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ABSTRACT

Recognition of human-object interactions is practically important

in various human-centric sensing scenarios such as smart supermar-

ket, factory, and home. This paper proposes an RF-Camera system

by fusing RFID and Computer Vision (CV) techniques, which is

the first work to recognize the human gestural interactions with

physical objects in multi-subject and multi-object scenarios. In RF-

Camera, we first propose a dimension reduction method to trans-

form the subject’s 3D hand trajectory captured by depth camera to

a 2D image, using which the subject’s gesture can be recognized.

We also propose a method to extract the facial image of target sub-

ject from an image that may contain irrelevant subjects, thereby

further recognizing his/her identity. Finally, we model the physi-

cal movements of the held object’s tag and further predict the tag

phase data, by comparing which with real phase data of each tag

human-object matching can be discovered. When implementing

RF-Camera, three technical challenges need to be addressed. (i) To

remove noisy data corresponding to irrelevant actions from raw

sensing data, we propose a state transition diagram to determine

the boundary of effective data. (ii) To predict phase data of the held

target tag with unknown hand-tag offset, we quantify target tag

trajectory by adding a variable hand-tag vector to captured hand

trajectory. (iii) To ensure high reading rates of target tags in tag-

dense scenarios, we propose a CV-assisted RFID scheduling method,

in which analytics on CV data can help schedule RFID readings.

We conduct extensive experiments to evaluate the performance of

RF-Camera. Experimental results demonstrate that RF-Camera can

recognize the gestural actions, human identity and human-object

matching with an average accuracy higher than 90% in most cases.

CCS CONCEPTS

• Human-centered computing → Human computer interaction

(HCI); Ubiquitous and mobile computing systems and tools.
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1 INTRODUCTION

1.1 Motivation & Problem Statement

The rapid development of Internet of Things, big data and Artificial

Intelligence has brought us into the age of Cyber-Physical Systems

(CPS) [1]. The increasingly important impact of human in CPS

is making it evolve into Human-Cyber-Physical Systems (HCPS)

[2], in which human and physical world are deeply fused and in-

tegrated through functionalities of communication, computation,

and control techniques. HCPS could be the future trend of various

applications in scenarios such as smart supermarket, factory, and

home. In this paper, we study the problem of recognizing human ges-

tural interactions with physical objects. Recognition of human-object

interactions has many practical applications. In a supermarket, as

a customer walking through shelves, he/she may interact with a

product by waving his/her hand to query the product specifica-

tion or recommend similar products for comparison. In a factory,

a production operator may draw a cross in the air with a specific

part/component to alert quality issues, automatically generating a

quality report. In a smart home, a user may take out a food item

out of fridge and perform a specific gesture in the air to find out

the expiration date or possible cooking recipes. The problem of

recognizing human-object interactions is formally defined as fol-

lows. Multiple subjects and multiple objects coexist in an application

region, where sensing devices such as RFID, WSN, and Camera may

be deployed. Each subject may take an object in hand to perform

a gesture (e.g., drawing a letter or a symbol) in the air to express

a specific meanings about the object. The backend server leverages

the multi-modal data collected from these smart sensing devices to

recognize who takes which object and performs what gestures.

1.2 Limitations of Prior Art

The closely related works can be generally classified into two cate-

gories: gesture recognition and object tracking. However, they have

the following limitations. (i) Gesture recognition methods using

computer vision [3–5], audio [6, 7], and WiFi [8–10] techniques

cannot exactly identify the individual objects held in hand. (ii) Ob-

ject tracking methods [11–13] using RFID can naturally identify the

individual objects, to which subjects perform gestural interactions,

because each tag attached to an object has a unique ID. However,

none of them can recognize the identity of a subject who interacts
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Figure 1: Illustrating the RF-Camera system.

with the tagged object. Moreover, they cannot work well in tag-

dense application scenarios [11, 13] or do not support simultaneous

recognition in multi-subject and multi-object scenarios [12].

1.3 RF-Camera in a Nutshell

To overcome the limitations of existing solutions, we propose an

RF-Camera system by integrating RFID and computer vision tech-

niques. As illustrated in Figure 1, the proposed RF-Camera system

mainly consists of three parts: (i) an RFID reader with an antenna;

(ii) an Azure Kinect DK [14] having a depth camera and an RGB cam-

era; (iii) a backend server. We assume that each object is attached

with an RFID tag to enable battery-free tracking and inventory. The

RFID reader continuously probes the tags and returns the tag data

including tag ID, phase, timestamp of each tag reading to backend

server. On the other hand, the Kinect device keeps capturing the

RGB image stream and each subject’s skeleton. To verify the ef-

fectiveness of RF-Camera system, we use the gestural actions of

drawing 29 normal letters/symbols as case studies. Note that, the

designed RF-Camera can be naturally extended to other arbitrary ges-

tures defined by users in practice. The RF-Camera system essentially

recognizes "who takes which tagged object and draws what in the

air" through the following three stages.

Gesture recognition: After a subject performs a gesture in

the air, we can transform the 3D trajectory of the subject’s hand

(captured by depth camera) into a 2D image, which can still reflect

the corresponding letter or symbol without too much information

loss. Using this method, we recruit volunteers to collect labeled data.

First, we collect about 100 labeled images for each letter or symbol.

Then, the operations of cropping, rotation, and adding noise (i.e.,

gaussianblur, erosion, dilation) are used to achieve more augmented

datasets. Finally, we achieve a dataset of 336,000 labeled images for

drawing 29 letters/symbol. Using the deep learning model trained

by the above dataset, we can recognize what letter or symbol a

subject draws in the air.

Human identity recognition: We suppose a facial image of

each subject in the system has been collected in advance, which

can be easily realized in practice. For example, it is common that

a factory has the facial images of all its workers. Using the facial

images, we train a face recognition model. For a subject in the moni-

toring area of RF-Camera, we use his/her key joint points including

left shoulder, right shoulder and nose (captured by depth camera)

to exactly extract the facial image from a large image (captured

by RGB camera) that may also contain irrelevant subjects’ facial

images. The extracted facial image is fed into the face recognition

model to identify the target subject’s identity.

Human-objectmatching: Since multiple subjects andmultiple

tagged objects may coexist in the system, we need to recognize the

human-object matching, i.e., who takes which object and draws in

the air. To achieve this objective, we use the captured 3D trajectory

of a subject’s hand to estimate the phase data of the tag that is

attached on the object in hand. Intuitively, the estimated tag phase

data should be similar with real phase data of the tag held by target

subject. Then, the Dynamic Time Warping (DTW) algorithm [15]

is employed to calculate the distance between the estimated phase

data and actual phase data of each tag. The tag corresponding to

the smallest distance should be the one taken by the target subject.

1.4 Challenges and Solutions
We need to address the following key technical challenges when

implementing the RF-Camera system.

The first technical challenge is to extract effective camera and RFID

data from the continuous data streams, which may also contain some

irrelevant noisy data. In this paper, we actually only care about

the intentional drawing actions. However, RFID and camera also

capture the data of some irrelevant actions such as just picking

up objects or simply scratching head. To extract effective data of

intentional gestural actions, we propose a state transition diagram

that contains four states: random, ready, drawing and finishing.

