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Abstract—User authentication is critical to privacy preserva-
tion. Most of the existing works focus on single-user authentica-
tion, which may not work efficiently and practically in multi-user
scenarios. To this end, we present a Multi-user Authentication
system (M-Auth) that employs a single COTS mmWave radar
to capture the user’s unique breathing pattern. It exploits the
phenomenon that radio frequency (RF) signals are affected by
chest displacements due to breathing. We specifically design an
auxiliary rotating gadget to dynamically adjust radar orienta-
tion, making it more effective in capturing respiration signals
from multiple users. To profile individual components from the
entangled RF signals, we leverage mmWave’s high directivity to
locate each user and separately focus on reflections from different
positions. We propose a signal energy comparison method to
eliminate the irrelevant body movements for preserving fine-
grained respiration traits. Afterward, we develop a feature
selection pipeline to elicit the most informative features and train
a machine learning-based classifier to identify each user. M-Auth
is practical due to its non-contact and passive nature, and it is
secure as respiration is unique and difficult-to-forge. Extensive
experiments involving 37 participants demonstrate that M-Auth
is effective in verifying legitimate users and thwarting spoofing
attacks, with an authentication accuracy of over 96% and an
attack detection rate of over 95%.

Index Terms—Respiration, Authentication, mmWave Sensing

I. INTRODUCTION

User authentication mechanisms have evolved from com-
plex passwords to biometrics (e.g., fingerprint, iris, and voice).
One important thing to realize is that biometric scans may still
be thwarted. Attackers have defeated biometric security with
impressions of fingerprints, a contact lens placed over a photo
of an iris, or recording someone’s voice and playing it back for
a voice recognition system. The problem with these methods
is that they only provide one-time authentication. In many
application scenarios such as banking and home computing,
continuous authentication is often required to validate user
identity constantly throughout the entire session.

Existing solutions typically exploit behavioral biometrics
such as gait patterns [1] and keystroke dynamics [2] to perform
continuous authentication. However, these solutions require
users to actively engage with the authentication process, such
as keep walking within a specific range and typing on the
keyboard. To avoid such laborious operations, non-contact
continuous authentications have been proposed by using wire-
less sensing (e.g., WiFi and RFID) and spontaneous physiolog-

ical biometrics (e.g., respiration and heartbeat). For example,
Cardia Scan [3] and BreathID [4] employs a continuous-
wave Doppler radar and WiFi signals to capture heartbeat and
respiration motions for continuous authentication, respectively.
They have the advantage of freeing users from getting involved
in authentication, the following significant limitations have
yet to be resolved. For one thing, their restricted working
range means that it will be inaccurate for far-field users,
which is inappropriate in larger spaces. For another thing, they
just perform single-user authentication, ignoring the broader
applications of multi-user settings such as smart homes and
workplaces, where more than one person is usually present.

Recent efforts have been made to enable multi-user au-
thentication. For instance, Kong et al. reuse WiFi signals to
capture several predefined activities from different users and
employ time-of-arrival to distinguish the multiple components
[5]. Although allowing multi-user authentication, the proposed
system requires at least 0.8m spacing between users to achieve
an acceptable accuracy, which poses challenges when users are
in close proximity such as standing shoulder to shoulder or
sitting abreast. Besides, it still has the constraint of requesting
users to complete specified tasks.

Design Objectives. In this paper, we present M-Auth, a
continuous multi-user authentication system by sensing res-
piratory motions with a single COTS mmWave radar. Before
being authenticated, users enroll in the system to create
profiles, and an incoming respiration signal is compared to the
stored profiles to identify whether the signal is from a genuine
user or an attacker. Specifically, the highlights of our work are
as follows: 1) Ubiquitous and trustworthy. All living people
have to breathe and breathing motions are difficult to forge,
while gait or hand-based approaches are hardly applicable
to individuals with hand or foot disabilities and may readily
be acquired by a peripheral camera for imitation attacks [6].
2) Zero separation spacing. Our system enables multi-user
authentication even when users have zero distance between
them, whereas existing RF-based solutions typically need at
least a separation of 0.8-1m [1], [5], which obviates scenarios
such as when users sit close to each other. 3) Non-contact
and passive. We employ RF waves to remotely perceive the
unique naturally-occurring respiration motion, which does not
involve device touch or physical exertion.
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Fig. 1. Respiratory motion cycle and sensing rationale.

