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Abstract—Voice assistant has been widely used for human-
computer interaction and automatic meeting minutes. However,
for multiple sound sources, the performance of speech recognition
in voice assistant decreases dramatically. Therefore, it is crucial to
separate multiple voices efficiently for an effective voice assistant
application in multi-user scenarios. In this paper, we present
a novel voice separation system using a 2D microphone array
in multiple sound source scenarios. Specifically, we propose a
spatial filtering-based method to iteratively estimate the Angle of
Arrival (AoA) of each sound source and separate the voice signals
with adaptive beamforming. We use BeamForming-based cross-
Correlation (BF-Correlation) to accurately assess the performance
of beamforming and automatically optimize the voice separation
in the iterative framework. Different from cross-correlation, BF-
Correlation further performs cross-correlation among the after-
beamforming voice signals processed with each linear microphone
array. In this way, the mutual interference from voice signals
out of the specified direction can be effectively suppressed or
mitigated via the spatial filtering technique. We implement a
prototype system and evaluate its performance in real environ-
ments. Experimental results show that the average AoA error is
1.4 degree and the average ratio of automatic speech recognition
accuracy is 90.2% in the presence of three sound sources.

I. INTRODUCTION

Motivation: Voice assistant has been widely used in a
diverse range of application scenarios from human-computer
interaction to automatic meeting minutes. Popular voice as-
sistants include Amazon Echo [1], Apple HomePod [2] and
Google Home [3], and they utilize speech recognition tech-
niques to improve human-computer interaction. Voice assis-
tants have also been deployed in meeting rooms to record
the voice of participants, as shown in Fig. 1. By applying
natural language processing (NLP) techniques, meeting min-
utes can be automatically recorded by translating audio into
text. Moreover, localization [4–12] can be further applied
to the voice assistant to provide location context to voice
recognition. These techniques perform well in the situation of
a single sound source. However, in the situation of multiple
sound sources, the performance of speech recognition and
localization decreases dramatically. For example, as shown in
Fig. 1, multiple persons in the meeting room are speaking
simultaneously, mixed voice signals are collected by micro-
phones on the table. Due to mutual interference in mixed voice
signals, the system is unable to effectively perform speech
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Fig. 1: Voice separation of multiple sound sources via micro-
phone array.

recognition. Separating voices from multiple sound sources is
crucial to ensure the performance of speech recognition.

Limitation of Prior Art: There are three main approaches
to perform voice separation from the mixed voice signals of
multiple sound sources. The first approach is to utilize massive
directional microphones to record voice signals. The direc-
tional microphones are physically deployed to record voice
signals with a range limit. Each directional microphone only
records the voice of the sound source in interest. Voice signals
from multiple sources are naturally separated from each other.
However, this approach usually requires specific deployment
of directional microphones for multiple users. This greatly
increases the deployment cost and hardware cost for voice
separation. The second approach is to use signal processing
algorithms to separate voice signals. Independent component
analysis (ICA) is a typical computational method for signal
separation. However, this approach usually works well in ideal
situations with strong assumptions, e.g., the source signals are
independent of each other. However, the multi-path effect may
introduce large amounts of virtual sources and the signals are
correlated with each other. Thus, this dramatically degrades
the performance of voice separation in real environments. The
third approach is to use spatial filters such as beamforming to
separate voice signals. This approach separates voice signals
according to the spatial position of sound sources, i.e., angle
of arrival (AoA) , by adjusting directional antenna gain. Thus,
the multi-path effect can be partly suppressed. However, the
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position or angle of sound sources are usually required to
be known in advance. Due to the superposition and mutual
interference of voice signals, the traditional AoA estimation
methods cannot precisely estimate the angle of each sound
source. This greatly limits the applicability of the spatial filter-
based approach.

Our Approach: Multiple voice signals usually come from
different spatial direction since the sound sources, i.e., human
voice, are usually separated physically. In this paper, we
propose a novel spatial filtering-based technique with iterative
AoA estimation and beamforming using a 2D microphone
array-based system for voice separation in multiple sound
source scenarios. We first perform cross-correlations between
raw voice signals to get the coarse-grained angles of arrival
(AoA) of sound sources. Then, according to each estimated
AoA for the sound source candidates, we use beamforming
at receiving ends, i.e., microphone array, respectively. After
that, we propose an iterative approach to optimize the AoA
estimations and the beamforming result. Specifically, dur-
ing the iteration, we propose the BeamForming-based cross-
Correlation (BF-Correlation) to further refine AoA estima-
tion. Different from cross-correlation, BF-Correlation further
performs cross-correlation among the after-beamforming voice
signals processed with each linear microphone array. By
applying the spatial filtering technique, the mutual interference
from the signals out of the specified AoA can be effectively
suppressed or mitigated in computing BF-Correlation. In this
way, more refined AoA estimation can be obtained by referring
to BF-Correlation, which further supervises the subsequent
beamforming.