Moving hand or keeping hand static are the state transition condi-

tions, which can be measured by the depth camera data. The camera

data and RFID data collected during the drawing state are referred

to as the effective sensing data and will be used for recognition.

The second technical challenge is to calculate the virtual phase

data of the held tag with unknown offset between tag and hand.We

can use the skeleton data of a subject captured by the depth camera

to obtain the hand-moving trajectory in 3D space. However, we

cannot simply treat the trajectory of hand as that of the held tag due

to the hand-tag offset. We use a vector from hand to tag to quantify

the offset and enumerate all possible vectors. Adding each possible

vector to the hand trajectory, we can calculate a tag trajectory. Then,

using the tag phase equation, we can calculate the virtual tag phase

data for each hand-tag vector. Calculating the Euclidean distance

between the actual phase data of a candidate tag and each virtual

tag phase data, we can find the smallest one that is expected to

correspond to the real hand-tag vector. With this method, we can

identify the hand-tag offset.

The third technical challenge is to ensure high reading rates of

target tags in tag-dense application scenarios. Massive tags share

the same narrow communication channel, which results in that the

target tag held in hand cannot have sufficient data collected. As a

matter of fact, the sparse RFID data inevitably reduces the recogni-

tion accuracy. To address this issue, we propose a CV-assisted RFID

scheduling method, in which human state identified based on CV

data can dynamically guide the RFID reading strategies. As a result,

the target tags held by subjects can have high reading rates at most

time of drawing actions even when a large number of tags exist.

1.5 Novelty and Advantages over Prior Art

This paper for the first time addresses the problem of recognizing

the human gestural interactions with physical tagged objects in

multi-subject and multi-object scenarios. The novelty of our work

is demonstrated through our solutions to tackle three key chal-

lenges: (i) extracting effective data from noisy sensing data stream;
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(ii) calculating the virtual phase data of target tag with an unknown

hand-tag offset; (iii) ensuring high reading rates of target tags in

tag-dense application scenarios. The RF-Camera system has two

main advantages over previous works: (i) Compared with [3–10],

RF-Camera can dive into the level of individual object recognition

instead of only coarse-grained human gesture recognition; (ii) Com-

pared with [11–13] that can only recognize operations to target tags,

RF-Camera can further identify the subject identity as well as the

matching between subjects and tagged objects; (iii) Unlike the state-

of-the-art Pantomine system [12] that only supports recognition

of gestural interactions with tagged objects subject after subject,

the RF-Camera system can enable simultaneous recognition for

multiple subjects. Experimental results reveal that RF-Camera can

recognize the gestural actions, human identity and human-object

matching with an average accuracy higher than 90% in most cases.

The remainder of this paper is organized as follows. In Section 2,

we present the system model and some preliminary knowledge.

Section 3 describes the system design of RF-Camera and Section 4

discusses some practical issues. We evaluate the performance of

RF-Camera in Section 5. Related works are reviewed in Section 6.

Section 7 concludes this paper.

2 SYSTEM MODEL & PRELIMINARIES

2.1 System Model

As illustrated in Figure 1, the proposed RF-Camera system mainly

consists of three components: (i) an RFID reader equipped with an

antenna; (ii) an Azure Kinect DK [14] having a depth camera and a

RGB camera; (iii) a backend server. A 3D coordinate system centered

at the depth camera is established as follows. The positive X-axis

points the right of depth camera, the positive Y-axis points down,

and the positive Z-axis points its forward. The reader antenna is

deployed at (xr ,yr , zr ), and its radiation direction is roughly the
same as that of the cameras.

In the monitoring region of the RF-Camera system,m subjects

(S1, · · ·,Sm ) and n tagged objects (O1, · · ·,On ) coexist. We assume

a facial image of each subject has been stored in the backend server,

e.g., the image is taken when a worker registered at the entrance of

a workshop. On the other hand, each object Oi is attached with an

RFID tag that has a unique tag ID, denoted as idi , where i ∈ [1,n]. A
subject can take a tagged object in hand to draw a letter or a simple

symbol in the air to express their specific meanings about the ob-

jects. For example, a subject takes a tagged part to draw a letter ‘q’ in

the air to express that the corresponding part has a quality problem.

During the drawing process, the RFID reader keeps reading the tags

on objects and continuously reports the collected RFID data includ-

ing tag ID, phase angle, RSSI, doppler frequency, and timestamp to

the backend server. Also, Kinect reports the subject skeletons and

RGB images captured by two cameras to backend server. Based on

these time series data, the RF-camera system is able to recognize

who takes which tagged object and performs what gestures in the air.

2.2 Preliminaries

In this section, we will describe some preliminaries of RFID and

Azure Kinect DK.

RFID: The reader interrogates tags using the backscatter com-

munication mechanism. That is, the electromagnetic wave sent

from the reader antenna hits a tag, and this tag modulates the res-

onant properties of its tiny antenna to embed the ID information

into the backscattered signal. Tag signals simultaneously backscat-

tered from multiple tags will cause signal collisions on the reader

side, which makes the reader receive nothing meaningful. A batch

of anti-collision protocols (framed slotted Aloha protocols [16] or

tree-walking protocols [17]) were proposed to resolve the tag col-

lision issue. As aforementioned, after each successful tag reading,

the reader can report not only a tag ID but also some low-level

data about tag signals, e.g., phase, RSSI, doppler frequency, and

timestamp. Among them, RSSI and phase of a tag are both related

to the distance between this tag and the reader antenna. However,

RSSI is sensitive to multi-path propagation, which results in that

RSSI-based mobile tracking approaches usually cannot achieve high

precision [18]. Hence, the proposed RF-Camera system mainly uses

RFID phase angle. We useD(idi , tk ) to denote the distance between
tag idi and the reader antenna at time tk . The phase angle of RFID
signal rotates within [0, 2π ] along round-trip propagation between
the reader antenna and tag. Hence, the phase data reported by the

reader mainly depends on the round-trip distance 2D(idi , tk ). Be-
sides, the physical characteristics of reader antenna and tag idi also
involve additional constant shifts θ (r ) and θ (idi ) to the reported
phase data, respectively. We use P(idi , tk ) to denote the phase

data of tag idi that is reported by reader antenna at time tk . The
expression of P(idi , tk ) can be given as follows.

P(idi , tk ) =

[
2D(idi , tk )

λ
× 2π + θ (r ) + θ (idi )

]
mod 2π ,

where λ is the wavelength of RFID signal. The RFID reader keeps
reading tag idi , hence, we can get a stream of tag phase data:

P(idi , t1),P(idi , t2), · · ·,P(idi , tk ), · · ·.
Azure Kinect DK: The develop kit includes a megapixel-depth

camera as well as a 12 megapixel RGB camera [14]. The Kinect de-

vice captures the depth images, and uses the official deep learning

model [14] to extract the 3D location of 32 joints (e.g., HEAD, NECK,

and HAND_LEFT) of each subject skeleton in its coordinate system.