Technical Challenges. Recent studies have used mmWave
sensing to estimate respiratory rate by monitoring signal
peaks in a target user’s reflections [7], [8]. However, unlike
these coarse-grained measurements, authentication involves
identifying subtle differences between users’ respiration sig-
nals. This requires us to solve the following challenges: 1)
The angle-of-arrival (AoA) of a signal sensitively affects
its signal-to-noise ratio (SNR), larger AoA might weaken
the signal strength, leading to inaccurate authentication. Ex-
isting beamforming-related techniques such as phased array
and beam steering typically improve spectral efficiencies in
a particular direction [9], which present challenges in our
scenario since we assume users are mobile and their AoAs
are unpredictable. On account of this, we design a rotating
device that mechanically controls the radar to dynamically
adjust its orientation according to the users’ positions, ensuring
effective signal capture. 2) Hand and limb movements may
overwhelm the small chest displacements due to respiration.
We present a comparison scheme to remove such interference
by calculating the signal energy for a specific time window.
3) Accurate authentication depends on highly recognizable
features. For this purpose, we develop a feature selection
pipeline that combines wavelet packet decomposition (WPD)
and recursive feature elimination (RFE) methods to select the
most representative features from the respiration signal.

Applications. In today’s IoT-rich environments, it is con-
venient when multi-user authentication functionality is sup-
ported. M-Auth can be deployed at the building entrance or in
the multi-person office to verify personnel for access control.
Smart homes may use M-Auth to associate indoor persons
with their identities for security surveillance, parent control,
as well as certain personalized services such as heating,
ventilation, and air conditioning (HVAC) applications. It can
also be harnessed to increase the continuous authentication
capability for traditional one-time confirmation mechanisms.
In summary, this paper makes the following contributions:

1) We develop a continuous authentication system for mul-
tiple users based on unique and non-volitional breathing pat-
terns. This system is secure, passive, and contactless, offering
a practical solution for various applications.

2) We design an auxiliary rotating device to enable a
single mmWave radar to dynamically adjust its orientation
for effective sensing. This design can potentially transform
existing statically deployed sensing solutions into adaptive,
cost-effective, and reliable coverage.

3) We demonstrate the effectiveness of M-Auth through
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Fig. 2. Variations of phase due to respiration.

extensive experiments with 37 participants. Results show that
M-Auth achieves an accuracy of more than 96%. We conduct
a range of experimental studies to evaluate the performance
under multiple scenes and various attacks.

II. PRELIMINARIES
A. Respiratory Biometrics

This paper exploits respiratory motion as the biometric fac-
tor to perform user authentication. Typically, one respiratory
cycle includes two phases—inhalation and exhalation. In the
process of inhalation, as shown in Fig. 1(a), the intercostal
muscles and the abdominal muscles contract to pull out the
ribs, and the diaphragm moves downward to be flat, resulting
in the expansion of the chest cavity. While during exhalation,
as shown in Fig. 1(b), the muscles relax and the diaphragm
moves upward to return to its resting position, leading to a
decrease in the size of the chest cavity. The two phases vary
from person to person due to human physiological structure,
such as different lung volumes and various acceleration of
chest moving dynamics. In addition, since respiratory motion
is inherently related to physiological activities, it is more
difficult to forge than traditional biometrics (e.g., face and
voice). Therefore, we adopt respiratory motion as the unique
biometric modality for user authentication.

B. Feasibility Study

It is hypothesized that a frequency modulated continuous
wave (FMCW) signal can be leveraged to sense the chest
movements due to respiration, and it is capable of distinguish-
ing the minute differences between individuals. As illustrated
in Fig. 1(b), the Tx transmits periodic sawtooth waves to
the user. When breathing, the chest fluctuations modulate the
incident signal, and the Rx will sense the chest-reflected signal.
Since signal phase and distance are linearly dependent, chest
displacements can be tracked by calculating the phase changes
between consecutive measurements. Specifically, variations of
the distance d (t) can be calculated as follows [10]:

a(0)=2-6(). m

where \ and ¢ (t) are the wavelength and phase, respectively.
It is observed that short-wavelength signals are more sensitive
to distance variations. In this work, we use a 4mm wavelength
mmWave, Ad can achieve as high as 1mm when the phase
change A¢ is 7, which is competent to detect the small chest
displacements produced by respiration.

We further investigate how respiration diversity influences
the captured signals. Two participants are asked to sit facing
the device and breathe normally. Fig. 2 shows their respiration
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Fig. 3. System overview of M-Auth.

waveforms. Intuitively, it is observed that the signals are
significantly different between the two users. Morphological
characteristics such as pulse height, width, slope, and fluc-
tuations apparently change from User a to User b. These
dissimilarities are mainly caused by individual differences in
the strength of intercostal muscles and lung volume. This study
demonstrates that mmWave can capture the minute differences
in respiratory motions, motivating us to use such user-specific
traits to perform authentication.

