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HeartPrint: Exploring a Heartbeat-Based Multiuser
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Abstract—Continuous authentication is crucial for protecting
user’s privacy throughout their login session. Existing studies
employ wireless sensing technologies to provide device-free and
unobtrusive authentication; the user’s behavior is continually
assessed without their direct involvement until it deviates from
their normal pattern. However, these works primarily concen-
trate on single-user authentication, which poses challenges in
multiuser scenarios, such as smart homes and offices, where
more than one user usually exists. In this article, we pro-
pose HeartPrint, a continuous multiuser authentication system,
that employs a single commodity mmWave radar to capture
the unique self-driving heartbeat motions from multiple users.
Specifically, HeartPrint leverages the effect of skin surface vibra-
tions caused by heartbeat on radio frequency (RF) transmissions.
To profile individual heartbeat signals from the entangled compo-
nents that are induced by multiple users, we first use a clustering
method to position each user in the environment, then focus on
the signal reflected from each position separately. The irrelevant
body movements are eliminated from the RF signal by using a
proposed signal energy comparison method for preserving fine-
grained heartbeat traits. We then develop a pipeline to extract
the most informative features for characterizing each user and
feed them to an elaborated classifier for user authentication.
We evaluate HeartPrint with 54 participants and demonstrate
that it achieves an average authentication accuracy of over 95%.
Additionally, we show that it is resilient against spoofing attacks,
with an average attack success rate of less than 3%.

Index Terms—Heartbeat-based biometrics, mmWave sensing,
multiuser authentication.

I. INTRODUCTION

W ITH the forthcoming boom in Internet of Things
(IoT) rich settings, everyday ordinary applications,

such as access control, autonomous surveillance, and cus-
tomized services, are implanted with sensing and control
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capabilities. It becomes even more critical to ensure that
authentication procedures to such services remain secure and
user-friendly. User authentication systems have evolved from
“things you know” (e.g., passwords and graphical patterns) or
“things you have” (e.g., software tokens and smart cards) to
“things you are” (e.g., fingerprints and voice). Considering the
cases that password is vulnerable to leakage and security pos-
session is often forgotten to take or lost by people, biometric-
based authentication brings a trouble-free and reliable way for
users to access application services. Most biometric identifiers,
such as fingerprint, facial appearance, and voice, nevertheless,
are susceptible to be subverted by spoofing attacks [1], [2],
[3]. The crucial weakness in these mechanisms is that they just
provide a one-time confirmation for service login. As a result,
new modalities that enable continuous user authentication are
urgently needed.

To this end, solutions that leverage dynamic behavioral
biometrics, such as eye movements [4], [5], [6], hand ges-
tures [7], and keystroke dynamics [8], [9], are proposed for
continuous authentication. However, they all require user’s
active interaction with the authentication system, which is
labor-intensive and cumbersome. For example, eye movement-
based methods require the user to incessantly look at the
display and follow the visual stimuli on it. Recent studies have
used intrinsic physiological biometrics, such as heartbeat and
breathing, to eliminate the requirement for users to actively
engage in the authentication process and allow systems to
authenticate users at all times during the login session. For
instance, Liu et al. [10] and Lin et al. [11] used channel
state information (CSI) of WiFi signals and Doppler radar to
discern user’s breathing and heartbeat motions for continu-
ous authentication, respectively. While they offer the benefit
of removing users from active authentication and requiring
no user interaction, the primary constraint is that they can
only verify single users, which precludes their wider usage in
multiuser environments (e.g., smart homes and offices).

Efforts are being made to expand the current applica-
tions to multiuser settings. For example, MultiAuth [12] and
WiWho [13] reuse WiFi signals to sense the user’s daily activi-
ties and walking gaits for multiuser identification, respectively.
However, before deploying these solutions in the real world,
several limitations need to be reconsidered.

1) The performance of these systems is less than sat-
isfactory compared to the state-of-the-art works (see
Table III), e.g., the authentication accuracy for three
users is around 85%–90%. This is because the operating
frequency of the WiFi signal is fixed and the reflected
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signals from multiple users are inextricably mingled
in both time and frequency domains, it is difficult to
separate the multiple components precisely.

2) They require at least a separation of 0.8–1 m between
users during authentication, which obviates the situa-
tions when people are next to each other such as couples
sharing the same bed or passengers sitting shoulder to
shoulder in the rear seat.

3) They are still confronted with requiring users to per-
form proactive interactions with the system, i.e., com-
plete the predefined actions or keep walking during
authentication.

Research Focuses: Based on the above investigations, we
intend to design a feasible mechanism to mitigate the present
shortcomings. In this article, we introduce HeartPrint, a non-
contact and passive continuous user authentication system
that can verify multiple users simultaneously by sensing their
heartbeat motions via a single mmWave radar. Specifically, we
have the following considerations.

1) Comparable Authentication Accuracy: Existing radio
frequency (RF)-based multiuser authentication solutions
leave an unimpressive accuracy, which is mostly due to
the fixed signal frequency used. To improve it, we adopt
frequency-modulated mmWave to precisely distinguish
different users, thereby providing accurate authentica-
tion for multiple users which is comparable to the
state-of-the-art works.

2) No Separation Distance Requirement: Previous studies
typically require about 1-m distance between users as
to separate signals from one to another. By leveraging
mmWave’s high range resolution property, our system
can still work effectively even when individuals are in
close proximity to one another. This capacity may reduce
deployment costs since more people can be detected per
unit of area.

3) Effortless and Secure: It is expected that no proactive
user engagement is needed during the authentication
process. The anticipation is in keeping with the design
goal of a smart environment, where more functionalities
are performed by the infrastructure itself, rather than
depending on people. Since heartbeat activity is nat-
urally occurring and involuntary, HeartPrint does not
need any physical efforts from users. Besides, com-
pared with the traditional biometrics (e.g., voice and
gait), heartbeats are more difficult to be counterfeited
for spoofing attacks.

Technical Challenges: Achieving the proposed system
requires us to overcome several challenges.

1) RF reflections from different users pile up and interfere
over the wireless channel, the interference becomes
intense as users come close by. To isolate signals reflected
off different users who are close to each other, we employ
a clustering method to find the users and concentrate on
each of them separately. Note that the mmWave radar
we deploy is able to detect multiple targets which are
at least 3.75 cm apart, this means that even if users are
shoulder to shoulder, we can still distinguish the chest
vibrations due to different heartbeats.