The depth camera and RGB camera are associated with an indepen-

dent 3D coordinate space system. Fortunately, Azure Kinect DK

has already done alignment process of the two cameras. Therefore,

we can easily map a captured RGB image to the coordinate system

of depth camera.

3 DETAILED DESIGN OF RF-CAMERA

In this section, we will first present the overview of the proposed

RF-Camera system. Then, details of its main building blocks will

be described sequentially.

3.1 System Overview

As illustrated in Figure 2, the proposed RF-Camera system consists

of four major building blocks: data collection, gesture recognition,

human identity recognition, and human-object matching. First, in

the building block of data collection, we define some data struc-

tures to store the camera data stream. A state transition diagram

is proposed to determine the boundary of effective camera data

and RFID data. Moreover, a CV-assisted RFID scheduling method

is proposed to dynamically adapt the reading rates of target tags.

Second, in the building block of gesture recognition, a dimension

reduction method is proposed to transform the 3D hand moving
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Figure 2: Overview of the RF-Camera system.

trajectory to a 2D image, which can still well maintain the visual

information of the drawing gestures. Also, we recruit volunteers to

construct a dataset of 336, 000 labeled images, based on which a ges-

ture recognition model is trained to recognize the human gestures.

Third, in the building block of human identity recognition, the

facial image of the target subject can be extracted from a large im-

age that may contain the facial images of other irrelevant subjects.

The extracted facial image can be fed into a trained model to recog-

nize the identity of the target subject. Fourth, in the building block

of human-object matching, we predict the virtual phase data of

the held target tag and compare with the actual phase data of each

candidate RFID tag, thereby finding out which tag is the one held by

the target subject. To enable simultaneous recognition of multiple

subjects, RF-Camera system has a multi-threaded processing mech-

anism, in which when any new subject enters into the monitoring

region, a new thread will be open to track the new subject and

execute the above operations for him/her. In what follows, we will

present the system details.

3.2 Data Collection
In what follows, we present the details of camera data collection

procedures and RFID data collection procedures in the RF-Camera

system, respectively.

3.2.1 Camera Data Collection. When one or more subjects are in

the monitoring region of RF-Camera, the Kinect device will con-

tinuously report skeleton data of each subject and RGB image to

server. Before representing a continuous camera data flow of a

subject, we first define a data structure named Camera_Snapshot

to represent a snapshot of camera data within the flow. It contains

three types of variables: the variable tmp is the timestamp when this

snapshot of camera data is reported by Kinect; 3D joint locations of

a snapshot skeleton, e.g., the ternary array HAND_RIGHT[3] is used

to store the right hand location of the corresponding subject at the

time of tmp; a pixel matrix, RGB_Image[][], is used to store the

snapshot RGB image at the time of tmp. To represent the continu-

ous camera data flow of a subject, this paper defines another data

structure named Camera_DataFlow, which contains five variables:

Skeleton_ID indicates the unique skeleton ID of the corresponding

subject, which is automatically assigned by the Kinect device; We

use P_Link to present a link pointer, which points to a dynamically

increasing sequence of camera snapshot data. A new camera snap-

shot data received by the server will be added to the link tail; We

use Person_Identity to represent the identity information of the

subject; Drawing_Action is used to represent what letter or symbol

a subject draws in the air; TagID indicates which tag is taken when

Random Ready Drawing Finishing

Moving hand

Keeping
hand static

Keeping
hand static

eep ngeep g
hhhhand staticcc hhhand staticcc

Moving hand

Moving
hand

Keeping
hand static Moving hand

Keeping
hand static

Figure 3: The state transition diagram of a subject.

the subject draws in the air. Before getting the recognition results,

the variables Person_Identity, Drawing_Action and TagID are

set to null.

As a matter of fact, we only care about the intentional drawing

gestures instead of irrelevant gestural actions such as just picking up

objects or simply scratching head. To extract the effective data corre-

sponding to the intentional gestural actions from the whole noisy

sensing data, we propose a state transition diagram, as illustrated in

Figure 3, to describe the hand movements of each subject. The state

transition diagram includes the following four states. Random: This
is an initial state to represent a subject is doing some irrelevant ges-

tural actions; Ready: The subject takes a tagged object in hand and
keeps the hand static at the point in 3D space where he/she wants

to start the drawing actions. This static state is used to indicate

the follow-up hand movement is the drawing action; Drawing: The
subject moves the hand taking a tagged object to draw a letter or

symbol in the air; Finishing: After drawing a letter/symbol in the
air, the subject keeps the hand static for a while. This static state is

used to indicate the end of a complete intentional drawing action.

We have two state transition conditions: Moving hand and

Keeping hand static. Note that, for simplifying the presenta-
tion, we suppose a subject uses the right hand to take object by

default. This assumption can be easily relaxed in practice. For a

subject, we use the latest n sets of snapshot camera data to deter-
mine whether he/she moves the right hand. Specifically, the 3D

location of right hand, HAND_RIGHT[], in the i-th set of camera data,

is denoted as hi . We use h to denote the average location of right

hand, i.e., h = 1
n

∑n
i=1 hi . Then, we calculate D =

1
n

∑n
i=1 d(hi ,h),

where d(hi ,h) means the Euclidean distance between positions hi
and h. If the value of D is larger than a threshold τ , we assert the
hand moves; otherwise, the hand keeps static. In this paper, we set

n = 16 and τ = 2cm by default. The used Kinect device has a frame

rate of 30FPS, and we use n = 16 sets of snapshot camera data to
determine whether a subject moves right hand. Thus, a subject only

needs to pause hand in the air for a very short time of 0.53s . Since
most people habitually have a short pause before starting to draw,

we think this requirement is reasonable and easy to accept.
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Next, we briefly describe how the state transition diagram runs.

At the very beginning, any subject should be initialized as the

Random state. The subject keeps the hand static for a while, and
the system sets the subject state as Ready. The subject moves hand
to draw in the air, and the system changes the subject’s state to

Drawing. After that, the subject keeps hand static for a while, and
the system sets the subject’s state as Finishing. The detection of
hand movement will start a new round of state transition.

We use Tr , Td and Tf to represent the key time points when a
subject changes to the states of Ready, Drawing and Finishing, re-

spectively. We leverage these key time points to extract the effective

camera data, and optimize the following RFID data collection.

3.2.2 RFID Data Collection. An RFID reader keeps reading the tags

associated to objects in the monitoring area. As aforementioned,

we let the reader report the tag ID, phase angle, timestamp of each

tag reading to the server. Since both camera snapshot data and

RFID data have timestamps, we can easily align these two types

of sensing data. With the Aloha communication mechanism, tags

share a narrow RFID channel. In practice, a large number of tags

may coexist in the monitoring area of a single reader. Thus, each tag

can only has a few chances to be read. As exemplified in Figure 4(a),

we plot the reading rate of the target tag with varying number

of tags in the environment from 1 to 240. We can clearly observe

that, the reading rate of the target tag decreases from 75 times per

second to 5 times per second. To better understand the side impact

of sparsity of tag phase data, we conduct two sets of experiments.