C. Threat Model

We assume that the end device is secure, attacks such
as tampering matching mechanism and stealing biometric
templates are orthogonal to this work. Although respiration
motion is complex and might be more secure than other
authentication modalities such as password and fingerprint, to
verify its reliability, we consider the following attacks:

Blind Attack. An adversary is unclear about the genuine
user’s breathing patterns, e.g., rate, depth, and rhythm changes.
During the attack, the adversary performs random respiration
motions to M-Auth, hoping to produce similar impacts on the
system as the genuine user does.

Impersonation Attack. An adversary can observe the legit-
imate user’s respiration motions by shoulder surfing or video
recordings. The adversary tries to mimic the user’s breathing
patterns according to his/her own understanding.

Replay Attack. More advanced than the former two attacks,
we assume 1) the adversary knows the authentication principle
and places a hidden mmWave sensor in a nearby location
to record the legitimate user’s body-reflected signals. 2) The
adversary can eavesdrop on the internal communication and
inject the recorded signal to spoof the system.

III. SYSTEM OVERVIEW

Fig. 3 presents the workflow of M-Auth, which consists of
the following modules:

Signal Capturing Module. Since beamforming techniques
generally reinforce the signals in a specific direction, it is
not suitable for improving signal quality when users are
movable. To effectively capture echo signals from multiple
users, we first eliminate the reflections from static objects (e.g.,
walls) and measure the users’ positions. Then we implement
a clustering algorithm to estimate the central position of the
users. Lastly, we develop a mechanical rotating device that
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Fig. 4. Signal separation for multiple users and user location measurement.

assists our radar in dynamically adjusting its orientation to
face toward the centroid for reliable sensing.

Signal Processing Module. Once the direction is deter-
mined, M-Auth starts to authenticate the users who are in the
range of the radar. This module eliminates noises from the
captured signal by combining a band-pass filter and an adap-
tive filter. To remove reflections from irrelevant body motions,
we introduce a signal comparison scheme by calculating the
signal energy for a specific time window. Subsequently, the
system segments the respiration signal by extremum analysis.
At last, we use the WPD and RFE techniques to select the
features that are most associated with respiration.

Authentication Module. After feature selection, M-Auth
labels the corresponding features and saves them to construct
the biometric templates. We build a machine learning-based
classifier by using the stored features to determine whether an
unknown visitor is a legitimate user or an attacker. Besides,
respiration patterns might change a lot due to mood swings
and energetic exercises, our system also provides template
updating to adapt to the changes under such cases.

IV. SIGNAL CAPTURING MODULE
A. Signal Separation for Different Users

We consider a multi-person scenario as illustrated in Fig.
4(a), where a mmWave radar is deployed in the corner of the
room that has four persons and several furniture. To identify
human-reflected signals from those reflected off other static
objects and to separate individual signals from the multiple
users in the environment, we leverage the intrinsic property of
FMCW, which enables separating the reflections from different
objects. In what follows, we go through the specifics of signal
capture and isolation from multiple users.

Static Multi-path Elimination. For an object at a distance
d from the radar, the radar mixes the TX and RX chirps to
generate an intermediate frequency (IF) signal. Given the slope
of the chirp S, the frequency of the IF signal is [10]:

B 2d 2Bd
f_S.T_TC' c T’
where 7, B, T,, and c are the time delay of the RX chirp,
frequency bandwidth, chirp duration, and speed of light, re-
spectively. As we can observe from Eq. (2), since the distance
of static reflectors (e.g., furniture) to the radar is constant over
time, the induced frequency shift does not change over time.
Consequently, we can get rid of those time-invariant multi-path
reflections by subtracting consecutive time measurements.

2
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User Presence Detection. When a user appears in the
radar’s field-of-view (FoV), our system receives the reflected
signal from the user. Since body movements cause changes
in d, consequently triggering strong responses in the IF signal
according to Eq. (2). We use this phenomenon to detect the
presence of users in the environment, and further estimate their
positions in the next step.

User Position Measurement. Merely using range informa-
tion d is insufficient to distinguish between multiple users
since they are likely to have similar distances to the radar
but be in different directions. Therefore, we introduce another
horizontal distance parameter to determine the user position.
For instance, the horizontal distance from User 1 to the radar
is calculated as d; sin @y, where 6; represents the angle of
arrival (AoA) that is measured as follows [10]:

Aﬁ ) 3)
wl
where A\, A¢q, and [ are the signal wavelength, phase change,
and spacing between RX antennas, respectively. Accordingly,
the n’th user’s position is expressed as P, (d,, sinf,,d,).