Challenges: There are two challenges to be addressed in
this paper. The first challenge is to accurately estimate the
angle of arrival (AoA) of multiple sound sources from mixed
voice signals. Due to superposition and mutual interference of
multiple signals, cross-correlation among mixed raw signals
usually leads to Peak Confusion. Besides, human voices are
broadband signals which are partly self-correlated, this further
leads to Fake Peak in cross-correlation. Therefore, traditional
AoA estimation approaches based on cross-correlation, such
as GCC-PHAT[13], may not work effectively in the situation
of multiple sound sources. To address this challenge, we
propose a novel BF-Correlation-based scheme for accurate
AoA estimation. This scheme is able to obtain a fine-grained
AoA estimation by iteratively performing AoA estimation and
beamforming at the receiving end, i.e., microphone array. For
the 2D microphone array, by performing beamforming towards
a specific angle over each row/column of linear array, we are
able to suppress or mitigate most of the interference of the
voice signals from the other angles. Then, by performing BF-
Correlation among these after-beamforming signals, the peaks
in BF-Correlation can depict the corresponding time delay of
AoA in a more refined manner. The following beamforming
can further tune the receive gain towards the refined angle
to iteratively achieve better performance. In this way, we can
sufficiently reduce the possibilities of peak confusion in cross-
correlation.

The second challenge is to automatically optimize the effect
of voice separation in the iterative framework. Note that we
utilize beamforming to obtain the separated voice signals via
the spatial filtering techniques. However, since we do not have
prior knowledge of the sound sources, i.e., the ground-truth
features of each original voice signal cannot be obtained,
during the iteration process, we cannot effectively evaluate
the quality of separated voice signals by comparing with the
ground-truth, in terms of signal to noise ratio (SNR) and
MOS[14]. Hence, a general indicator is necessarily required to
perform automatic optimization in the iterative approach. To
address this challenge, we use relative peak amplitude in BF-
Correlation to evaluate the effect of voice separation. We find
that the peak in cross-correlation usually denotes a candidate
sound source with a specific time delay in the microphone
array, corresponding to a certain angle. The amplitude of the
peak further depicts the strength of voice signals from a certain
angle. Since we use beamforming to increase the gain of voice
signals from a specified angle, and suppress voice signals from
the other angles. Therefore, when the beamforming targets
towards the right direction of voice signal, the amplitude of
the peak corresponding to the beamforming angle should be
much larger than the other amplitudes of the wave. Hence,
leveraging the relative peak amplitude in BF-Correlation, i.e.,
the ratio of the peak’s amplitude to the average amplitude
of the wave corresponding to all directions, we are able to
evaluate the effect of voice separation with spatial filtering.

Contributions: This paper makes the following contri-
butions. First, we present a novel 2D microphone array-
based system to perform voice separation in multiple sound
source scenarios, by precisely estimating the AoA of each
sound source and separate the signals with adaptive beam-
forming. Second, we propose a novel BeamForming-based
cross-Correlation (BF-Correlation) scheme for accurate AoA
estimation and adaptive beamforming. We analyze the peak
confusion issues for cross-correlation via thorough empirical
study and modeling, and propose BF-Correlation to accurately
estimate the AoA of multiple sound sources and automatically
optimize voice separation in our iterative framework. Third, we
implemented a prototype system and evaluate the performance
in real environments. Experiment results show that the average
AoA error is 1.4◦ and the average ratio of automatic speech
recognition accuracy is 90.2% in the presence of three sound
sources.

II. RELATED WORK

Voice Signals Separation. Besides separating the signals
from the sources physically, the approaches to separate the
mixed voice signals can be divided into two categories. The
first category is to utilize spatial filters to separate the voice
signals. Early works in this category need to have the priori
knowledge of the direction of sound sources to separate the
mixed voice signals [15–18]. Some approaches are proposed
to estimate the angle of arrival (AoA) for spatial filters, such
as GCC-PATH [13], Multiple Signal Classification (MUSIC)
algorithms [19–21], etc. However, due to self-correlation and
broadband characteristics of voice signals, these approaches
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cannot precisely locate the sound sources in real scenarios.
Besides, visual signals are utilized in recent works [22–
25]. After locating the sources with extra visual devices,
i.e., cameras, spatial filter based approaches are applied to
separate the voice signals. The second category is to utilize
the characteristics of signals for separation. Traditional ap-
proaches in this category are signal processing methods, such
as Independent Component Analysis (ICA) [26–28]. However,
the signal processing methods have strong assumptions. The
signals should be independent to each other and the solution
should be performed in the scenario without multi-path effect.
Thus, traditional signal processing approaches are not suitable
for most practical use. Instead of separating all the signals,
some recent work extract signals from target speakers [29, 30],
with the priori knowledge of the signals, e.g., the frequency
patterns or the contents of voice signals.