We first place a single tag in the scanning range of a reader and

let a subject take the target tag to perform a gesture in the air. The

collected raw phase data and unwrapped phase data are plotted

in Figure 4(b). We can clearly see that the target tag has sufficient

readings and the raw phase data can be well unwrapped. On the

contrary, if the subject performs the same gesture while placing

200 tags in the environment, as shown in Figure 4(c), the phase data

collected from the target tag is very sparse and unwrapped phase

profile is quite different from the correct one in Figure 4(b). As we

know, the correctness of phase unwrapping operation significantly

affects the accuracy of phase-based smart sensing methodologies,

e.g., localization or human activity recognition. Hence, it is not

trivial to investigate how to improve the reading rates of target

tags in the following.

We refer to the tag taken by a subject who gets ready to draw

in the air as the target tag, and the other tags as ordinary tags.

The data sparsity of the target tag makes it difficult to achieve

accurate human-object matching. As aforementioned, we desire

that the target tags have higher reading rates while the ordinary

tags have relatively low reading rates or even zero reading rate.

The state-of-the-art Pantomine system [12] uses the following idea

to distinguish target tags from ordinary tags and adapt the tag

reading rates. Intuitively, the drawing action makes the target tags’

phase data continuously change. On the contrary, the ordinary tags’

phase data are stable because they keep stationary. Based on this

intuition, Pantomine uses an entropy metric to quantify the phase

changing trend, thereby further finding out the target tags. Then,

the reader sends a Select command that contains target tags’ ID

information at each round of tag reading. Thus, only target tags will

be activated and participate in the follow-up tag reading process.

On the contrary, the ordinary tags that do not satisfy the selection

criteria will keep silent. The Pantomine system can well adapt the

tag reading rate in the single-subject scenarios. However, it fails

in multi-subject scenarios, where the subjects may asynchronously

perform the drawing actions with tagged objects. For example, in a

two-subject scenario where multiple tagged objects are deployed,

subject S1 first takes an object with tag id1 to draw in the air. With

the above tag-selection mechanism, only tag id1 will be read, and
all the other tags will be deactivated. Only when subject S1 finishes

the drawing action and the reader detects a stable phase data of tag

id1, the reader re-configures the tag filtering mask and sends an
updated Select command to let all tags reply. However, if subject

S2 takes an object with tag id2 to start drawing before subject S1
finishes, tag id2 cannot be read at all and of course recognition fails
for subject S2.

To address this issue, this paper proposes a CV-assisted RFID sched-

uling method, in which the server controls the RFID reading operations

based on visual analytics of human gestures. In what follows, we

present the detailed processes. Initially, the reader is configured

to Low Duty Cycle (LDC) mode for saving energy on the RFID

reader side. As aforementioned, the server can leverage the depth

camera data to detect transition states of any subject in the mon-

itoring area. If the server detects a subject, says S1, enters into

the drawing state, it will control the RFID reader to turn into the

normal reading mode and read all tags for a short time period ΔT .
Theoretically, we can leverage the hand movements captured by

depth camera to calculate the variance of the handheld tag’s phase

data, which is denoted asV . The detailed calculation can be seen in
Section 3.5. On the other hand, we can use the actual RFID phase

data of each tag within time period of ΔT , says tag idi , to calculate
the phase variance vi . In the ideal case, if the phase variance of tag
idi is equal to the calculated phase varianceV , tag idi should be the
target tag in hand. To tolerate the unavoidable deviation between

actual phase variance and calculated phase variance, we relax the

condition to that, if vi > ρV , tag idi is treated as candidate target
tag and will be added to a tag-filtering set T1. In this paper, ΔT
and ρ are empirically set to 1s and 0.5, respectively, because they
can ensure high recognition accuracy and robustness according to

extensive experimental results. In practice, a few irrelevant tags

may also be added into the target tag set T1 due to two practical
reasons: (i) Multipath of RFID signal will result in the tag phase

variance; (ii) Although some tags are held by other subjects, the

movement will cause the phase variance of such tags. However,

we cannot distinguish which tags are mistakenly added into T1.
Fortunately, the number of such kind of tags is small compared

with the massive tags in monitoring area. The server generates a

tag filtering mask using the tag IDs in the target tag set T1 and
lets the reader broadcast a corresponding Select command to tags.

Thus, only a few tags including the target tags are expected to be

read, and a large ratio of tags are stopped from being read. As a

result, we can collect sufficient phase data of the target tag.

Next, we discuss the multi-subject case. If the server detects

another subject, says S2, enters the drawing state when subject S1
is drawing in the air. The server will control the reader to read all

tags for a short time period ΔT . Then, using the similar method
presented above, the candidate target tags corresponding to subject

S2 will be added into the target tag setT2. The reader usesT1∪T2 to
generate a tag filtering mask and selectively reads tags. As a result,
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Figure 4: Showing the impact of tag density. (a) Reading rate vs. # of tags. (b) Single tag case. (c) Tag-dense case.

Figure 5: Exemplifying the CV-assisted RFID scheduling

method with a two-subject case.
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scheduling method. (a) Raw phase. (b) Unwrapped phase.

the target tags of subjects S1 and S2 can be read at high rates. If

more subjects enter the drawing states, we can recursively use the

above method to read the target tags.

When a subject, saysSi , finishes the drawing action, i.e., entering

into the finishing state, we do not need to read the tags held by

him/her at high rates any more. Suppose l subjects (S1,S2, · · ·,Sl )
are in the drawing state, and their the target tag sets areT1,T2, ···,Tl ,
respectively. Once detecting Si enters into the finishing state, we

will use ∪Tj to generate the tag filtering mask and selectively read
tags, where j � i . Thus, the target tags of other subjects who are
still in drawing state can be still read at high rates.

We use a two-subject case as exemplified in Figure 5 to revisit the

CV-assisted RFID scheduling method. Subjects S1 and S2 sequen-

tially draws with tags id1 and id2, respectively. Using the depth
camera data, the server detects subject S1 enters the drawing state,

then starts to read all tags for a short time period. Using the sparse

data of each tag, the server adds tag id1 into the target tag set T1.
Then, the reader selectively reads tag id1 at a high rate. Then, sub-
ject S2 is detected to enter the drawing state. The reader turns to

read all tags for a short time, and the server finds that tags id1 and

id2 both have a large phase variance (these two tags are held and
moved). Then, target tag set T2 is set to {id1, id2}. Using T1 ∪ T2,
the server updates the tag filtering mask, and the reader selectively

reads tags id1 and id2. Subject S2 draws fast and turns into the
finishing state. The server uses T1 to update the tag filtering mask,
and the reader selectively reads id1. When subject S1 turns into

the finishing state, the server updates the mask as empty. Then,

the reader goes into low duty cycle mode again. Figure 6 (a) shows

the RFID raw phase data of two subjects, where we can clearly

see the target tags id1 and id2 are read at high rates even in the
tag-dense environment (200 interference tags are deployed). Fig-

ure 6 (b) demonstrates that phase data of these two tags can be well

unwrapped due to sufficient tag readings.