Multi-user Signal Separation. For multiple objects that are
present in an environment, each RX chirp is separated by a
different amount of time delay which is proportional to the
distance from the system to the object. In this case, a Fourier
transform is used to process the IF signal consisting of multiple
tones, resulting in a frequency spectrum with discrete peaks
for each tone, each peak indicating the presence of an object
at a certain distance. Further, on the basis of Fourier transform
theory, frequency components can be separated as long as their
frequency difference Af is more than T%H z [10], where T,
is the chirp duration. By using Eq. (2), the relationship is
represented as:

6 = sin™*(

2BAd 1 c
=T >TC:>Ad>2B. 4)

In this work, the radar provides a 4G H z bandwidth, such
that the range resolution Ad is calculated as % = % =
3.75¢m. This means that if objects are at least 3.75¢m apart,
their received chirps can be identified separately. In our con-
text, we primarily focus on user’s chest movements caused by
respiration, even when users are standing shoulder to shoulder
(i.e., zero separation distance between them), our system is still
capable of distinguishing the RX chirps from them since their
chest positions are separated by arms (the spacing is typically
more than 3.75¢m). As shown in Fig. 4(b), the reflections from
multiple users are separated into areas, allowing us to further

analyze their signals individually.

B. Dynamic Radar Orientation Adjustment

Design Motivation. In this work, we use a MIMO radar
that supports an FoV of 120°. Intuitively, it is not necessary
to adjust radar orientation since a radar statically positioned in
the corner of the room with configured beamforming can cover
all the users. However, radar’s phase change A¢ is sensitive
to AoA and the estimation of A¢ degrades as AoA increases
[11]. In other words, when users draw closer to the border,
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Fig. 5. Centroid estimation and location mapping.

the measurement of respiration motions becomes more error-

prone. Our experiment in Section VIII-C also confirms that

when AoA changes from 0° to 60°, the authentication accuracy

decreases by approximately 10%.

Signal processing techniques such as adaptive beamforming,
beam steering, and beam switching might be applied to
address this issue [9]. However, these methods improve the
signal SNR in a specific direction, i.e., they assume that the
object’s position is fixed. In our scenario, users are mobile
and their AoAs are uncertain, signal processing-based methods
are consequently not applicable. To this end, we propose an
approach that physically adjusts the radar’s orientation in real-
time depending on the user’s location as follows.

Step 1 - Radar Direction Calibration. Initially, we cal-
ibrate the sensor coordinate system to align with the room
coordinate system, e.g., making the radar direction 45° from
the wall as default, as illustrated in Fig. 4(a).

Step 2 - User Centroid Estimation. The users’ positions
relative to the room coordinate system at this moment are
consistent with the current positions calculated by the sensor.
Then, we adopt a k-means clustering algorithm to look for
the centroid of the users with their positions as the feature. At
last, the sensor is adjusted to point to the centroid for capturing
the reflected signals from the users. This adjustment process
is controlled by an auxiliary rotating device, which will be
described in Section IV-C.

Step 3 - Coordinate System Converting. As illustrated in
Fig. 4(a), we consider the case that people might change their
locations, and their centroid will also change accordingly. We
describe the case in Fig. 5(a), after User 3 and User 4 move
to the new locations, the system repeats Step 2 to estimate the
current centroid of the users and rotates the sensor to point
at it afterward. In this operation, the major challenge is that
we cannot directly calculate the centroid for the current cluster
since location measurements for User 3 and User 4 are relative
to the sensor coordinate system (i.e., Xs — Y;), whereas the
locations of User 1 and User 2 are corresponding to the room
(i.e., X, —Y,). To address this issue, we develop a mapping
relationship between the two coordinate systems, as shown in
Fig. 5(b). The mapping problem can be defined as follows:

o Condition: Given user P’s location measurement Ps(0s, dy)
in Xy — Y, rotating XY, axes counterclockwise through
an angle of p into X,Y, axes.

e Resolve: Determine the translation rule T(p) to make the

. = —
equation OP, = T(p)OPs true.
According to the measurement Py(6,ds), we have P’s
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Fig. 6. The hardware setup.

coordinate Ps(dssinfs,dscosfs) in the sensor coordinate
system. Then, P,.(x,,y,) in the room coordinate system can
be calculated as:

z, = OB+ _BAC’D = d, sin 6 cos ¢ + ds cos O, sin

yr = OF — :EH% =dscosfscosp —dgsinfgsing )
e
Vector OPF, can be represented in matrix form as:
Tr| | cosp sing||dssinf ©)
yr|  |—sing cosp||dscosfy|
~—~—

T(¢)

Using Euler’s Formula, T(y) can be further simplified as:

T(p) = cose Ll) (1)] + sing [01 (1)] = exp(yp {01 (ﬂ ).
(7
Since ¢ is the angle between the two coordinate systems that
is obtained in the previous step, we can map the locations of
User 3 and User 4 to the room with T'(¢p).