Techniques based on Microphone Arrays. The micro-
phone arrays are recently utilized for signals processing and
sensing. Noise reduction [31, 32], speech enhancement [33–
35] and other signal processing approaches are conducted
with microphone arrays. Moreover, microphone arrays can
be used as fine-grained sensors. VoLoc [4] and Symphony
[5] use wall reflection and angle of arrival (AoA) algorithms
to locate the sound sources via microphone arrays. Poozesh
[36] uses a microphone array to monitor the structural health
with non-contacting measurement technique. AcuTe [37, 38]
uses microphones to sense the temperature of the environment.
VSkin [39] uses microphones as motion sensors to control the
mobile phones. All these works use the spatial structure of the
microphone array. However, voice separation in real scenarios
have not been effectively solved in recent works.

III. EMPIRICAL STUDY AND MODELING

A. Problem Formulation

In this paper, we address the problem of accurate AoA
estimation and signal separation of multiple sound sources
via a 2-D uniform rectangle microphone array. The basic
idea for voice separation is to first utilize cross-correlation
between signals from microphones to estimate the AoAs
of sound sources. We then apply beamforming methods to
separate the voice signals according to the AoAs estimated.
Suppose there are n sound sources denoted as S1 to Sn, and
k microphones denoted as M1 to Mk. The signals emitted
from S1, S2, · · · , Sn are denoted as s′1(t), s′2(t), · · · , s′n(t)
and the signals received by M1,M2, · · · ,Mk are denoted
as m1(t),m2(t), · · · ,mk(t). Signals from different sound
sources arrive at each microphone at different time. Suppose
ρi,j is the propagation coefficient and τi,j is the propagation
time from Si to Mj . Then the signal mj received by Mj is:

mj(t) =
n∑
i=1

ρi,js
′
i(t+ τi,j), (1)

Due to the far field propagation model [5], the propagation
coefficients from the same sound source Si are equal for all k
microphones. That means the propagation coefficient ρi,j can
be simplified as ρi. If we use M1 as reference, let ∆ti,j =
τi,j−τi,1 denote the time difference of arrival between signals
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Fig. 2: Cross-correlation for single sound source.
arriving at Mj and M1 from Si. Let si(t) = ρis

′
i(t + τi,1)

denote the signals arriving at M1 from Si. The equation is
simplified as:

mj(t) =
n∑
i=1

ρis
′
i(t+ τi,1 + τi,j − τi,1) =

n∑
i=1

si(t+ ∆ti,j). (2)

The following part shows the formulation of beamform-
ing. To clearly explain the formulation, we take the classic
beamforming, Delay-and-Sum Beamforming, as an example.
Suppose ∆t′j is the time shift of signals received by Mj , the
outcome of beamforming m′(t) is:

m′(t) =
1

k

k∑
j=1

mj(t−∆t′j) =
1

k

k∑
j=1

n∑
i=1

si(t+ ∆ti,j −∆t′j). (3)

In Eq. (3), we can see if we want to perform beamforming
on Si, we need to find the time shift ∆t′j to compensate
the time delay ∆ti,j . As a result, the goal of the algorithm
is to precisely estimate the time delay ∆ti,j and perform
beamforming for each sound source Si.
B. Modeling Cross-correlation of Multiple Sound Sources

Cross-correlation is a function of displacement of one
relative to the other, measuring the similarity of two series[40].
Cross-correlation between si(t) and sj(t) is defined as:

Corsi,sj (n) =

N∑
m=1

si(m− n)sj(m),−(N − 1) ≤ n ≤ N − 1, (4)

which is equivalent to convolution of si(−t) and sj(t). si(t)
and sj(t) are discrete functions in the field of real numbers
with N samples.

1) Cross-correlation between signals from Single Sound
Source: Suppose we have a microphone array with two
microphones denoted by Mi and Mj , respectively. The signals
received by the two microphones is denoted by mi(t) and
mj(t), respectively. The cross-correlation between mi(t) and
mj(t) can be calculated according to Eq. (4). Suppose the sin-
gle sound source S with signal s(t) is in a free-space without
multipath effect and attenuation, the two microphones receive
the signals with time delay ∆t, which gives mi(t) = s(t)
and mj(t) = s(t + ∆t). There is only one main peak in the
cross-correlation figure between signals from the microphones.
The time shift ∆t can be calculated from the correlation
with ∆t = arg max

t
Cormi,mj (t). Fig. 2 shows the cross-

correlation between the received signals in the single-source
scenario. The peak of the maximum amplitude corresponds to
the time delay ∆t = 4 samples. Suppose the speed of sound
in the air is v, the distance between the two microphones is
d and the sampling rate is fs, the angle of arrival (AoA) θ of
s(t) is:

θ = arcsin
∆t · v
fs · d

. (5)

991
Authorized licensed use limited to: RMIT University Library. Downloaded on February 21,2024 at 07:26:45 UTC from IEEE Xplore.  Restrictions apply. 