At the end of data collection, [Tr ,Tf ] is called effective time

period. We refer to the camera data of the subject collected within

[Tr ,Tf ] as effective camera data. Supposing there are λ sets of

effective camera data, we use an effective camera data array ED[]

with size of λ to store them. The effective camera data array ED[]

and the RFID data also collected within [Tr ,Tf ] will be jointly used

in the follow-up sections to recognize the subject identity, what

letter/symbol the subject draws in the air, and which tagged object

is taken by the subject.

3.3 Gesture Recognition

Given the effective data stream ED[] of the subject, we can extract

the hand-moving trajectory of a subject and apply the Unscented

Kalman Filter (UKF) [19] to smooth it. The hand trajectory of target

subject is composed of λ hand locations H1,H2, · · ·,Hλ in 3D space.

We propose the following dimension reductionmethod to transform

the 3D hand trajectory to a 2D image, which can still well maintain

the visual information about what the subject draws in the air. We

use the RANSAC algorithm [20] to find the best fitting plane P
such that the sum of distance between each hand location and the

plane is minimized. That is, P = argP∗ min
∑λ
i=1 D(Hi , P∗), where

D(Hi , P∗) means the distance between point Hi and a plane P∗.
Then, we project the hand-moving trajectory onto the best fitting

plane P to achieve a 2D image, which is resized to 96 × 96 and then

denoted as a pixel matrix int Img[96][96].

We recruit volunteers to collect labeled data using the above

method. First, we collect about 100 labeled images for each let-

ter or symbol. Then, we use cropping, rotation, adding noise (i.e.,

gaussianblur, erosion, dilation) operations to achieve more labeled

datasets. Finally, we achieve a dataset of 336, 000 labeled images
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for drawing 29 letters or symbols. We use such datasets to train a

deep learning model as shown in Figure 7. In reality, after a subject

draws a letter or a symbol, we also use the above dimension reduc-

tion method to obtain a 2D image Img[96][96]. Feeding it into the

trained model, we can achieve the gesture recognition result.

3.4 Human Identity Recognition

After identifying that a subject just finished the drawing action,

we need to know the identity of this subject, e.g., which worker

reported the quality issue of a component via performing gestural

interactions in a factory. We take out an arbitrary set of camera

data from the effective camera data array ED[]. A straightforward

solution is to extract the RGB figure and apply the existing face

recognitionmethods [21] to recognize the human identity. However,

this method does not work well in multi-subject scenarios, because

the RGB image may contain not only target subject’s facial infor-

mation but also the irrelevant subjects’, and we cannot distinguish

which facial information corresponds to the target subject.

Next, we propose a solution to extract the facial image of the

target subject from the large RGB image. As illustrated in Figure 8,

with the camera data of the target subject, we can get the locations

of the subject’s three key joint points, which include left shoulder,

right shoulder and nose. Psl , Psr , Pn are used to denote these three

locations, respectively. Then, we find the symmetric point P ′
sl
to Psl

with respect to Pn . Also, we calculate the symmetric point P
′
sr to

Psr with respect to Pn . Using the alignment functions provided by
Azure Kinect DK, we can easily get the four points corresponding to

Psl , P
′
sl
, Psr , and P

′
sr , which form a quadrilateral in the RGB image

and should contain the facial information of target subject. Then,

we extract the quadrilateral image from the large RGB image and

feed it to the face recognition algorithm [21]. As a result, we can

get which facial image in database best matches the target subject’s

and the corresponding confidence level. To have a more reliable

identity recognition result, we also repeat the above process on

the other sets of effective camera data. Multiple human identity

recognition results will be obtained. Among them, the recognition

result with the maximum confidence level will be reported.

Note that, facial recognition does not need to execute continu-

ously. For example, if a subject just passes by RF-Camera, it does

not need to trigger facial recognition at all. Actually, only when a

subject is detected to successfully perform a gesture in the air, RF-

Camera needs to trigger the face recognition function for him/her.

3.5 Human-object Matching

When a subject draws in the air with a tagged object in hand,

the phase data received from the held tag will change because the

distance between tag and reader antenna continuously changes over

time. Besides the tag in the target subject’s hand, the other tags’

phase data may also change due to two reasons. First, the changed

multipath effects caused by human movements may affect the tags’

phase data even if these tags are not moved at all. Second, the phase

data of the tags that are held by the other subjects will obviously

change. A challenging issue is how to leverage the changes of tag

phase data to distinguish which tag is actually held by target subject.

Intuitively, our solution is to use the hand trajectory in 3D space

to predict how the phase data of held tag will change. Then, we

compare the predicted tag phase data with the real phase data of

each tag, thereby recognizing which tag is held by the target subject.

The detailed steps will be presented as follows.

As explained in Section 3.3, we can use the effective camera

data array ED[] to obtain the hand-moving trajectory in 3D space:

(X′[1],Y′[1],Z′[1]), · · ·, (X′[λ],Y′[λ],Z′[λ]). However, as illus-
trated in Figure 9, we cannot simply treat the trajectory of hand

as that of the held tag due to the position offset between hand and

tag. We make an empirical assumption that the vector �V = (a,b, c)
from hand location (Lh ) to tag location (Lt ) keeps relatively stable
during the drawing process. For ease of understanding, we consider

a dynamic coordinate system originating from the hand point. As

illustrated in Figure 10, its three axes are parallel to those of the

universal coordinate system, respectively. We use α ∈ [0, 180◦]

to denote the angle between �V and y′−axis; use β ∈ [0, 360◦] to

denote the angle between projection line of �V on x ′O ′z′ plane and

the x ′−axis; use d to denote the length of �V . Hence, the vector �V
can be represented by α , β , d as follows.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a = d · sin(α) · cos(β)

b = d · cos(α)

c = d · sin(α) · sin(β)

By adding the vector �V to each position of hand-moving tra-

jectory, we can get the tag-moving trajectory (X[1] + a,Y[1] +

b,Z[1] + c), · · ·, (X[λ] + a,Y[λ] + b,Z[λ] + c). Then, given the

reader antenna location (xr ,yr , zr ), we can calculate a sequence
of tag-antenna distances: d1,d2, · · ·,dλ , where di is the distance
between the moving tag in hand and reader antenna at the i-th time
points. The expression of tag-antenna distance di is as follows.

di =
√
(X[i] + a − xr )2+(Y[i] + b − yr )2+(Z[i] + c − zr )2

Next, having tag-antenna distance di , we can leverage phase equa-
tion in Section 2.2 to predict the phase of the target tag id∗ held by
the subject as follows.

P̂(id∗)[i] =

[
2 × di
λ

× 2π + θ (r ) + θ (id∗)

]
mod 2π

Actually, the hardware diversity of reader antenna and tag id∗, i.e.,
θ (r ) and θ (id∗), are unknown by us. Hence, we directly set θ (r ) = 0
and θ (id∗) = 0 when calculating the theoretical phase data.
On the other hand, we extract the real phase data of each tag

received by the reader within the effective time period. For tag idi ,
we use the array P(idi )[..] to store its sequential phase data. It is
easy to understand that the predicted phase array should match

that of the tag in hand best. However, we observe that the predicted

phase array or the real phase arrays usually have some sudden

jumps caused by the mod operation, which make it difficult to com-

pare them. Hence, we use the Unwrap algorithm [22] to process the

phase arrays by adding multiples of ±2π to a phase point if the

difference between it and the previous phase point is greater than

or equal to the tolerance ofψ radians.