OP, OP;s

C. Rotating Device Design

Fig. 6 shows the designed device for controlling sensor
rotation. The controller primarily consists of the following
parts: 1) MCU. After reading the user’s location information
from the radar, the MCU is programmed to calculate the
centroid of the users and generate rotation instructions for the
driver. 2) Driver. It is mainly composed of 4 transistors and a
timer, which is in turn controlled by the MCU. The activation
of the transistors provides the required voltage and current
for the coils, and the timer controls its energizing timing. It
controls the stepper motor in full-step driving mode, and our
designed driving sequences for the motor coils are 1001, 1100,
0110, and 0011. 3) Motor. It is controlled by the clock period
and rotates to the desired direction. In our implementation, we
employ a unipolar stepper motor which has 5 wires one for
motor supply and the other for coils.

The stepper motor provides a step angle of 1.8° and a
holding torque of 3.4kg-cm with a 5V power supply, which is
capable of rotating our sensor board to the desired direction.
In the process of direction adjustment, our system may cause
errors in user authentication due to sensor movement. This
situation is likely to be a potential vulnerability that may be
leveraged by attackers. In our deployment, we set the motor
speed to 150rpm for movement stability, it just takes 0.1s to
rotate an angle of 90°. It is almost impossible for attackers to
perform malicious activities in such a short period of time.
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V. SIGNAL PROCESSING MODULE
A. Respiration Signal Separation

Band pass Filtering. To identify the signal that is dom-
inated by respiration, our insight is that the respiratory fre-
quency band typically lies between 0.2 and 0.5H z, we thus
adopt a Butterworth band-pass filter to cancel the irrelevant
signals that are out of this band. After band-pass filtering, the
signal (i.e., green-colored) shown in Fig. 7(a) shows a much
higher resolution than the raw signal.

Smoothing. Since unpredictable low-frequency interference
is likely to fall into the frequency range of respiration, we need
further refine the robustness against impulsive interference.
Specifically, we use a normalized least mean square (NLMS)
adaptive filter to smooth the respiratory waveform due to its
capacity of stopping the adaptive update of the filter weight
in the presence of impulsive interference. From Fig. 7(a), it
is observed that the signal’s morphology (e.g., height and
spacing) is more prominent.

Outlier removal. When a user drinks or uses the phone,
body motions may cause irregular signal changes as illustrated
in Fig. 7(b). Since the abrupt outbursts are aperiodic and their
amplitudes are larger than respiration, it is insufficient to only
rely on filters to reject them. To reduce the impact of large
movements, we calculate the signal energy for a certain time
window. Specifically, we slide the window over the signal,
calculate the energy for each window (i.e., ttHsQ(t)dt),
and check whether it is sufficiently stronger than the signal’s
historical average. If the energy exceeds a specific threshold,
we determine that the window is not dominated by respiration
and discard it from the time-domain signal. Empirically, we
use a time window of 1 second and a threshold of 5 times the
energy historical average.

B. Respiration Segmentation

To facilitate feature extraction from respiration, we divide
the time-domain signal into segments according to its cycles.
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Fig. 9. Illustration of wavelet packet decomposition.

The most direct way to determine the cycles is to locate
the peaks and troughs of the signal. As shown in Fig. 8(a),
local extremums can be estimated by spectral analysis [12].
However, it is observed that multiple local extremums might
be generated on the same peaks/troughs. To determine the
exclusive points that denote the peaks/troughs in the signal,
we present a distance restriction method as follows:

Extremum Classification. The peak represents exhalation
that leads to a positive value in phase changes, while the trough
stands for inhalation that results in a negative value. Based on
this prior knowledge, we sort the extremums into maximums
(i.e., positives) and minimums (i.e., negatives).

Threshold Calculation. We introduce two thresholds 7,4
and T),,;, to select the unique peaks and troughs from the two
categorized groups, respectively. In particular, the thresholds
are the average distances between every two adjacent values in
the two groups, respectively. The average distance is calculated
as: ﬁzzlz_ll t; X s, where n — 1 is the number of intervals
in the group, t; refers to the duration of the i'th interval, and
s denotes the sampling rate.