2) Heartbeats are subject to body motions, such as hand and
limb movements that would overpower the minor skin
vibrations produced by heartbeats. To eliminate such
interference on heartbeat signals, we calculate the sig-
nal energy for a given time interval and use the signal’s
historical average as the threshold to determine those
large-amplitude movements.

3) To effectively verify different users, inherent features
that are capable of representing user-specific heartbeats
are urgently needed. We do this by combining wavelet
packet transform (WPT) and recursive feature elimina-
tion (RFE) techniques to select the most informative
features from the signals. Following that, we train a
machine-learning-based model by using the selected
features to make decisions for users in the environment.

In this work, we show the feasibility of employing heartbeat
biometrics to contentiously and simultaneously verify multiple
users in a noncontact and passive way. The system can be used
in entrance control, access control, and tailgate detection appli-
cations. Smart homes can deploy the system for allowing users
to perform identity-based operations, such as parental control
and online payment. Traditional one-time authentications can
be further extended to enable liveness detection capability with
our system.

In sum, we have the following contributions in this article.
1) We present a continuous authentication system that

can verify multiple users simultaneously with a single
mmWave radar. Our system verifies users in a contact-
less and inconspicuous way by sensing their distinctive
heartbeat motions. This method will be promising in
shifting the current authentication paradigm toward more
leak-proof and convenient.

2) We develop a feature selection pipeline for heartbeat
signals that first uses WPT to decompose the sig-
nal and extracts elaborated statistical features from the
decomposed coefficients, then adopts RFE to select the
most representative features. We show how choosing
the appropriate amount of features to achieve both high
accuracy and low false positive rate.

3) We conduct extensive evaluations with 37 participants in
our experiment. The results demonstrate that our system
is robust to contextual changes and resilient against
spoofing attacks.

II. BACKGROUND AND RATIONALE

In this section, we provide the background on the physiol-
ogy of cardiac activity and the rationale behind authenticating
users by sensing skin vibrations induced by the heartbeat.
We also present the attack scenarios that might potentially
jeopardize our system.

A. Heartbeat-Based Biometrics

Heartbeat motion refers to the pattern of contraction (i.e.,
systole) and relaxation (i.e., diastole) of the heart during
one cardiac cycle [11]. When the heart beats, it circu-
lates blood through systemic circuits of the body. As shown
in Fig. 1(a)–(c), the heartbeat cycle consists of three main
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Fig. 1. Heartbeat motion cycle. (a)–(c) Heartbeat mechanism and (d) corre-
sponding variations captured by mmWave.

phases [14]: 1) atrial and ventricular diastole phase; 2) atrial
systole phase; and 3) ventricular systole phase. In particular,
heart chambers first relax and fill with blood, atria then con-
tract and blood is pumped into ventricles, ventricles finally
contract and push blood out of the heart. Due to the intricate
and diverse physiology of the human body, such as cardiac
volume and muscle strength, the heartbeat cycle phases vary
from person to person. Existing studies have also verified the
uniqueness of heartbeat motions [15], [16]. Besides, since car-
diac movement is inherently associated with the structure and
regulation of the heart, it is difficult to forge the biomet-
rics for conducting spoofing attacks. Therefore, we exploit
the heartbeat motion as a unique biometric factor for user
authentication.

B. Sensing the Heartbeat Motion

In this article, we present a noncontact approach for sens-
ing heartbeat motion by a mmWave radar. The basic principle
behind it is to detect fluctuations in skin surface vibration
caused by heartbeat activities. Specifically, the mmWave sen-
sor emits frequency-modulated continuous wave (FMCW)
toward the user, the reflected signals are then regulated by
skin vibrations due to heartbeat and received by the sensor.

In our context, we utilize the intrinsic ranging capability
of FMCW and massive MIMO of the radar to isolate multiple
users in the environment. For each user, we calculate the phase
changes of the reflected signals to measure the small-scale
body surface movements produced by the heartbeat. When it
vibrates a distance δd, the phase change δφ between sequential
measurements is calculated as [17]

δφ = 4π

λ
δd (1)

where λ is the wavelength of transmitted FMCW. It is observed
from (1) that a shorter wavelength of the emitted wave gives
rise to a higher displacement resolution for the same phase
change. As a result, we implement 77-GHz high-frequency
mmWave with the wavelength of around 4 mm to achieve a
displacement resolution of about 1 mm, which is capable of
sensing the minute skin vibrations. As shown in Fig. 1(d),

Fig. 2. Comparison of heartbeat signals captured by the mmWave radar.
(a) User A’s heartbeat signal. (b) User B’s heartbeat signal.

the heartbeat variations are captured and identified using the
configured mmWave radar.

C. Individual Difference in Heartbeat Motion

Due to the differences in the human physiological struc-
ture, heartbeat signals might perform distinct patterns among
individuals. Although several existing studies have revealed
the feasibility of using mmWave radar to estimate heart rate
[18], [19], [20], they do not focus on distinguishing the minor
differences in users’ heartbeat motions. To validate whether
it is possible to detect the subtle differences between indi-
viduals with mmWave radar, we recruit two participants to
conduct an investigation. They are asked to sit facing the radar
at a distance of 2 m and stay motionless. Fig. 2 shows their
heartbeat motion samples. By analyzing the signals, we have
the following two observations that bring the feasibility of
using mmWave to capture heartbeat motions for user authenti-
cation: 1) different users have distinct signals in terms of cycle
patterns, such as amplitude and width between peaks/troughs
and 2) the heartbeat patterns from the same user are rela-
tively stable for consecutive cycles. These motivate us to use
high-resolution mmWave to identify the user-specific heartbeat
motions for authenticating different users.

D. Threat Model

We consider an adversary explores the existing literature for
social engineering attacks [21], [22] to breach the security of
HeartPrint. In spite of the fact that heartbeat motion is more
complicated and intrinsically difficult to be counterfeited than
traditional biometric modalities (e.g., fingerprint and face), we
take into account of the following spoofing attack scenarios to
confirm its resilience. We do not consider the typical imitation
attack in this study since heartbeat is a spontaneous activ-
ity that cannot be controlled or imitated [23]. Besides, we
assume that the user’s biometric template is secure; the secu-
rity risks associated with the disclosure of biometric templates
are beyond the scope of this article.