After the above unwrapping operation, we use P̂ ′(id∗)[..] to
represent the unwrapped theoretical phase array, and useP′(idi )[..]
to represent the unwrapped phase array of tag idi . Note that, the
hardware diversity θ (r ) and θ (id∗) will inevitably cause a constant

offset between P̂ ′(id∗)[..] and P′(idi )[..]. To address this issue, we
perform a normalization operation on them, and get the normalized
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Figure 7: Illustrating the deep learning model for human gesture recognition.

Figure 8: Illustrating the process of facial image extraction

and human identity recognition.
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Figure 9: Illustrating the hand-tag offset.

Figure 10: Quantifying the hand-tag offset.

phase curves | |P̂ ′(id∗)[..]| | and | |P′(idi )[..]| |. Intuitively, if tag idi
is the one in hand, the changing trend of | |P̂ ′(id∗)[..]| | should best
match that of | |P′(idi )[..]| |. That is, their Euclidean distance should
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Figure 11: Exemplifying the effectiveness of the proposed

human-object matching method.

be the minimum among all tags. Hence, for each tag candidate idi ,

i ∈ [1,n], we calculate the Euclidean distance between | |P̂ ′(id∗)[..]| |
and | |P′(idi )[..]| | using DTW algorithm [15]. In fact, we do not

know the ground truth values of α ∈ [0, 180◦], β ∈ [0, 360◦], and

d . Hence, we enumerate all possible cases to find out the smallest
Euclidean distance for each tag idi as follows.

D(idi ) = min
α,β,d

DTW (P̂ ′(id∗)[..],P
′(idi )[..]), (1)

where the range of d depends on the size of tagged object and is
supposed to be within [0cm, 80cm] in this paper. We enumerate

values of d with a step of 1cm, and values of α as well as β with a
step of 5◦. Then, we can find which tag has the smallest Euclidean

distance, and assert corresponding tag is the one held by the subject.

We conduct a set of experiments using four RFID tags. Tag id2 was
held by target subject to draw letter “d” in the air. Tags id1 and
id3 were held by two other volunteers to draw letter “d” in the air,

respectively. Tag id4 is just statically placed in the environment. We

observe from Figure 11 that the unwrapped phase data of tag id2 has
the smallest Euclidean distance to the unwrapped theoretical phase

data of the target subject. That is, we can successfully recognize

the human-object matching in this example.
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4 DISCUSSION ON PRACTICAL ISSUES

4.1 Active Tags vs. Passive Tags

Generally, there are two types of RFID tags: active tags that have

internal batteries and passive tags that can harvest energy from

the radio waves of reader. Compared with passive tags, active tags

normally have longer communication ranges. However, we need to

replace/recharge their batteries when energy runs out. It consumes

lots of manpower, especially for large-scale RFID systems. On the

other hand, passive tags are usually as thin as a paper, while active

tags cannot be. Hence, passive tags are much easier to attach on

objects than active tags in practice. Furthermore, passive tags are

usually much cheaper than active tags. This paper prefers to use

passive tags because of the above attractive properties.

4.2 Energy Saving Concerns

For long-term monitoring applications, energy saving is important

for environmental or economic reasons. In what follows, we pro-

pose a simple way to reduce the energy consumption to some extent.

As aforementioned, at the very beginning, when no subject is in

the monitoring region, the RFID reader can read tags in a low duty

cycle mode for saving energy on the RFID reader side. Moreover,

the Kinect device can be initially configured at the sleeping status.

When a subject enters the monitoring region, phase data of some

tags will change due to multipath effects, which can be seen as a

signal to wake the Kinect cameras. Using this method, the energy

consumption of RF-Camera can be further reduced to some extent.

4.3 Scale to Large Monitoring Regions

In a large monitoring region, there may be a large number of tags,

multiple readers and Kinect cameras. As aforementioned, a large

number of tags share the same narrow channel, which will seriously

lower down the tag reading rates. The CV-assisted RFID scheduling

mechanism proposed in this paper can be applied to ensure high

reading rates of target tags that the subjects concern. On the other

hand, due to limited RFID communication range, we usually need

to deploy multiple readers with overlapping to seamlessly cover

the whole monitoring region. A challenging issue is that adjacent

readers will interfere with each other. Fortunately, some works

[23–25] have been proposed to optimize reader deployment and

alleviate reader-collisions. As for deployment of multiple Kinect

cameras, we can of course know the location and radiation direction

of each of them in advance. For a subject, we can naturally know

his/her relative location and orientation with respect to the Kinect

cameras. It is not difficult to fuse the data captured by multiple

Kinect cameras such that subjects are likely to be tracked by a

single super Kinect camera that has enough monitoring range.

5 PERFORMANCE EVALUATION

In this section, we conduct experiments to evaluate the perfor-

mance of the proposed RF-Camera system. We first present the

implementation of the system. Then, we use three metrics, i.e., ges-

ture recognition accuracy, human identity recognition accuracy,

and human-object matching accuracy to evaluate the performance

of the proposed RF-Camera system under different conditions. Our

evaluation will investigate the impact of various factors including

the number of subjects, distance between subject and RF-Camera

Figure 12: Showing devices used in system implementation.

system, hand-tag offset, diversity of human habits, RFID transmis-

sion power, and gesture similarity.

5.1 Experimental Settings

As shown in Figure 12, the hardware components of RF-Camera

include an Impinj Speedway R420 reader, a Laird S9028PCR reader

antenna, E41C Impinj tags, an Azure Kinect, and a backend server.

The total cost of RF-Camera is about $3, 000 (Impinj reader: $1, 500;

Antenna: $123.51; Tag: $0.07; Azure Kinect: $460; Backend server:

$972.61). The cost can be significantly reduced, if the devices can

be customized by deleting unnecessary functions. As for the soft-

ware parts, we implement RF-Camera’s main system architecture

using the WPF framework on the backend server. It also integrates

some key software components including Octane SDK 3.0.0 pro-

vided by Impinj [26] for controlling RFID reader to read tags, Azure

Kinect SDK [14] for continuously capturing the subject skeleton and

RGB images, Seetaface model [21] for recognizing human identity

via facial images, and our proposed algorithms as well as models.

The RFID reader is able to probe tags using one of sixteen chan-

nels within bandwidth 920MHz∼925MHz, and with a transmission
power ranging from 10dBm∼32.5dBm. We use the channel with a

frequency of 920.625MHz, and the reader transmission power is
configured to 32.5dBm by default. We deploy the RF-Camera system

in a relatively clear laboratory environment, with 50 E41C Impinj

tags randomly placed in front of it. We have 100 facial images in the

backend server’s database. Six volunteers are hired to participate

in the following experiments. The facial images of these volunteers

are of course in the facial image database. The volunteers stand one

meter away from RF-Camera by default.