Peak/Trough Determination. We choose the first local
maximum/minimum in the groups as a valid peak/trough,
and the next valid peak/trough is selected such that the
distance between the current local maximum/minimum and the
previous valid peak/trough is greater than 7,,4./1}in- Using
such restriction, we finally obtain the corresponding peaks and
troughs for the signal, as shown in Fig. 8(b).

In our implementation, we slice two cycles as a respiration
segment, e.g., the signal starting from P, to P, as illustrated in
Fig. 8(b). The determination of cycles for a segment is further
studied in Section VIII-A.

C. Biometric Features Extraction

Respiration is time-varying and non-stationary, it contains
instantaneous details which are not readily obtained intuitively.
To capture the representative biometrics, we employ wavelet
packet decomposition (WPD) [13] to perform multi-resolution
analysis in different frequency domains, facilitating us to
discern the subtle differences in respiration motions between
individuals. Specifically, we design a 3-level WPD with dbl
Daubechies wavelet as illustrated in Fig. 9. The segment is
decomposed into detail D and approximation A components
with corresponding high-pass G and low-pass H filters at each
level, respectively. The original segment is zoomed-in level by
level, producing a total of 14 subspaces. At each level, every
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Fig. 10. Feature and classifier selection.

subspace covers a part of the original frequency spectrum and
thus is conducive to learning distinctive features.

For each subspace, we empirically apply 5 domain features
including skewness, kurtosis, shape factor, impulse factor, and
RMS. We end up with 14x5=70 features to represent the
respiration segment, which are subsequently used for user
template profiling and authentication model training.

VI. AUTHENTICATION MODULE

Biometric Template Profiling. From Fig. 9, we observe
that there exist duplicate components after the WPD process
(e.g., DAs and AD-) which may produce same features. To
eliminate repetitive and less informative features, we further
use the recursive feature elimination (RFE) method [14] to
analyze the extracted features. Specifically, we use a linear
kernel SVM classifier as the estimator for RFE. The classifier
is trained by starting with all 70 features via 5-fold cross-
validation. Then, RFE ranks the features by importance, dis-
cards the least important features, and re-fits the classifier.
This process is recursively repeated until a specified number
of features remains that make the classification reach a desired
accuracy. We visualize the result in Fig. 10(a), it is observed
that the curve jumps to an accumulated accuracy of 92.3%
when 38 informative features are captured, then stays saturated
even if choosing more features. The result reveals that the first
38 features are capable to represent respiration motions and
the remaining features are not sensitive to the classification
task. Based on this observation, we reduce the initial feature
set to 38 features and use them to train the matching model.

User Pattern Matching. To select the optimal classifier,
we compare four machine learning techniques: Random forest
(RF), k nearest neighbors (kKNN), linear kernel-based support
vector machine (Linear SVM), and radial basis function-
based support vector machine (RBF-SVM). Parameters for
each classifier are tuned via 5-fold cross-validation and grid
search [15] to achieve the best performance. In particular, we
randomly pick one participant as the legitimate and implement
a one-vs-rest strategy [16] to evaluate the performance of
the classifiers. Fig. 10(b) shows the ROC curves of the four
classifiers, we observe that RBF-SVM has the largest area
under the curve (AUC) of 98.51% and the lowest EER of
4.36%, indicating that it is the best option for our scenario.

VII. SYSTEM SETUP AND DATA COLLECTION

System Setup. As shown in Fig. 11, we use a COTS
IWR1443BOOST mmWave radar [17] to demonstrate the
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TABLE I
MMWAVE CONFIGURATION.
Bandwidth A4GHz ADC Sampling Rate 2.5M/s
Chirp Slope 53MHz/ps  Chirp Repetition 184pus

Chirps per Frame 128 Samples per Chirp 128

Antennas

Fig. 11. Experimental setup.

feasibility of M-Auth. The configuration of the radar board
is shown in Table I, which provides a range resolution of
3.75¢m and a displacement resolution of 1mm. The sensor
board transmits and receives signals, then the captured signals
are streamed out via UART to the laptop for further processing.
Genuine Data Collection. We recruit 37 healthy partici-
pants (17 females and 20 males) whose ages range from 19
to 35. In a typical workplace setting as illustrated in Fig. 11,
each participant is asked to sit/stand in front of the radar at a
distance of 2m and breathe naturally without any restrictions
(e.g., they can move limbs and operate smartphones). The
default settings are used unless stated otherwise. To maintain
data persistence, data collection is done in multiple rounds for
a period of two months. We collect 400 respiration segments
from each participant and obtain 14,800 samples in total.
Attack Data Collection. /) Blind Attack: We choose 7
participants as victims and the remaining 30 participants as
attackers. For each victim, every attacker arbitrarily performs
20 segments, producing 4200 samples in total. 2) Imper-
sonation Attack: We invite 7 participants as victims and 10
participants as attackers to mimic the victims’ breathing. The
attackers are asked to observe the victim’s respiratory rhythm
and breathing depth in a close-up view. For every victim, we
obtain 50 segments from each attacker and 3500 samples in
total. 3) Replay Attack: We invite 7 participants as victims and
employ an additional mmWave radar to record the victim’s
respiration signals. It is assumed that the end device is secure,
the attacker does not know the specifications such as the length
of respiration segment and the configuration of FMCW chirps.
For each victim, we use the default chirp configuration to
capture respiration for 10 minutes and slice the signal into
segments by 5 seconds. In total, we collect 840 samples.

