically, the patients with normal gait, hemiplegic gait, and quadriceps gait were
invited to evaluate the system performance. Figure 20 shows the different gait animations recon-
structed by our system. For the animations of normal gait in Figure 20(a), the movements of the
lower limbs are symmetrical. For the animations of hemiplegic gait in Figure 20(b), the motion of
right leg circumduction is clearly displayed. For the animations of quadriceps gait in Figure 20(c),
the height and step length of the right foot are obviously lower than the normal gait.

7.2 Gait Parameter Measurement

We compare the rotation angles around Xд axis and Yд axis, respectively, for the corresponding
gaits in Figure 21. For the normal gait, as shown in Figure 21(a), the rotation angles of normal
gait have obvious symmetry and periodicity. For the hemiplegic gait, as shown in Figure 21(b), the
period duration of a whole gait cycle is longer than that of the normal gait. Besides, the waveform
of the normal and trouble sides is significantly different. The maximum rotation angles of the
trouble side around Xд axis is significantly smaller than that of the normal side, because the step
length of the trouble side is shorter than that of the normal side. In addition, the rotation angle of
the trouble side around Yд axis is larger than that of the normal gait, which corresponds to the leg
circumduction. For the quadriceps gait, as shown in Figure 21(c), the waveform of the normal side
is similar to that of the hemiplegic gait. The maximum rotation angles of the trouble side around
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Fig. 20. Gait Animations. Fig. 21. Rotation angles of shanks around Xд

and Yд .

Fig. 22. Swing ratio of different gaits.

Xд axis are close to zero, which corresponds to the dragging posture. Besides, the step length of
the trouble side is small. Compared with the previous two gaits, the jitter of the rotation angles
around Yд axis is more obvious. Therefore, the rehabilitation specialists can track the patient’s
gait movement by our system, and the recovery gait animation is consistent with the movement
observed from the cameras.
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Fig. 23. Robustness evaluation with different deviations of IMU rotation and position.

For the estimation of gait parameters, we investigate the swing ratio (swing time/cycle time) as
an example in Figure 22. For the normal gait, as shown in Figure 22(a), the difference of swing ratio
between the left and right limbs is small and the swing ratio is around 0.4, which is consistent with
the normal medical parameters. For the hemiplegic gait, as shown in Figure 22(b), the swing ratio
of two sides is obviously lower than 0.4 due to the decrement of patient’s balance. In addition,
the swing ratio on the trouble side is higher than that on the normal side, because the patient is
eager to transfer the weight to the normal side. For the quadriceps gait, as shown in Figure 22(c), the
swing ratio of two sides is also lower than 0.4 due to the decrement in patient’s balance. Figure 22(d)
compares the swing ratio of different gaits. We find that the swing ratio of abnormal gaits is obvious
lower than normal gait, and this is consistent with clinical observation. In conclusion, GaitTracker

can accurately track the gait movement and estimate the gait parameters.

7.3 Robustness Evaluation

During the process of walking, the IMU sensors’ wearing positions could be changed or rotated
along the leg to a certain degree, and we thus evaluate how the system performance will be im-
pacted due to these issues. We first change the position deviation to different values from 0, 2, and
4 cm, then we let the human subject walk for 10 m, and evaluate the displacement error and angle
error of the gait trace, in comparison to the ground truth. Figure 23(a) and (b) show the experi-
ment results. Here, we use s1, s2, s3, and s4 to respectively denote the IMU sensor on left shank,
right shank, left thigh, and right thigh. We can find that both the displacement error and angle
error can be effectively restricted in a small range. Specifically, the displacement errors are all
below 0.5 m, and the angle errors are all below 5◦. We further change the rotation deviation to
different values from 0◦, 5◦, and 10◦, then we let the human subject walk for 10 m and evaluate the
displacement error and angle error of the gait trace. As shown in Figure 23(c) and (d), the displace-
ment errors are all below 0.7 m, and the angle errors are all below 10◦. As a matter of fact, since

ACM Transactions on Sensor Networks, Vol. 18, No. 2, Article 27. Publication date: March 2022.



GaitTracker: 3D Skeletal Tracking for Gait Analysis Based on Inertial Measurement Units 27:25

Fig. 24. Robustness evaluation of forward direction estimation for feet-dragging case.

in real deployment we can use the wearable design like the elastic knee cap to prevent or mitigate
the position/angle deviation, the corresponding displacement error and angle error can be greatly
reduced.

Note that when in rehabilitation, people’s feet-dragging characteristic can deviate significantly
from normal state, it is not yet clear how the performance in forward direction estimation will
be impacted by this issue. In this situation, to evaluate the performance of PCA-based method to
determine the forward direction, we let the patients with hemiplegic gait walk along the Yд axis
for 20 s and further evaluate the mean and standard deviation of linear acceleration and angular
velocity in different axes of the global coordinate. The experiment results are shown in Figure 24.
Similarly to Figure 3, we find that, despite the feet-dragging characteristic in the hemiplegic gait,
the fluctuation of acceleration is still concentrated on the forward direction, i.e.,Yд , and the fluctua-
tion of angular velocity is still concentrated on the lateral direction, i.e.,Xд in the global coordinate
system. This means that the feet-dragging characteristic does not significantly impact the perfor-
mance in forward direction estimation.

8 CONCLUSION

In this article, we propose GaitTracker, a wearable system to remotely and continuously perform
gait monitoring and analysis by 3D skeletal tracking. We attach four IMUs on the shanks and
thighs of the human body to collect motion data, track the gait movement, and estimate the gait
parameters. We design several novel algorithms to adaptively synchronize the coordinate systems
of different IMUs and reconstruct the gait movements based on the geometric model of lower limbs.
Furthermore, we extract the gait parameters from the gait movement without any prior knowledge,
which can be directly used to evaluate the gait rehabilitation. We implement a prototype system of
GaitTracker and evaluate its performance. The experiments show that the accuracy of rotation an-
gles is around 3◦, the accuracy of displacement is around 2.3%, and the accuracy of gait parameters
is around 3%.
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