1) Arbitrary Attack: We assume that an adversary might
know that heartbeat cycle trends captured by mmWave are sim-
ilar between users (i.e., they have two peaks and two troughs
in one cycle, as shown in Fig. 2). To subvert the system, the
adversary remains in the same place as the authorized users
do, attempting to use the random heartbeat events to generate
the same impacts and pass through the system.

2) Signal Replay Attack: We assume that an adversary
1) knows the basic rationale of HeartPrint that uses mmWave
to sense the skin vibration and 2) is able to tamper the internal
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Fig. 3. System overview of HeartPrint. In enrollment workflow, users register their identities and the system generates a trained classifier accordingly; in
authentication workflow, the trained classifier compares the input profiles derived by the user’s heartbeat signal with the stored ones to determine legitimate
users against spoofs.

communication of the system. To conduct the attack, the adver-
sary places a mmWave radar in an inconspicuous place to
surreptitiously record the authorized user’s skin-reflected sig-
nals. Then, the adversary injects the prerecorded signals to the
system in the hope of spoofing HeartPrint.

III. SYSTEM OVERVIEW

The basic concept behind HeartPrint is to analyze the
unique features of the captured heartbeat signals to enable
continuous authentication for multiple users in complex envi-
ronments. Fig. 3 depicts the workflow of HeartPrint, it gathers
reflected signals from mmWave radar as input and gener-
ates authentication results as output. Specifically, the system
consists of the following three modules.

A. Signal Preprocessing

Since the reflected RF signals captured by the radar include
both signals that bounce off the users and background clutters
such as reflections from walls and furniture, our system first
suppresses multipath interference and separates the reflected
signals from users in the environment. After isolating reflec-
tions for each user, it continues by analyzing the isolated
reflections to identify heartbeat signals. Next, to apprehend the
essential biometric details in a complete heartbeat cycle, we
divide the time-series heartbeat signal into segments according
to the cycle pattern (i.e., up-down-up-down trend). Finally, to
procure representative features for heartbeat motion that can
determine different users, we employ the WPT method to facil-
itate feature analysis by breaking the segment into a number of
elementary waveforms and extracting corresponding features
from them.

B. User Identity Modeling

Afterward, HeartPrint marks and stores the extracted fea-
tures for use in building the authentication model. Considering
that task-aware features might improve both model inter-
pretability and classification accuracy, we further perform
feature selection based on RFE by concluding a subset of
features that offer more identifiable information rooted in

heartbeat motions. The selected features are subsequently used
to train a machine-learning-based matching model for user
authentication. Because heartbeat rhythms may alter signifi-
cantly in response to moods and exercises, HeartPrint also
allows model updating to account for these variations.

C. Pattern Matching

During authentication, the matching model compares the
new incoming heartbeat signal with the stored user biomet-
ric templates in order to determine if the user has been
authenticated or whether an attack has been detected.

IV. SIGNAL PREPROCESSING

As the user’s heart beats, the distance from the radar to the
skin surface of the human body changes slightly and regularly.
HeartPrint estimates the heartbeat patterns by exploiting this
phenomenon and extracts corresponding features to identify
different users. To capture fine-grained heartbeat signals, we
implement the following procedures.

A. Clutter Suppression and Signal Separation

As depicted in Fig. 4(a), we take a typical household sce-
nario as an example to explain HeartPrint’s operation. The
device is placed in the corner of the room, where it has
several users, appliances, and furniture. When the system is
working, the RF signals bounce off the users, the wall, and
the furniture before returning to the system. The major chal-
lenge in this step is to identify the user’s reflections from
the captured signals. Rather than calculating the energy loss
of reflected signals [20], we present a computation-efficient
method that exploits the inherent characteristic of mmWave,
i.e., it is able to distinguish RX chirps reflected from different
objects. For better understanding of the measurement, readers
are suggested to refer to [24], [25], and [26]. Here, we just
summarize the fundamental principles for object detection as
follows.

When the radar detects an object at a distance of d1, it
combines the TX and the corresponding RX chirps [i.e., the
green dashed line in Fig. 4(b)] to produce an intermediate
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Fig. 4. Illustration of signal separation for multiple users. (a) Scenario illustration. (b) Received chirps. (c) Location measurement. (d) User clustering.
(e) Signal separation.

frequency (IF) signal, which is expressed as

SIF(t) = A sin(2π f1t + φ1) (2)

where A, f1, and φ1 are the amplitude, frequency, and phase
of the IF signal, respectively. Given the slope of the chirp S,
f1 can be calculated as

f1 = Sτ1 = S
2d1

c
(3)

where τ1 is the time delay of the RX chirp and c is the speed
of light. According to (1), φ1 is ([4πd1]/λ), such that we can
further derive (2) into

SIF(t) = A sin

(
S

4πd1

c
t + 4πd1

λ

)
. (4)

As the distance of static objects is fixed, their reflected signals
are constant over time. Consequently, we can have reflec-
tions only left with those from humans by eliminating such
unchanging time measurements.

From (4), we also observe that the radar generates different
signals for multiple objects at different distances. As illus-
trated in Fig. 4(b), the RX chirps are separated by a different
amount of time delay (i.e., Tdn) which is proportional to the
distance from the radar to the object. In this case, a Fourier
transform is used to process the signal consisting of multiple
tones, resulting in a frequency spectrum with discrete peaks
for each tone, each peak indicating the presence of an object
at a certain distance. Further, on the basis of the Fourier trans-
form theory, frequency components can be separated as long as
their frequency difference δf is more than (1/[Tc]) Hz, where
Tc is the chirp duration [25]. By using (3), the relationship is
represented as

δf = S
2δd

c
>

1

Tc
. (5)

Since the chirp bandwidth B = STc, the range resolution δd
for separating different objects can be expressed as

δd >
c

2STc
= c

2B
. (6)

In our implementation, the configuration of our radar sensor
provides a 4-GHz bandwidth, the range resolution is calcu-
lated by (c/[2B]) = ([3 × 108][2 × 4 × 109]) = 3.75 cm. This
indicates that chirps reflected from different objects can be dis-
tinguished if they are at least 3.75 cm apart. In our scenario,
we are particularly concerned with the skin vibrations in the
chest due to heartbeat. Even when users are standing abreast

without spacing, our system is still able to identify the signals
from different users since their chest positions are separated
by arms.