-50 -25 0 25 50

Time Delay (Samples)

-100

0

100

A
m

p
li

tu
d

e

-10 15

(a) Cross-Correlation between
m1(t) and m2(t).
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Fig. 3: Illustration of Correlation Distribution Property.

Fig. 4: Multiple sound sources model.
2) Cross-correlation between Mixed Signals from Multi-

ple Sound Sources: For multiple sound sources, the cross-
correlations between received signals are different from that
in single-source scenario. Suppose we calculate the cross-
correlation between mj(t) and ml(t), the signals received
by Mj and Ml respectively. According to Eq. (2), mj(t) =∑n

i=1 si(t + ∆ti,j) and ml(t) =
∑n

i=1 si(t + ∆ti,l). Since
convolution has the distributive property, it is proved that
cross-correlation have the distributive property. Thus, the
cross-correlation between mj(t) and ml(t) is:

Cormj(t),ml(t)
=

n∑
i=1

n∑
k=1

Corsi(t+∆ti,j),sk(t+∆tk,l)
. (6)

We take two sound sources SA and SB as an example. As
shown in Fig. 4, the received signals mi(t) and mj(t) consist
of two components sA(t) and sB(t) from SA and SB :

mi(t) = sA(t) + sB(t),

mj(t) = sA(t+ ∆tA) + sB(t+ ∆tB).
(7)

The cross-correlation between mi(t) and mj(t) is:
Cormi,mj =CorsA(t),sA(t+∆tA) + CorsA(t),sB(t+∆tB)

+ CorsB(t),sA(t+∆tA) + CorsB(t),sB(t+∆tB).
(8)

From Eq. (8), we can see that the cross-correlation con-
sists of 4 components, and the components can be divided
into two categories: correlation between signals from the
same sound source and correlation between signals from
different sound sources. Obviously, CorsA(t),sA(t+∆tA) and
CorsB(t),sB(t+∆tB) are the correlations between the same
sound sources and there exist peaks that indicate two time
delays. CorsA(t),sB(t+∆tB) and CorsB(t),sA(t+∆tA) are the
correlations between different sources, and since correlation
describes the similarity of different signals, the correlation
amplitudes are significantly smaller than former correlation
peak amplitudes.

We conduct experiments to illustrate the cross-correlation
distribution property in multiple sound sources scenario. The
experimental settings are described as follows. We deploy
two microphones M1, M2 and two sound sources SA, SB

following the layout shown in Fig. 4. The distance d between
the two microphones is 15 cm, and incident angle θA = −30◦,

TABLE I: Correspondence between ∆t and Incident Angle.
Time Delay (Samples) 0 1 2 3 4 5 6 7 8 9 10

Incident Angle (◦) 0 5.7 11.4 17.3 23.4 29.8 36.5 44 52.6 63.3 83.0

θB = 50◦, respectively. The distances lA, lB between the
sound sources and the array are 1 m and 1.5 m. According to
Eq. (5), the time delay ∆tA should be −10 samples and ∆tB
should be 15 samples. The signals emitted by sound sources
are human voice signals. We have two findings from Fig. 3.
First, Fig. 3(b) – 3(c) show that the amplitude of correlation
between the same source are much larger than that between
different sources. Second, the peaks in Fig. 3(a) essentially
indicate the time delay ∆tA,∆tB , respectively, in received
signals m1(t) and m2(t).

In summary, for multiple sound sources, cross-correlation
between signals from different microphones is composed of
cross-correlations between different components of received
signals. The amplitude of correlation from the same sound
source is much larger than that from different sound sources.
That means in most cases, peaks in the cross-correlation
of received signals imply the corresponding time delay of
signals and this makes AoA estimation in multiple sound
sources scenario possible. However, we find that there still
exist some challenging issues for us to use cross-correlation.
The following sections show the issues in cross-correlation
and analyze the reasons for them.

C. Peak Confusion in Cross-correlation
Ideally, AoA can be estimated through peaks in cross-

correlation between received signals. However, due to insuffi-
cient sampling rate and self-correlated characteristic of human
voice, the peaks do not always denote AoAs of the signals. We
conduct an empirical study to show possible situations of Peak
Confusion and further analyze the reasons for Peak Confusion.

As shown in Fig. 6, we use 4 × 4 uniform rectangle
array (URA) with 16 microphones and the distance between
the adjacent microphones d is 2.4 cm. The microphones are
denoted as M1, M2, · · · ,M16. We build a polar coordinate
system for the microphone array. Pole O of the coordinate
is located at array center and the polar axis points to the
right. There are three sound sources SA, SB , SC emitting three
different voice signals. The coordinate of SA, SB and SC are
(2m, 180◦), (2m, 210◦) and (1.5m, 270◦). The sound sources
are in the far field of microphone array and the sampling rate
fs is set to 48 kHz.