VIII. PERFORMANCE EVALUATION
A. Overall System Performance

We first determine the appropriate respiration cycles for
the segment. Fig. 12(a) shows the authentication accuracy
with different respiration cycles. We observe that when 2
cycles are chosen, the average accuracy leaps to 96.05% and
then remains roughly stable. The standard deviation (STD)
decreases from 0.74% to 0.32% and the subsequent changes
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Fig. 13. System performance under three attacks.

are not significant. A low STD shows that the performance
is more reliable, i.e., the results are clustered closely around
96.05%. Based on this observation, we slice 2 cycles for the
segment and the corresponding average accuracy demonstrates
that M-Auth is effective in verifying legitimate users.

Next, we evaluate the performance of specific user veri-
fication. Fig. 12(b) shows the confusion matrix for the 37
participants. It presents the corresponding authentication ac-
curacy along the diagonal regions. Among all the participants,
the lowest and the highest authentication accuracy are 92.25%
and 100%, respectively. A darker area denotes higher accuracy,
validating the reliability in identifying individuals.

B. Performance of Resisting Attacks

We evaluate the resilience of M-Auth for the attacks dis-
cussed in Section II-C. As shown in Fig. 13(a), the detection
rates of the three attacks are over 98%, 95%, and 94%, re-
spectively, with mean values of 98.86%, 96.29%, and 95.34%,
respectively. It is expected to have a high detection rate under
blind attack since respiration motions are rarely the same
between individuals as mentioned in Section II-A. A slight
decrease in detection of impersonation attack implies that
imitating the victim’s respiration helps the attack; however,
precise replication is challenging to accomplish. Besides, as
attackers lack detailed specifics of M-Auth, such as chirp
configuration and signal segmentation, our system maintains
its resilience to replay attack as verified by the results.

The ROC curve in Fig. 13(b) provides a more intuitive un-
derstanding of the system performance. Specifically, the AUCs
under the three attacks are 98.70%, 98.57%, and 97.49%,
respectively; and the EERs are 3.99%, 4.63%, and 7.75%,
respectively. Higher AUC and lower EER represent that our
system is effective to distinguish legitimate users from attacks.

C. Robustness Analysis

Impact of Multiple Users Under Variant Distances. We
evaluate our system with up to four users under a distance
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Fig. 14. Robustness analysis for different scenarios.

varied from 2m to 4m. We randomly ask 2, 3, and 4 of
our participants to stand shoulder to shoulder at a distance of
2m, 3m, and 4m, respectively. Fig. 14(a) shows the average
authentication accuracy. It is observed that the accuracy values
are all over 90% for the groups of 2-user and 3-user within
4m. The accuracy values for the 4-user within 3m almost
approach 90%. The results verify that M-Auth is capable of
identifying multiple users simultaneously within a reasonable
range. Note also that the increase of either users or the distance
might decrease the accuracy, especially for the group of 4-user
at 4m, the accuracy decreases to 85%. It is expected due to
the mmWave property of fast attenuation and could be further
improved by increasing respiration cycles in the segment.

Impact of AoA Under Variant Distances. To examine the
effective sensing range, we evaluate the performance under
changeable AoAs and distances. Specifically, the recruiter is
required to sit/stand at 2m, 3m, and 4m from the system,
respectively, and at angles ranging from 0° to 60° with respect
to the radar orientation. The results are visualized in Fig. 14(b).
We observe that the accuracy exceeds 92% when the angle is
less than 30° and the distance is within 3m. Like the previous
experiment, the accuracy decays with the increase of distance.
Moreover, the accuracy is above 92% when the user is on a
straight line with the probe and reduces to less than 88% at
60°. The results are expected since the estimation of phase
change decays with the increase of AoA. This experiment
motivates us to design the rotating device in Section IV-C,
which can dynamically adjust the device orientation according
to the user position.