5.2 Impact of Subject Number

The number of subjects coexisting in monitoring area may affect

the performance of RF-Camera system. Hence, we investigate its

impact by varying the number of subjects from 1 to 4 in this set of

experiments. In terms of gesture recognition accuracy, confusion

matrix in Figure 13 (a) reveals that gesture recognition accuracy

corresponding to 19 letters/symbols is higher than 90% and gesture

recognition accuracy corresponding to 3 letters/symbols is higher

than 95%. Some letters/symbols, e.g., ‘g’ vs. ‘s’ and ‘t’ vs. ‘e’, are very

similar, hence, the gesture recognition accuracy corresponding to

them is a bit lower than 90%. We observe from Figure 13(b) that

the average gesture recognition accuracy of single-subject case is

nearly 100% and that of three-subject case is 88%. On the other

304



ACM MobiCom’ 21, January 31-February 4, 2022, New Orleans, LA, USA

hand, results in Figure 13(c) reveal that human identity recognition

accuracy when one or two subjects coexist in the system is higher

than 95%. For the cases of 3 or 4 subjects, the accuracy decreases

slightly but is still higher than 80%. As to human-object matching

accuracy, we plot experimental results in Figure 13(d). The accuracy

of the single-subject case is as high as 99%, and that of three-subject

case is still 81%. However, due to interferences, the accuracy seri-

ously reduces to 60% when 4 subjects are involved. An observation

from Figure 13(b)(c)(d) is that the recognition/matching accuracy

generally decreases with respect to the number of involved subjects.

5.3 Impact of Subject-system Distance

The distance between subjects and the RF-Camera system affects

the granularity of the captured camera data as well as the RFID data,

which may further affect the system performance. Hence, we vary

the subject-system distance from 1m to 2.5m when conducting ex-

periments to evaluate the performance of RF-Camera. Figure 14(a)

reveals that the gesture recognition accuracy of drawing the 29

letters/symbols is always higher than 90%, and that of drawing 27

letters/symbols is higher than 95%. Figure 14(b) reveals that the

average gesture recognition accuracy decreases from 97% to 95% as

the subject-system distance increases from 1m to 2.5m. The experi-
mental results shown in Figure 14(c) reveal that the human identity

recognition accuracy corresponding to 1m, 1.5m, and 2m keeps 96%.

However, the accuracy decreases to 93% when the subject-system

distance increases to 2.5m. The underlying reason is that the RFID
and camera raw data will be relatively unreliable for a long subject-

system distance. Finally, Figure 14(d) reveals that the human-object

matching accuracy is always higher than 94% as the subject-system

distance ranges from 1m to 2.5m.

5.4 Impact of Hand-tag Offset

In previous set of experiments, we let the subjects take a very small

tagged object, i.e., the offset between hand and tag can be seen

as zero. In practice, the tagged object may be as large as tens of

centimeters. The offset between hand and tag may affect the perfor-

mance of RF-Camera system. Hence, in this set of experiments, we

mainly investigate its impact by varying the hand-tag offset from

10cm to 40cm. Note that, this paper does not consider the extreme
case that the tagged object is too heavy to take. Figure 15(a) reveals

that the gesture recognition accuracy of drawing 26 out of 29 let-

ters/symbols is higher than 90%, and that of drawing 21 out of 29

letters/symbols is higher than 95%. Figure 15(b) reveals that the ges-

ture recognition accuracy generally decreases with the increase of

the hand-tag offset. The experimental results in Figure 15(c) reveal

that the human identity recognition accuracy generally decreases

from 96% to 93% as the hand-tag offset increases from 10cm to 40cm.

As to the human-object matching accuracy, Figure 15(d) demon-

strates that the increase of hand-tag offset also generally results in

the accuracy reduction.

5.5 Impact of Human Habit Diversity

The RF-Camera system may perform differently for different sub-

jects, hence, we recruit six volunteers to evaluate its performance.

Among them, subject S1 is well trained and very familiar with the

RF-Camera system. On the contrary, S2∼S6 are the first time to

use the system. Figure 16(a) indicates that six subjects perform

differently for drawing 29 letters/symbols. For example, the gesture

recognition accuracy of S2 when drawing ‘g’ is higher than 95%,

while that of P6 when drawing the same letter is even below 80%.

The experimental results in Figure 16(b) demonstrate that the av-

erage gesture recognition accuracy of each subject is higher than

95%. We observe from the experimental results in Figure 16(c) that

the human identity recognition accuracy ranges from 90% to 100%.

Some subjects, e.g., S2 and S4, have an accuracy of 100%, while

some subjects, e.g., S5, just have an accuracy of 92%. Finally, in

terms of human-object matching accuracy, Figure 16(d) indicates

that each subject has a probability higher than 95% to correctly

recognize the held tagged object.

5.6 Impact of RFID Transmission Power

In this set of experiments, we vary the transmission power of RFID

reader from 15dBm to 32.5dBm to investigate its impact on the

performance of the RF-Camera system. We observe from the ex-

perimental results in Figure 17 that transmission power of RFID

reader has no interference to the accuracy of gesture recognition

and human identify recognition. The underlying reason is that ges-

ture recognition and human identify recognition do not relay on

RFID data at all. On the contrary, as the increase of transmission

power, human-object matching accuracy also increases. When the

transmission power of RFID reader is less than 17.5dBm, the tags
cannot be activated sometimes, hence, the human-object match-

ing accuracy is very low. When transmission power increases to

22.5dBm, human-object matching accuracy keeps higher than 95%,
because tags can be successfully activated and read at high rates.

5.7 Impact of Gesture Similarity

In the above, the experimental results in confusion matrices have

shown that the gesture of drawing a letter/symbol may be incor-

rectly recognized as that of drawing a similar letter/symbol. In

this set of experiments, we investigate the system performance

if two subjects simultaneously draw similar or even the same let-

ter/symbol in front of RF-Camera. Since the human identity recog-

nition and gesture recognition will not be affected, we only evaluate

the human-object matching accuracy of RF-Camera. We divide the

letters/symbols into three categories: same gesture, similar ges-

tures (as aforementioned, e.g., ‘g’ vs. ‘s’ and ‘t’ vs. ‘e’) and dissimilar

gestures (e.g., ‘w’ vs. ‘z’). The experimental results shown in Fig-

ure 18 reveal that, if two subjects simultaneously draw the same

letter/symbol, the human-object matching accuracy is a little lower

than that of the other two cases, but is still as high as 93.3%.

6 RELATEDWORK

Extensive emerging techniques such as computer vision, WiFi, au-

dio and RFID have been investigated to recognize human-object

interaction or address similar problems. In this section, we will

discuss the related works in each category.

Computer vision-based approach: In the early stage, vision

data captured from cameras are commonly used to address the

problem of human gesture recognition. Molchanov et al. [3] pro-

posed a recurrent three-dimensional convolutional neural network

to simultaneously detect and classify dynamic hand gestures from

multi-modal data. The FOANet system proposed in [4] uses multi-

channel deep learning method to realize hand gesture recognition.