We identify three issues, including peak overlap, peak devi-
ation [5] and fake peak, which are observed when performing
cross-correlation. Peak overlap represents peaks of the ground
truths are too close each other, resulting in being difficult to
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Fig. 5: Peak Confusion in cross-correlation.

Fig. 6: Settings of empirical study.

separate. Fig. 5(a) shows the cross-correlation between m1(t)
and m4(t) from M1 and M4. According to the ground truth,
time delays of SA and SB should be −10 samples and −9
samples, respectively. However, there is only one peak in the
corresponding region. That means the peak caused by SA

overlaps the peak caused by SB . Peak deviation represents
that some peaks may be several points away from the ground
truth. Fig. 5(b) shows the cross-correlation between m1(t)
and m13(t) from M1 and M13. The time delay of Peak 3
is 9 samples and the incident angle we calculate from time
delay is about 64◦ (244◦ in polar coordinate system). The
estimated angle deviates dramatically from the ground truth
270◦. Fake peak represents that peaks in the cross-correlation
do not refer to any sound source. Fig. 5(c) shows the cross-
correlation between the signals in Fig. 3. There are three fake
peaks in the correlation figure since there are only two sound
sources in the scenario and the corresponding time delay is
-10 samples and 15 samples, respectively.

There are three reasons for the issues. First, the spatial
resolution of the microphone arrays are limited [5]. There
are 21 candidate bins in cross-correlation for the empirical
study as shown in Table I. The peaks overlap each other if the
AoAs are located in the same or adjacent bins. Second, the
self-correlation characteristic of the human voices may cause
the issues. Human voices are partly self-correlated, which
is different from signals in channel impulse response (CIR)
or random signals. In Fig. 7(b), random signals or impulse
signals have one main peak. The peak is narrow and easy
to recognize. However, the self-correlation figures of voice
signals have one main peak and several secondary peaks, and
the width of the peaks usually larger than 2 sample points, as
shown in Fig. 7(a). Secondary peaks can easily be ignored
in the scenario of single sound source while it is hard to
recognize in the scenario of multiple sound sources. Fake
peaks are mainly caused by self-correlation property of voice
signals. Third, the superposition of different correlation affects
the peak amplitude and position. From Eq. (8) we can see that
the cross-correlation of signals from multiple sound sources is
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Fig. 7: Self-correlation of different kinds of signals.
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Fig. 8: Superposition of different correlations.
superimposed by several parts. The peaks caused by different
sound sources interfere with each other. Fig. 8 illustrates how
superposition affects the peaks in cross-correlation. In the
figure, Peak 2 is a Fake peak mainly caused by self-correlation
property of signal 1. The superposition of main peak of signal
1 (time delay = -1 sample) and main peak of signal 2 (time
delay = 1 sample) forms a new peak (time delay = 0 sample).
This leads to Peak overlap and Peak deviation.

Due to Peak overlap, Peak deviation and Fake peak, the
peaks in cross-correlation cannot always denote AoA of the
signals from multiple sound sources. We observe that the effect
of beamforming is related to the AoA of different signals.
In the meantime, cross-correlation can depict the relative
amplitude between different signals. We can handle the issues
with iterative framework of correlation and beamforming.

IV. SYSTEM DESIGN

A. System Overview
Fig. 9 gives an overview of the system. The system first

receives and segments the raw voice signals. After prepro-
cessing, the system performs Cross-correlation in different
dimensions, for example columns and rows, and decides which
dimension of the microphone array is used for beamforming.
Moreover, Cross-correlation generates coarse-grained AoA
information for beamforming, which points to the potential
sound sources. In Beamforming, the system first adjusts the
array to the direction of potential sound sources, and then
performs adaptive beamforming. In BF-Correlation Assess-
ment, BeamForming based cross-Correlation (BF-Correlation)
is performed between outputs of beamforming. The ratios
of amplitudes in the direction of potential sound sources
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Fig. 9: System Overview.
to amplitudes in other directions is calculated from BF-
Correlation. The ratios are indicators of beamforming effect.
The iteration of Beamforming and BF-Correlation Assessment
provides relationships between optimized AoAs and indica-
tors. Local Search is performed to find the optimum AoAs
with the indicators. Finally, the system outputs the separated
voices with AoAs.

B. Preprocessing

The voice signals received by the microphone arrays are
split into small segments for the subsequent cross-correlation
and beamforming, so as to reduce computation and exclude
instant noises. The size of segmentation needs consideration.
The increase of segmentation size increases the computation
and reduces the real-time capability of the system. However
, the larger the size of segmentation is, the better the per-
formance of cross-correlation and beamforming will be. To
achieve a balance between performance and time consumption,
we let one segment last for 2 s.