Next, we split the reflections for each of the users in the
environment. To separate users, only using range information
is insufficient, since they might have identical ranges to the
radar (i.e., d1 = d2) yet be in different directions, as shown in
Fig. 4(c). We therefore introduce another horizontal distance
parameter to determine the position of the user relative to the
radar. For example, the horizontal distance from User 1 to the
radar is calculated as d1 sin θ1, where d1 denotes the user’s
range and can be estimated by (1), and θ1 represents the Angle
of Arrival (AoA) that is measured as follows [25]:

θ1 = sin−1
(

λδφ1

2π l

)
(7)

where λ, δφ1, and l are the wavelength, phase change, and
spacing between RX antennas, respectively. In this way, data
samples from users in the environment can be presented by
using both range and horizontal distance information.

Although reflections from static objects are eliminated by
clutter suppression, the remaining signals may include rebound
interference between users if users are close to each other. To
effectively separate different users, our idea is that data points
directly from users may be clustered, while those interference
data between users are typically dispersed in low density.
Our practice to this end is using DBSCAN [27], a density-
aware clustering method that defines clusters as continuous
regions of high density and identifies scattered outliers to cope
with noise. In comparison to K-means, DBSCAN does not
require prior knowledge of the number of clusters, which is
more appropriate in our scenario where the number of users
is variable. To determine its parameters, we adopt k-distance
graph and grid search [28] to tune the algorithm for optimal
performance. Experimentally, the parameters ε and n with the
best performance are 0.3 and 10, respectively. Fig. 4(d) shows
the clustering results for the users, which are represented by
different colors. As shown in Fig. 4(e), we are enabled to con-
firm the Areas of Interest (AoI) for different users by using
the determined locations after user clustering, allowing us to
further analyze their signals separately.

B. Heartbeat Signal Identification and Smoothing

In this step, HeartPrint focuses on each user and processes
the corresponding AoI to identify heartbeat-related signals.
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Fig. 5. Illustration of large-amplitude movements elimination.

Since heartbeat motions are typically in the range of
0.67–3.33 Hz [29], it is intuitive to adapt a band-pass fil-
ter to sort out heartbeat components. In practice, however,
people are less likely to keep still all the time, they may
have hand or limb movements, such as typing on keyboard,
reading books, and taking a drink. In Fig. 5, we exhibit an
example when the participant moves limb and hand at differ-
ent times. Compared to minute vibrations of heartbeat, such
aperiodic and large-amplitude movements introduce impulse-
like disturbances which are not be readily eliminated by
band-pass filtering. To remove the negative impact on heart-
beat signal extraction, our basic idea is to compare signal
energy within a certain time window. Specifically, as shown in
Fig. 5, we implement the following operations to delete those
interferences.

1) We first slide a specific time window over the sig-
nal; since such movements are generally transitory, we
perform the window of 1 s in the implementation.

2) For each window, we then calculate the signal’s energy,
i.e.,

∫ t+1
t s2(t)dt.

3) Finally, we compare the energy of the current window
with the signal’s historical average. If its energy is suf-
ficiently higher than the average, it is considered that
the window is not dominated by the user’s vital signs
and discards the window. Empirically, we choose the
discarded window to be at least three times than the
average window energy.

After clearing irrelevant movements, we further use a
Butterworth band-pass filter [30] to elicit a heartbeat sig-
nal from its frequency domain. This enables us to filter out
respiration from vital signs signals as well as power-line
noises.

C. Heartbeat Signal Segmentation

To simplify heartbeat signal analysis, we split the signal into
smaller segments according to heartbeat cycles. As illustrated
in Fig. 1(d), a typical heartbeat cycle contains two peaks and
two troughs. Intuitively, we can determine a cycle by find-
ing two consecutive troughs. Through spectral analysis [31],
local troughs can be estimated, as shown in Fig. 6. However,
it is observed that the points within cycles (i.e., denoted as
green dots) are also identified as local troughs. To divide the
heartbeat cycle correctly, we develop an interval restriction
approach which is described as follows.

Fig. 6. Illustration of waveform trough determination.

Fig. 7. WPT of heartbeat signal segment.

1) After spectral analysis, we first calculate the
time intervals between the estimated points, i.e.,
(T1,2, T2,3, . . . , Tn,n+1). We sort the interval group and
find its maximum and minimum, which is represented
as (Tmin, TMax).

2) Then, we manually choose the first local trough point in
the interval group as a valid trough, and the next valid
trough Pm is determined only if the interval between the
current local trough point and the previous valid trough
locates in the range of [2Tmin, 2Tmax].

Based on the interval restriction, we can obtain the consec-
utive valid troughs that divide the heartbeat signal into cycles,
as denoted by the red dots in Fig. 6. Since minor differences
might appear between cycles to the same user, to extract robust
and comprehensive features from the segment, we use three
heartbeat cycles as a segment in this work (the selection of
cycle numbers is studied in Section VII-A). For instance, we
use the waveform starting from P1 to P7 as one heartbeat
segment.

D. Heartbeat Feature Extraction

Due to the dynamic nature of the heartbeat signal, it includes
immediate information that are not easily apparent intuitively.
To meticulously analyze heartbeat motions, we use WPT [32]
as illustrated in Fig. 7. It decomposes the segment into detail
(i.e., D) and approximation (i.e., A) ingredients by a high-
pass (i.e., G) and a low-pass (i.e., H) filter, respectively. With
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Fig. 8. Impact of different feature sets on classification accuracy.

WPT, we can undertake multiresolution analysis in multiple
frequency domains to acquire representative biometrics, allow-
ing us to detect minor changes in heartbeat movements across
people. In addition, existing studies [10], [33], [34] have
also demonstrated the effectiveness of using WPT to analyze
biometric signals.

In our implementation, we use the db1 Daubechies wavelet
to decompose heartbeat segments into three levels, as shown in
Fig. 7. By repetitiously applying the wavelet decomposition on
both detail and approximation components, the 3-level WPT
separates the original segment into

∑3
i=12i = 14 subspaces.