Impact of User Orientation. We study the performance
when users do not directly face the device. Participants are
asked to perform four different orientations: facing the device,
having their back to the device, and facing left or right
to the device. We provide the results in Fig. 14(c). When
facing the device, we observe that the average authentication
and false acceptance rates are the best (96.07% and 6.23%,
respectively). Across all the orientations, they slightly fluctuate
by 1%-3%, which shows the robustness of our system to verify
the user in different orientations. This is because when one
breathes, the chest expands in all directions, and M-Auth can
capture the side expansions.

Impact of Body Motion. We further investigate the perfor-
mance under daily activities without requiring users to stop
their ongoing work. Participants are invited to perform four
different activities: static (as a control group), typing, imitating
driving and speaking. From Fig. 14(d), it is observed that

the average authentication rate and false acceptance rate are
close to those of the control group when typing or driving.
The results are consistent with our methodology, where we
introduce a signal energy comparison scheme to remove the
outliers caused by limb or hand movements. In the case of
speaking, the results drop by about 6% compared with the
control group. This is due to the inherent nature of speaking,
i.e., phonation relies on exhalation; it is not possible to phonate
during inhalation [18]. The limitation could be alleviated by
intermittent pauses during speaking.

IX. RELATED WORK

Continuous Authentication. Traditional physiology-based
authentications, such as fingerprint [19], iris [20], and face
[21], only provide a one-time authentication at the start of
a login session and are vulnerable to artifacts. To prevent
security concerns, behavior-based continuous authentications
including gait patterns [1], vocal vibrations [22], and keystroke
dynamics [2] are proposed. These works, however, require
users to continuously and actively interact with the authen-
tication system, which is obtrusive and not user-friendly in
practical use.

Vital Sign-based Authentication. To reduce the limita-
tions above, vital signs are exploited to seek novel passive
authentications. Specifically, brain responses produced by vi-
sual stimuli [23], ECG [24], and PPG [25] are studied for
continuous authentication. However, these studies have the
limitation of requiring users to wear a body-attached gadget,
which is inconvenient and restricts their application scenarios.
To perform a non-contact manner, wireless signals have been
targeted to detect vital signs for continuous authentication.
For example, Lin et al. use a CW Doppler radar to sense the
unique cardiac motion for verifying users [3]. These methods,
however, either implement with a dedicated device or require
close-range sensing, largely affecting their applications.

The most related work to ours is BreathID [4]. The
authors use the deployed WiFi signal to sense the unique
respiratory motions for authentication. The remarkable factors
that distinguish this work from ours lie in: 1) Their sensing
modality limits them to verify one person at a time, while
we can test multiple users concurrently. 2) They assume
users are stationary, ignoring limb and hand motions. By
eliminating motion-corrupted segments, we make the system
more practical. 3) They choose more than 500 features to
describe the respiration signal. We eliminate redundant and
misleading features and elaborately identify 38 representative
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ones, which benefits authentication accuracy and user template
update. With these unique factors, we provide a different breed
of authentication from BreathID.

X. DISCUSSION

We analyze the potential limitations of our system and
provide suggestions for how to improve it in the future.

Exercising and Health. In our work, we use respiration
data acquired from healthy people under normal physical
conditions to construct the matching model. People who have
just finished exercising or have breathing problems, such
as asthma, pneumonia, and anxiety, may have significant
fluctuations in respiration motions, affecting the authentication
accuracy. One potential method for improving the resilience
of our system is to determine how sensitive M-Auth is to such
contextual changes. For example, we may study how quickly
a user’s respiration rate drops after exercise and utilize the
respiration recovery rate as one of the matching features.

Quasi-static State. To avoid large body movements from
producing system errors, our system requires the users to be
quasi-static. This constraint is a common stumbling block for
wireless sensing; because phase shifts caused by full-body
motions often drown those caused by respiration, preventing
the monitoring of minute skin fluctuations. Isolating the sub-
merged signal is not trivial due to its low signal-to-noise ratio
(SNR). To apply M-Auth to full-body movement contexts, one
feasible solution is to employ intermittent authentication, in
which users are requested to pause their current activities for
a short time for authentication.

XI. CONCLUSION

This paper presents a continuous multi-user authentication
system by sensing respiratory motion using a single COTS
mmWave radar. We design a rotating device to help the radar
obtain high-quality reflected signals from users. To effectively
identify legitimate users and thwart spoofing attacks, we
experimentally determine the appropriate data segment, elabo-
rately select the representative features, and build a fine-tuned
classifier. Extensive experiments demonstrate that our system
is resilient to spoofing attacks and effective in authenticating
legitimate users in various application scenarios.
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