C. Cross-correlation Analysis with 2-D Microphone Array

1) Advantages of 2-D Microphone Array: Traditional ap-
proaches using uniform linear array (ULA) cannot precisely
estimate AoA of signals for multiple sound sources. Moreover,
ULA can only distinguish different AoAs in 180◦. In our
system, we utilize uniform rectangle array (URA) as shown in
Fig. 6. The advantages of utilizing a 2-D microphone array are
two-fold: First, 2-D microphone array may perform AoA and
beamforming algorithms on sound sources from 360◦. Second,
2-D microphone array provides multiple dimensions in the
sound source plane, i.e., the row array and column array, to
estimate AoA of the signals. We can select a proper dimension
from the 2-D microphone array for beamforming and another
for evaluation.

2) Matching Time Delays in Different Dimensions: To
decide which dimension is suitable for beamforming or evalu-
ation, we first analyze the relationship between the time delay
between different dimensions. Without loss of generality, we
analyze time delays in row arrays ∆tr and in column arrays
∆tc from the same sound source. The incident angle of the
time delays are with θr and θc, respectively. Since the row
direction and column arrays are vertical to each other, we can
infer that θr + θc = 90◦, which means sin2 θr + sin2 θc = 1.
Then we can infer from Eq. (5):

∆t2r + ∆t2c =
f2
s d

2

v2
. (9)

fs, d and v are constants. According to the relationship
between ∆tr and ∆tc, we can match the peaks in different
cross-correlation with each other.

3) Beamforming Dimension Selection: After matching the
time delays of cross-correlation in different dimensions, we
select a proper dimension to perform beamforming or assess-
ment. If ∆tr and ∆tc are unique matches of each other, both
two dimensions can be chosen as beamforming dimension.
Another case is that Peak Overlap occurs, which means ∆tr
matches more than one time delays ∆tc1, · · · ,∆tck, or on the
contrary. In this situation, one of the dimensions of the array
cannot distinguish the overlapped peaks in cross-correlation.
Since we need to assess the effect of beamforming with cross-
correlation, we need to choose peak-distinguishable dimension
for assessment. For example, Peak 1 (∆tr = -10 samples) of
row arrays in Fig. 5(a) matches Peak 1 (∆tc1 = 0 sample)
and Peak 2 (∆tc2 = 4 samples) of column arrays in Fig. 5(b)
according to Eq. (9). In this situation, cross-correlation in
column arrays separates the AoA of sound sources in a
fine granularity. Thus, it is more suitable for assessment of
beamforming effect.

In fact, there are multiple dimensions for the system to
perform cross-correlation or assessment, including row, col-
umn, diagonal, etc. Cross-correlations can be performed in
proper dimension with the 2D microphone array for better
performance.

D. Beamforming
Beamforming is performed according to the AoA inferred

from corresponding time delay in the selected dimension.
We first adjust the linear arrays in selected dimension to the
direction of AoAs based on reference point. Then, we perform
adaptive beamforming in the selected dimension and get one
series of voice signal at the position of the reference point.

1) Beamforming Direction Decision: The first step of
beamforming is to “steer” the linear microphone array to
the input angles. For a linear microphone array, steering to
a specific sound source S emitting the signal s(t) means
adjusting the received signals mi(t) of the microphones to
make the signals aligned according to the emitted signal s(t).
Suppose we steer row arrays to sound source S. As shown
in Fig. 10, the incident angle is θ for row dimension and the
frequency of the signal is f . Without loss of generality, we pay
attention to the row array from M1 to M4. The middle point
of the row is chosen as the steering center, which is denoted
as Y1. In far field propagation model, the time difference of
arrival Ti between Mi and the steering center Y1 should be:

Ti = (
5

2
− i)d cos θ/v. (10)

Let the signal recorded by Mi after steering denoted as mi(t)
(at 1′, 2′, 3′, 4′ in Fig. 10). efmi

represents the phase of f
frequency component of original signal mi(t) and efmi

is the
phase of f frequency component of steered signal mi(t). Then
phase of f frequency component efmi

in steered signal mi(t)
should be:

efmi
= efmi

· e−j2πf( 5
2
−i)d cos θ/v, (11)
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Fig. 10: Illustration of “Steering” in beamforming.
For broadband signals, we perform Fourier transform on signal
mi(t) received by Mi and get the phases ef in the form of
complex numbers on different frequencies f . As voice signals
are broadband signals, we can steer all frequency components
of the signal m1(t) to the incident angle. In Fig. 10, M1, M2,
M3, M4 are projected to M ′1, M ′2, M ′3, M ′4, respectively.