These subspaces are distributed in different frequency bands
and thus are beneficial to discovering specific features. To rep-
resent the signal in each subspace, we empirically employ four
statistical metrics which are described as follows.

1) Skewness: It describes the symmetry of the signal,
denoted as (1/n)

∑n
i=1([(xi − x̄)3]/σ 3).

2) Kurtosis: It describes the tail heaviness of the signal,
denoted as (1/n)

∑n
i=1([(xi − x̄)4]/σ 4).

3) Shape Factor: It describes the smoothness of the signal,

denoted as ([
√

(1/n)
∑n

i=1 x2
i ]/[(1/n)

∑n
i=1 |xi|]).

4) Impulse Factor: It describes the impulse reaction of the
signal, denoted as ([max |xi|)/[(1/n)

∑n
i=1 |xi|]).

In summary, we get a total of 14 × 4 = 56 metrics for each
heartbeat segment. They are used as the potential features for
constructing the user matching model.

V. USER IDENTITY MODELING

A. Heartbeat Feature Selection

As w observe from Fig. 7, the WPT process is likely
to generate the same components (e.g., ADA3 and ADD3),
which would hence provide duplicate features. When putting
the constructed matching model into production in practice,
it is critical to keep the most important features, discarding
the redundant and less informative ones from the potential
extracted features. This is because less features means that
the model becomes easier to be interpreted and faster to be
trained. For this purpose, we further study the 56 retrieved
features and choose the most distinctive ones that are rooted
in heartbeat motions.

In particular, we use the RFE method [35] that adopts a
linear kernel support vector machine (SVM) to achieve such
process. To search for an optimal subset of features, RFE starts

Fig. 9. Classification performance of different classifiers.

with all the 56 features in the data set and removes the low-
correlated features until the desired number remains. We use
fivefold cross-validation and randomly choose data from ten
participants to train the classifier (details of data collection
are discussed in Section VI-B). After model fitting, RFE con-
siders the training coefficients of the classifier as importance
scores for the input features. Then, it ranks the features accord-
ing to their importance and drops the low-value features. This
process repeats recursively until a specific set of features are
determined that makes the classification reach a desired accu-
racy. We show the process in Fig. 8, it is observed that the
accuracy is close to 90% when we choose the first 14 features;
in addition, we also find that the accuracy basically remains
stable even if we choose more features. The results reveal that
the first 14 features are capable to represent heartbeat motions
and the remaining features are not sensitive to the classification
task. Based on this investigation, we decrease the number of
original features to 14 and use them to construct the matching
model in the following section.

B. Model Selection and Pattern Matching

In order to facilitate the deployment of the system, we
expect to port our software to embedded processors (e.g.,
Arduino board) in future applications. In this view, we tend to
employ the shallow machine-learning-based classifier to train
the user matching model instead of deep learning methods
since it requires less computational costs.

To construct the matching model, we compare four classi-
fiers and choose the most appropriate one for our scenario.
The four classifiers are random forest (RF), k nearest neigh-
bors (kNN), multilayer perceptron (MLP), and radial basis
function-based SVM (RBF-SVM), respectively. We implement
fivefold cross-validation and grid search method [28] to tune
their parameters for optimal performance. To make the com-
parison, we also randomly choose ten participants’ data to train
these classifiers (refer to Section VI-B for the details of data
collection). Besides, since our data consists of multiple users
(i.e., multiclass classification), we perform the one-versus-rest
strategy [36] to train the classifiers.

Taking RBF-SVM as an example, we prebuild a set of
potential parameters, it contains seven values which are loga-
rithmically spaced from 10−3 to 103. After iterating through
the parameter set, we adopt the parameters C and γ that per-
form best are 10−1 and 10−2, respectively. In Fig. 9, we show
the performance of the four classifiers in form of the average
ROC curve of the ten classes (refer to Section VI-C for the
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TABLE I
CONFIGURATIONS OF FMCW SIGNAL

Fig. 10. Evaluation setup for heartbeat motion sensing.

details of the ROC curve), it is observed that RBF-SVM’s two
performance metrics [i.e., AUC and equal error rate (EER)]
are the best among the four classifiers. As a consequence, we
adopt SVM-RBF as the user pattern matching model in our
implementation.

VI. EVALUATION PREPARATION

A. System Setting

We conduct experiments with a commercial off-the-shelf
IWR1443BOOST mmWave radar [37], it has three TXs and
four RXs. The use of multiple antennas is beneficial to
identify different users in a complex environment. In our high-
resolution application, we need to make sure that the chirps
emitted by the radar can capture the skin vibration produced
by heartbeat. For this purpose, we delicately configure the
FMCW signal as listed in Table I. It enables a range resolu-
tion of 3.75 cm (i.e., it is able to distinguish nearby adjacent
objects which are at least 3.75 cm apart), and a displacement
resolution of 1 mm (i.e., it has the ability to detect vibrations
that are as small as a millimeter). Fig. 10 shows the evalu-
ation setups, the sensor board emits signals toward the users
and collects their reflected data. Then, the board performs a
fast Fourier transform (FFT) on the collected data to obtain the
corresponding range profiles which are subsequently transmit-
ted to the laptop for further analysis. The laptop is equipped
with an Intel Core i7-10700 CPU @ 2.90 GHz. We open-
source the core code of our system as well as the processed
data sets at https://github.com/Duby0112/HeartPrint.

B. Data Acquisition

To validate the feasibility and effectiveness of HeartPrint,
we collect data from legitimate users and the attack scenarios
that are described in Section II-D. The details are as follows.

1) Legitimate Data Collection: We enlist the help of 54
healthy participants (i.e., no heart-related diseases) ranging in
age from 19 to 35 years old to evaluate the performance of
HeartPrint. Participants are informed that their data is only
used for biometric authentication experiments. We collect data

in a typical office setting as shown in Fig. 10, which includes
appliances, furniture, and walls. Each participant is asked to
stand facing the device at a distance of 2 m and keep relaxed
without any constraints, they are free to move hands and
limbs. This default setting is used unless stated otherwise.
For each participant, we record the data for around 30 min
in total and collect 200 heartbeat segments from the record-
ings. To reduce the impact of fatigue on our data, the data
collection is done through multiple rounds over the course of
two months. Overall, we get 54 × 200 = 10 800 samples to
evaluate legitimate user access authentication.