In this system, the spatial channels are focused on the hand and
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Figure 13: Investigating the impact of subject number on the performance of RF-Camera.
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Figure 14: Investigating the impact of distance between subject and system on the performance of RF-Camera.
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Figure 15: Investigating the impact of offset between hand and tag on the performance of RF-Camera.
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Figure 16: Investigating the impact of human habit diversity on the performance of RF-Camera.
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the channels are fused using a sparse network, thereby improv-

ing the gesture recognition accuracy. In [5], the authors proposed

a neural network based on SPD manifold learning to enable the

skeleton-based hand gesture recognition. Generally, CV-based so-

lutions cannot distinguish similar objects, which usually appear

in practice, e.g., the same brand of items in a supermarket, and

the same category of components in a factory. A straightforward

solution is to attach a unique barcode on an object, thereby individ-

ually tracking it via CV methods. However, it cannot work in the

non-line-of-sight (NLOS) conditions. Specifically, if the barcode is
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occluded by user fingers or even the object is in a bag, CV methods

can no longer track the object.

Audio-based approach: In [6], Ruan et al. proposed Audio-

Gest, using a pair of built-in speaker and microphone on a laptop

computer, to recognize hand gestures in a non-intrusive manner.

In AudioGest, the noisy reflected sound signal and the Doppler

frequency shifts are taken into consideration, and it quantitively

discovers the relationship between hand gestures and the echo

spectrogram. Wang et al. [27] proposed LLAP, a device-free gesture

tracking scheme. LLAP can get fine-grained movement direction

and distance by analysing the acoustic phase, which is accessible in

commercial-off-the-shelf mobile phones. FingerIO [28] gets the the

finger location by tracking arrival time of the echo from the finger

at multiple microphones, and it utilizes Orthogonal Frequency Divi-

sion Multiplexing (OFDM) to improve the accuracy. Wang et al. [7]

proposed a robust contact-free gesture recognition system called

RobuCIR, which is based on the acoustic signals transmitted by

the smartphone. The frequency-hopping mechanism and data aug-

mentation techniques were used to achieve better robustness and

accuracy. GestEar [29] classifies sound-emitting gestures based

on motion and audio together, and designs a lightweight neural

network on resource-constrained device. AudioTouch [30] is min-

imally invasive micro-gesture sensing system, which attach two

piezo-electric microphones on the back of the hand. AudioTouch

can detect micro-gestures only with small differences among var-

ious finger gestures. However, the acoustic gesture recognition

methods have a common limitation that they cannot work well for

large-scale application scenarios due to serious signal attenuation.

WiFi-based approach: WiSee [8] leverages the doppler shift

in narrow bands, which is extracted from wideband OFDM trans-

missions, to recognize the human gestures. Nandakumar et al. [31]

proposed CARM, a CSI based human activity recognition and moni-

toring system consisting of CSI-speedmodel and CSI-activitymodel,

which quantitatively describes the relationship between the CSI and

the human activity. WiFinger [32] takes advantage of the detailed

WiFi CSI for finger gesture recognition, and achieves outstanding

recognition accuracy on commercial devices. WiHF can capture

the personalized motion change pattern caused by arm gestures,

which keeps consistent across domains. The WiFi-based solutions

can recognize the human gestures and even identify the human

identity. However, they cannot identify the individual objects in

hand when a subject takes an object and draws in the air.

RFID-based approach: GRfid [33] utilizes the phase changing

caused by gesture performance, and compares the phase profiles

with pre-trained gesture profiles using a weighted voting scheme

to decide the final result. ShopMiner [11] uses the spatial-temporal

correlations of time-series phase readings to detect some coarse-

grained shopping behaviors, e.g., picking out, or turning over de-

sired items. Pantomine [12] enable the fine-grained gesture recog-

nition only using a single reader. However, it requires deploying

multiple tags on each object, which significantly increases the cost.

RF-finger [13] leverages a tag array on a letter-size paper to sense

the fine-grained finger movements performed in front of the pa-

per. It can recover the moving trace of finger writings and identify

the multi-touch gestures involving multiple fingers. In [34], Wang

et al. leveraged a spinning linearly polarized antenna to track the

3D motion of a specified object attached with the passive RFID

tag array. However, all above RFID-based solutions only focus on

recognition of human gestures but fail in recognizing the identity

of the target subject. Moreover, the methods in [11, 13, 34] cannot

work in tag-dense application scenarios, because the limited RFID

channel is shared by massive tags and sparse data of target tag

can be collected. In [12], a Select command-based method was

proposed to block the replies of normal tags, thereby increasing the

reading rate of target tags. However, as aforementioned, it cannot

support simultaneous recognition of multiple subjects.

Multi-modal fusion approach: In recent years, multi-modal

fusion systems were proposed to enable similar smart sensing appli-

cations.Wang et al. [35] presented an RF-Focus systemwhich jointly

uses RFID and computer vision devices and focuses on the recogni-

tion and localization of tagged boxes on the conveyor. Clearly, the

studied problem is quite different from this paper. Wu et al. [36]

proposed an interesting method also combining RFID and computer

vision, which uses object detection and dynamic Bayesian networks

to infer objects and activities. It is a passive detection, which cannot

meet the needs of the user to actively interact with objects. More-

over, it requires the user to wear a bracelet (RFID reader), which is

typically an intrusive solution and user-unfriendly. Liu et al. [37]

designed a DEEM system, which also jointly uses CV and RFID

techniques, to evaluate fitness effectiveness, as well as identifying

the users and the held apparatus. However, DEEM cannot recognize

the detailed gestural actions and does not consider the technical

challenges addressed in this paper, e.g., low reading rates of tar-

get tags and unknown hand-tag offset. RF-Grasp [38] is a robotic

system that can grasp occluded objects in unknown and unstruc-

tured environments. It first establishes a visual 3D model of the

surrounding environments, and then locates the tagged object via

RFID technology. After integrating the tagged object’s location into

the 3D environmental model, the robotic arm can grasp the tagged

object even when it is hidden behind some obstacles.

7 CONCLUSION

This paper proposed the RF-Camera system, which is the first work

that can simultaneously recognize who takes which object to do

what gestures in the air. RF-Camera jointly leverages RFID and CV

techniques, and these two techniques benefit each other, thereby

gaining some new significant improvements. Three major technical

challenges were addressed. First, we proposed a state transition

diagram to determine the boundary of effective data, thereby re-

moving the noisy sensing data caused by irrelevant gestural actions.

Second, under the challenging condition of unknown hand-tag off-

set, we quantified the tag trajectory by adding a varying vector

to the hand trajectory and leveraged the tag-antenna distance to

predict the virtual phase data of the held tag. Third, we proposed a

CV-assisted RFID scheduling method to achieve high reading rates

of target tags even in tag-dense scenarios. Experimental results re-

veal that RF-Camera can recognize gestural actions, human identity

and human-object matching with an accuracy higher than 90% in

most cases, respectively. RF-Camera has potential to be applied in

various human-object interaction scenarios.
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