2) Adaptive Beamforming: After steering the linear mi-
crophone arrays, we perform adaptive beamforming in the
selected dimension. Adaptive beamforming techniques use
the characteristics of both the source and noise signals to
suppress noise signals. Frost Beamformer[17] is an adaptive
beamformer used to separate broadband signals. The algorithm
applies an finite impulse response (FIR) filter to the signals
of the microphones. Weights on the taps of the microphone
array are adapted to minimize noise power in the array output.
Suppose there are N microphones and the FIR has J×N taps,
J taps for each microphone. Then the following output power
needs to be minimized with the frequency constraints:

min
W

E(m(k)) = E[WTM(t)]

subject to F = [f1 f2 ... fJ ] = [1 0 ... 0],
(12)

whereWT = [ω11, ω12, ..., ω1J , ω21, ..., ω2J , ..., ωN1, ..., ωNJ ]
are weights of the FIR, M(t)T = [m1(t),m1(t +
τ), ...,m1(t + (J − 1)τ),m2(t), ...,m2(t + (J −
1)τ), ...,mN (t), ...,mN (t + (J − 1)τ)] are received signals
with different delays and fj =

∑N
n=1 ωnj . The constraints F

means there are no special frequency constraints for the final
output. The weight matrix W can be inferred by Lagrange
multipliers[41]. In our system, the number of microphones N
is 4 and we may change the number of the taps J to achieve
a balance between running time and performance.

Frost beamforming outputs one series of voice signals
m′(t) from steered signals and the equivalent position of the
component from steering direction is the steering center. That
means there exist a virtual microphone at Y1 receiving the
signal m′1(t) from sound source S. Frost beamforming is
performed on 4 linear microphone arrays in selected dimension
and we get four series of voice signals m′1,m

′
2,m

′
3,m

′
4 located

at virtual microphones Y1, Y2, Y3, Y4.

E. BF-Correlation Assessment

1) BF-Correlation: BF-Correlation performs cross-
correlation between the outcomes of beamforming. The basic
idea of adaptive beamforming is to suppress the signals out
of interest, i.e., the voice signals out of the specified AoAs.
Thus, the outcome of beamforming can be simplified as:

m′l(t) =
n∑
i=1

αi,lsi(t+ ∆t′i,l).C (13)
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Fig. 11: BF-Correlation for different steering angles.

m′l denotes the outcome of beamforming from the lth linear
array. αi,l is the gain for signal si(t), and ∆t′i,l is decided by
steering. Suppose there are two series of beamformed signals
m′p(t) and m′q(t), According to Eq. (3) and (6), we infer that

Corm′
p(t),m′

q(t) =

n∑
i=1

n∑
k=1

αi,pαk,qCorsi(t+∆t′i,p),sk(t+∆t′
k,q

).

(14)
We find that the gain αi,p and αi,q of signal si(t) are related to
the amplitude of cross-correlation. If we perform beamforming
towards Si, the effect of beamforming can be assessed by
the ratio αi,pαi,q/

∑n
i=1

∑n
k=1 αi,pαk,q , which is equivalent

to the ratio of the amplitude of the corresponding peak to the
average amplitude of all time delays in BF-Correlation.

For example, we perform Frost beamforming with row
arrays, M1,M2,M3,M4 and M13,M14,M15,M16, on three
steering angle 180◦, 203◦ and 244◦ corresponding to the
coarse-grained AoAs in Fig. 5(b). After that, we perform
BF-Correlation between the outputs of beamforming m′1 and
m′4 in column dimension. Fig. 11 shows the BF-Correlation
between m′1 and m′4 with different steering angles. We can see
from the figures that the relative amplitude of the peaks are
changed due to the beamforming in row dimension compared
to Fig. 5(b). Peak 1 in Fig. 11(a), Peak 1 in Fig. 11(b), and
Peak 2 in Fig. 11(c) correspond to Peak 1, Peak 2 and Peak 3 in
Fig. 5(b), respectively. And the relative amplitude of the peaks
in Fig. 11 are much higher than that in Fig. 5(b). Therefore,
the ratio of the amplitude of the corresponding peak to the
average amplitude of all time delays in BF-Correlation depicts
the effect of beamforming.

2) Local Search in Iteration Framework: After calculating
the ratio, we further perform beamforming on the steering an-
gles around the initial coarse-grained AoA angle. Each steering
angle corresponds to a ratio according to the BF-Correlation
between outputs of beamforming. We can calculate ratios of
different steering angles iteratively. Then, we use local search
techniques to find the maximum ratio around the original
steering angle. The searching regions and granularity can be
modified according to the requirements of the precision. And
the steering angle corresponding to the maximum ratio is the
optimized AoA of the corresponding sound source.

For example, we calculate the ratios around the three AoAs
estimated from cross-correlation. In Fig. 12, we draw figures
between steering angles and ratios. In Fig. 12(a), the local
maximum ratio appears when steering angle is 182◦. The
AoA of SA is then optimized from 180◦ to 182◦. The other
two AoAs can be optimized in the same way. Moreover, the
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Fig. 12: Local Search for Optimum Solution.
voice separation have better performance in speech recognition
system after the iteration of beamforming and BF-Correlation.