2) Spoofing Data Collection: We further collect spoofing
data to evaluate our system under attack scenarios. 1) Arbitrary
Attack: We randomly ask 10 of the 54 participants to serve as
victims and other 44 participants act as attackers. For each vic-
tim, every attacker randomly performs 20 heartbeat segments.
A total of 44 × 20 × 10 = 8800 samples are generated.
2) Signal Replay Attack: Ten random participants are invited
as victims, and we use an extra mmWave radar (i.e., the mali-
cious device used by attackers) to collect the victim’s signal.
We assume that the end device of HeartPrint is safe, this
means that the attacker does not know the specifics of our
system, such as how many heartbeat cycles are there in one
segment and the settings of the FMCW signal. To collect
data, we use the factory configuration of the FMCW sig-
nal to record heartbeat motion for 10 min on each victim,
then divide the signal into 5-s segments. In total, we obtain
10×([10 × 60]/5) = 1200 samples.

C. Performance Criterion

We use the following criterions to evaluate HeartPrint.
1) Authentication Accuracy: The proportion of legitimate

samples that have been correctly classified. A greater
authentication accuracy means that the system is more
likely to accept legitimate users.

2) Attack Success Rate: It represents the percentage of
attack instances that the system falsely accepts. A lower
attack success rate means that the system can more
effectively detect spoofing attacks.

3) ROC Curve: The receiver operating characteristic (ROC)
curve is used to illustrate the performance of a classifier
at all discrimination thresholds. It plots out the attack
detection rate (i.e., true positive rate) and false alarm
rate (i.e., false positive rate) for every possible decision
cutoff between 0 and 1 for a classifier. A larger area
under the ROC curve (AUC) indicates that the system
is performing better.

4) Equal Error Rate: The EER is an indicator of biomet-
ric performance used to determine the thresholds for
false positive rate and false negative rate. The indica-
tor implies that the ratio of false positives is equal to
the ratio of false negatives. A system with lower EER
is considered to be more accurate.

VII. PERFORMANCE EVALUATION

A. Performance of Legitimate User Authentication

In this section, we first investigate the number of heartbeat
cycles in the data segment that gives the best performance.
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Fig. 11. Performance of legitimate user authentication. (a) Authentication
accuracy with different heartbeat cycles. (b) Confusion matrix for single-user
identification.

Specifically, we continuously increase the heartbeat cycles
from 1 cycle to 6 cycles at a step size of 1 cycle and con-
struct the corresponding matching models. Fig. 11(a) shows
the average authentication accuracy with different heartbeat
cycles, where the error bars are the standard deviation (STD)
of accuracy among 54 participants. It is observed that the
average accuracy is improved from 88.30% to 95.60% with
an increase of more than 7% when the heartbeat cycles are
raised from 1 to 3. In addition, the STD decreases slightly with
more heartbeat cycles. However, when the heartbeat cycles are
greater than 3, the performance is not improved significantly.
The average accuracy of 95.27%, 96.02%, and 96.16%, and the
STD of 0.14%, 0.14%, and 0.22% are for 4 cycles, 5 cycles,
and 6 cycles, respectively. Accordingly, 3 cycles per data seg-
ment is the optimal choice in our implementation, and the
average accuracy of more than 95% confirms the effectiveness
of HeartPrint in authenticating legitimate users.

We further validate the performance of identifying a single
user when using three heartbeat cycles for the data segment.
Fig. 11(b) shows the confusion matrix for identifying each
individual participant. The identification accuracies of the 54
participants are presented in sequence along its diagonal. The
darker the color along the diagonal axis, the higher the iden-
tification accuracy. The results validate that our system is
effective to identify individuals.

B. Performance of Attack Defense

In this section, we evaluate the ability of our system to
resist the spoofing attacks described in Section II-D. Results
are shown in Fig. 12.

Arbitrary Attack: From Fig. 12(a), we observe that the suc-
cess rates of arbitrary attack for the ten victims are all less than
2%, with mean value of 1.36% and STD of 0.32%. Low STD
indicates that the attack success rate for each individual tends
to be clustered around the mean value. In terms of the ROC

Fig. 12. Performance under spoofing attacks. (a) Attack success rate. (b) ROC
curves.

curve, as shown in Fig. 12(b), the AUC and EER are 99.64%
and 2.93%, respectively. The results indicate that HeartPrint
is effective in distinguishing legitimate users from arbitrary
attacks. This is expected since heartbeat motions between indi-
viduals are nearly impossible to be identical as we stated in
Section II-A. The slight attack success rate in this experiment
is due to our massive trial-and-error approach, i.e., we have
close to 10 thousand attack samples for this experiment, it
means attackers have nearly 10 thousand attempts to spoof our
system. If given limited trials in practice, our system possesses
the adequate capability to deny arbitrary attacks.

Replay Attack: As shown in Fig. 12(a), the success rates
of signal replay attack for the ten victims are all less than
3%, with 2.43% mean value and 0.27% STD. The results
show that the system still remains strong resilience against
more advanced signal replay attacks. Additionally, the AUC
of 98.76% and EER of 5.60% further evidence that, even if
attackers spend considerable effort capturing signals from the
legitimate users and snooping on their communications with
the system, our system is still effective to discriminate the
counterfeit samples. This is because attackers lack particular
knowledge of HeartPrint, such as the FMCW chirp configu-
ration that is adopted in our implementation and how many
heartbeat cycles are there in one data segment, our system
retains its resilience as validated by the results. Moreover, it is
not trivial to launch such replay attack on HeartPrint in prac-
tice, since it requires solid background techniques, including
communication eavesdropping, information injection, signal
modulation, etc.

It is worth noting that our system is innately immune to imi-
tation attacks, since heartbeat is an involuntary activity that
can hardly be controlled or imitated [23]. In contrast, some
prior biometric-based schemes which rely on gait [38], respi-
ration [10], and human behavior [12] are susceptible to such
attacks, where attackers may spoof the authentication system
by impersonating the actual individual with their observations
and understanding.

C. Performance With Diverse Factors

To ensure user experience, our system should be resistant
to various changes in real life. In this section, we evaluate the
authentication accuracy of HeartPrint under multiple impact
factors. The experiments below follow the settings in Table II.
The default settings are used unless stated otherwise.
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TABLE II
EXPERIMENT SETTINGS

Fig. 13. Impact of multiple users with different distances.

Fig. 14. Authentication performance with different user orientations.
(a) Illustration of user orientation to the device. (b) Result of different user
orientations.

Impact of Multiple Users With Different Distances: We first
test HeartPrint with up to four users at distances ranging from
1 to 4 m. We randomly recruit 1 (as a control group), 2, 3,
and 4 users from the participants to stand side by side at a
distance of 1, 2, 3, and 4 m from the radar, respectively. We
conduct ten studies with different groups of people and col-
lect 200 segments from each user. The average authentication
accuracy is shown in Fig. 13. We observe that the accuracy
reaches up to 90% when the number of users is less than 3
and the sensing distance is within 3 m. Within 4 m, the accu-
racy is approaching to 90% as the number of users extends to
4. The results show that HeartPrint is capable of authenticat-
ing different users concurrently within a certain distance. In
addition, we also notice that the authentication performance is
affected when the number of users or the distance increases.
This is owing to the mmWave’s quick attenuation, and it might
be further enhanced by configuring beamforming settings and
expanding heartbeat cycles.

Impact of User Orientation: To verify that HeartPrint works
well even when users are not directly facing it, we undertake

Fig. 15. Authentication performance with different AoAs. (a) Illustration of
different AoAs. (b) Result of different AoAs.

studies in which we urge the participants to position them-
selves in different directions with regard to the device. As
illustrated in Fig. 14(a), we randomly ask ten participants to
perform four distinct orientations to the device: facing the
device (Front), having the back to the device (Back), and fac-
ing the device from left or right (Left/Right). Each participant
provides 200 segments, and the results are shown in Fig. 14(b).
We can see that the average accuracies under the four ori-
entations are over 93% and they fluctuate slightly across all
orientations. The results prove that user orientation has rel-
atively little impact on heartbeat detection, since heartbeat
motions cause skin vibrations of the body and our device can
detect such vibrations from different orientations.

Impact of AoA: In the experiment, our MIMO radar has a
maximum AoA of 60◦. A wider angle is likely to result in
weaker signals and noisier phase measurements. To study its
impact on sensing performance, ten participants are invited
separately to stand at angles ranging from 0◦ to 60◦ at a step
size of 15◦ with respect to the radar’s pointing direction, as
illustrated in Fig. 15(a). We collect 200 segments from each
participant and present the results in Fig. 15(b). It is observed
that the average accuracy gradually decreases from 0◦ to 60◦,
and it achieves over 91% within 30◦. Specifically, it is noted
that the sensing performance is greatly affected when the AoA
is approaching to the far edge (i.e., 85.45% at 45◦ and 81.15%
at 60◦). This is due to the inherent limitation of mmWave radar,
i.e., phase shift is susceptible to changes in AoA, thus the esti-
mation accuracy of phase change decays with the increasing
of AoA. Based on this study, we suggest to limit the AoA to
less than 30◦ in practical applications.

Impact of Body Motion and Posture: In this experiment, we
would like to evaluate the performance throughout everyday
activities, without demanding people to quit their current work
at hand. Specifically, ten participants are involved, and each
of them is instructed to do four kinds of motions (i.e., being
static, typing on smartphone, imitating driving, and talking)
and three types of postures (i.e., standing, sitting, and lying).
We collect 200 segments from each participant and the results
are shown in Fig. 16. From Fig. 16(a), we can see that the aver-
age authentication accuracy corresponding to the user being
static and imitating driving reaches above 94%, while the
accuracy for typing and talking slightly decreases to 90.15%
and 91.20%, respectively. The reason behind the results is
expected, for the case of driving, since limb and hand motions
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Fig. 16. Authentication performance with different body motions and pos-
tures. (a) Result of different body motions. (b) Result of different body
postures.

are relatively gentle, they are likely to be identified as irregular
interferences and removed by HeartPrint as described in the
method in Section IV-B. Typing on smartphones might block
signal transmission to some extent, leading to non-line-of-sight
phenomenon, so it affects the performance slightly. As for
talking, the vibration of vocal cords also contributes to vibra-
tions in the skin surface, which potentially disturbs the sensing
performance for heartbeat motions. Despite that, HeartPrint
provides an acceptable performance in user authentication (all
the accuracies are over 90%).

Fig. 16(b) shows the result when the user has different
postures. In the figure, Lie-1 denotes that the participant lies
before the device without adjusting the pointing direction of
the antennas, while in the case of Lie-2, we move the anten-
nas to point to the participant lying down. We can observe
that the average accuracy achieves over 94% when the user
is in the pointing direction of the radar (i.e., stand, sit, and
lie-2). However, the authentication accuracy drops to 84.30%
in the case of Lie-1. This is because the user forms an
angle with the device in this situation, and as we analyzed in
the paragraph Impact of AoA, larger AoA might weaken the
sensing performance. This could be alleviated by deploying
devices with different pointing directions according to differ-
ent environments. For example in a bedroom environment, it
is appropriate to install the device that is pointing to the bed
surface.

VIII. RELATED WORK

In this section, we summarize previous related works in the
following areas.

Continuous User Authentication: Most conventional bio-
metric user authentications, such as fingerprint [42], iris
recognition [43], and facial identification [44], give just a
one-time verification at the start of a login session, which
is susceptible to counterfeits. In order to repair this security
flaw, behavior-based continuous authentications are investi-
gated. For example, user’s unique walking pattern is served
as a behavioral biometric modality for continuous authentica-
tion (e.g., Zeng et al. [13] and Yang et al. [38]). Ali et al. [9]
exploited keystroke dynamics, especially the distinctive for-
mation and direction pattern that the hands and fingers move
when typing, to recognize user’s keystrokes, which can be
readily applied to biometric authentications. When speaking,
the vibration of vocal cords causes skin disturbance around

the near-throat region, such unique vocal vibrations have also
been explored for continuous authentication by Li et al. [41].
Besides, some studies utilize the interaction of a finger touch-
ing on a physical surface for user authentication, e.g., dynamic
finger vibrations [21] and fingerprint-induced sonic effect [45].
Although these literature provide brilliant solutions for con-
tinuous authentication, they necessitate user’s ongoing and
active interaction with the system, which is conspicuous and
inconvenient in practical applications.

Vital Sign-Based User Authentication: Vital signs are
used to find unobtrusive and idiosyncratic passive authen-
tication procedures in order to overcome the above limits.
Lin et al. [46] designed a cancelable biometric authentication
system by using the phenomenon of brain reactions to visual
stimuli. The multilead electrocardiogram (ECG) biosignals are
the most investigated biometric indicators in continuous user
authentication scenarios (e.g., Arteaga-Falconi et al. [47] and
Zhao et al. [48]). Since ECG signal acquisition is compli-
cated, another cardiac-related physiological identifier photo-
plethysmogram (PPG) is proposed to improve usability [39].
However, these studies have the limitations of requiring users
to wear a skin-contact accessory, which is cumbersome and
limits their real-world applications. To implement a noncon-
tact solution, RF signals have been focused to sense human
vital signs for continuous authentication. For instance, Cardiac
Scan employs a continuous wave radar to monitor heart-
beat motion and verify users according to their unique heart
activity patterns [11]. BreathID derives user-specific breath-
ing signals from the WiFi signals to passively authenticate
valid users in a noncontact way [10]. Nonetheless, these
solutions either require a specific device or the effective sens-
ing distance is limited, greatly minimizing their application
possibilities.

Comparison of Related Work: Table III presents the com-
parison between our work and some of the existing works.
From the table, we find that RF signal-based works have
at least two benefits for usability compared to sensor-based
approaches, 1) they free users from active involvement during
the authentication procedure and 2) they enable continuous
authentication in a contactless and unobtrusive manner, i.e.,
no longer requiring special apparatus (e.g., camera and micro-
phone) to be attached to the body. Furthermore, among the
RF-based works, the most related study to ours is Cardiac
Scan [11], in which the authors deploy a continuous-wave
radar to capture the unique heart motion for user authenti-
cation. The following are the prominent features that set this
work apart from ours.

1) Due to different sensing mechanisms, Cardiac Scan can
detect only one user at a time within the range of 2 m,
whereas our system is able to authenticate several users
simultaneously with a wider sensing range.

2) To suppress clutters caused by body movements,
Cardiac Scan applies two radars to detect the user from
the front and the back of the body. We use a single radar
in our setting and propose an interference elimination
approach for removing motion-corrupted segments from
the signal, making the deployment of our system more
cost efficient.
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TABLE III
COMPARISON BETWEEN DIFFERENT SYSTEMS

3) To define heartbeat signals, Cardiac Scan adopts intri-
cate fiducial-based descriptors to represent heartbeat
features, while our system employs generic WPT tech-
nique and regular statistical metrics to describe heartbeat
signals. The simplicity of our work signifies that it
can be effortlessly conducted by people who have lit-
tle or even no signal processing background knowledge.
With these exclusive traits, we contribute a completely
different kind of continuous user authentication solution.

IX. DISCUSSION

In this section, we discuss the potential limitations and
propose possible ways to further improve HeartPrint.

Exercising and Health Condition: In this work, we train
the matching model with the heartbeat data that are collected
from healthy participants under normal physical conditions.
Users who just finish exercising, have strong mood swings,
or suffer from heart-related troubles (e.g., arrhythmia) might
have considerable variations in heartbeat motion, thereby the
authentication is likely to lose effectiveness. Such context-
related shortcomings are also present in other biometric-based
solutions. For example, face authentication fails when a mask
is worn, and iris recognition is incompatible with persons
who have eye disorders. To increase the practicability of
HeartPrint, one feasible approach is to conduct a longitudinal
study, which involves collecting data from possible contexts
and studying how sensitive our system is to such changes.
For instance, we may analyze how quickly the user’s heart
rate returns to normal after exercise and utilize the heartbeat
recovery rate as one of the features in pattern matching.

Quasistatic State: Our system needs users to maintain a qua-
sistatic state during authentication, e.g., typing and drinking
without making significant body movements. This limitation
is a common problem for wireless sensing, it is because phase
changes induced by full-body movements would typically sub-
merge those created by heartbeats, leading to the failure of
tracking small skin vibrations. Honestly, it is not a trivial task
to mine the submersed signal due to its low signal-to-noise
ratio (SNR). To apply our system into full-body movement
scenarios, one possible way is to perform intermittent authen-
tication, i.e., users are required to stop their ongoing activities
for authentication once in a while.

Movements From Other Objects: In this article, we use
the intrinsic property of FMCW to distinguish different

moving objects. It then examines the reflect signal from each
moving object to identify heartbeats. Due to the difference in
movement frequency, e.g., the periodicity of heartbeats is gen-
erally smaller than fans, our system separates such moving
objects from a human. Even if HeartPrint misidentifies an
object as a human, e.g., a wall-mounted clock whose frequency
(1 Hz) is probably close to the heartbeat, it has no effect on
the heartbeat sensing since the clock’s position is fixed and
its signals are isolated by FMCW. However, our system is
likely to presume a pet as a user in the region, as it might
have similar vital signs frequency to human’s and its position
is dynamic. To mitigate this problem, we can make a more
detailed investigation of heartbeat frequencies for system users
and their pets and calibrate the system’s band-pass filter to be
more fine-grained.

X. CONCLUSION

In this article, we propose HeartPrint, a system that
tracks heartbeat motions for continuous user authentication. To
authenticate multiple users concurrently, we employ a 77-GHz
mmWave radar to separate different users and analyze their
respective reflected signals due to heartbeat. We show the fea-
sibility that heartbeat signals can be used as a robust identifier
for user authentication and propose an interference elimination
method to remove the effects of hand and limb movements
on heartbeat signals. To accurately verify legitimate users, we
conduct in-depth studies to determine the appropriate data seg-
ment and its corresponding features, as well as the matching
model. We implement extensive experiments to evaluate the
performance under spoofing attacks and application scenar-
ios. The results show that our system is resilient to spoofing
attacks and effective to verify multiple users. We make efforts
to authenticate regular users in this article. In future work, we
hope to improve our system to adapt to people who are taking
exercise and people with heart-related problems.
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