V. PERFORMANCE EVALUATION

A. Experimental Setup
We evaluate our system with the microphone array con-

sisting of XMOS XU216 [42] microcontroller and 4 × 4 In-
venSense ICS-41350 [43] microphones. The distance between
any two adjacent microphones was 2.4 cm. We deployed the
microphone array on the table in a meeting room, as shown
in Fig. 1. By default, we deployed mobile phones as sound
sources on tripods at the same height with the microphone
array, while each sound source is kept 1.5∼2 m away from
the microphone array with different intersection angles. The
audios played by the sound sources are human voices. Each
sentence recorded by the microphone array is regarded as one
sample, and the average lasting time of the sentences is around
10 seconds. We recorded around 20 hours human voices for
our experimental analysis.

Metrics. We evaluate the performance from both the estima-
tion accuracy of sound direction and the recognition accuracy
of the separated voices. For the direction estimation, we use
the error of the AoA estimation compared with the groundtruth
to evaluate. In the experiments, we set the search granularity of
AoA to 0.1◦. For the separated voices, we use iFLYTEK [44]
Automatic Speech Recognition (ASR) systems to recognize
them. For each separated voice, we record another comparison
copy, when only the corresponding sound source is playing
individually. Suppose γs and γc represents the recognition
accuracy of the separated voice and the comparison copy based
on iFLYTEK, then we use the γs/γc to evaluate the relative
accuracy, which is defined as relative ASR ratios.
B. Macro Benchmark

We compared our system with Symphony [5], VoLoc [4]
and cross-correlation methods. Symphony and VoLoc were
performed with 4-mic linear array.

Our solution achieves the best performance in AoA estima-
tion and voice separation among the approaches. Fig. 13(a)
and 13(b) plot the average AoA errors and average relative
ASR ratios of different approaches. The average AoA errors
of our solution is 1.1◦ for single sound source and 1.5◦ for
multiple sound sources, which are better than the existing
methods. Here, VoLoc cannot work in multiple sound sources
scenarios. The relative ASR ratios based on BF-Correlation,
Symphony and cross-correlation are 88.2%, 74% and 50.4%,
respectively. The reason for the outperforming of our method
is that the other approaches analyze the signals in the time
domain with large granularity and the received signals are

interfered by Peak Confusion. Our approach can handle Peak
Confusion and estimates the AoAs of the sound sources in
a fine-grained manner. Fig. 13(c) and Fig. 13(d) plot the
Cumulative Distribution Function (CDF) of AoA error and
ratio of ASR accuracy of our solution. We find that 80% of
the AoA estimation errors can be controlled less than 1.7◦ and
only 20% of the accuracy ratios are below 74.8%. That means
our approach can achieve good performance in most cases.
C. Micro Benchmark

1) Robustness to Different Numbers of Sound Sources.
Our solution can achieve good performance when the number
of sound sources in the scenario is less than 5. To evaluate
the robustness to the number of sound sources, we deploy 2,
3, 4 and 5 sound sources in the meeting room, respectively.
Fig. 14(a) plots the AoA estimation errors and relative ASR
ratio. We find that due to the strong interference among the
voice signals, the larger number of sound sources is, the
poorer the performance will be. When the number of sound
source is 4, the average AoA error is 2.8◦ and the average
relative ASR ratio is 76%. The performance of our solution
gets unacceptable if there are 5 sound sources in the scenario.

2) Robustness to Different Intersection Angles. Our
system can efficiently separate the multiple sound sources,
when the intersection angle between adjacent sound sources
is over 20◦. We set two sound sources in the experiment and
changed the intersection angles between the two sound sources
from 10◦ to 90◦. Fig. 14(b) shows that with the increase of
the intersection angles, the performance of AoA estimation
and voice separation gets better.

3) Robustness to Different Noise Conditions. Our system
can achieve high accuracy in AoA estimation and acceptable
performance of voice separation in different noisy scenarios.
We conducted the experiments in three scenarios with different
noise conditions, including quiet environment, noise from
single direction and noise from all directions. In the quiet
scenario, there are no sound sources except for the sound
sources. We brought in the noise from air conditioner in the
second scenario and brought in the noise of rains in the third
scenario. Fig. 14(c) shows the impact of the noise. The noises
mainly affect the performance of voice separation and slightly
affect the performance of AoA estimation. Nevertheless, our
system can still work with acceptable performance.

4) Robustness to Different Multipath Conditions. Our
system can achieve better performance outdoors because in-
door environment has more complicated multipath effect. The
indoor experiments is performed in the meeting room. The
main reflectors are walls, ceilings and tables. The outdoor
experiments are performed in open with few reflectors except
for the ground. The result is shown in Fig. 14(d). We infer
that the multipath effect in the indoor environment is much
more severe than the outdoor environment. Although spatial
filters can suppress multipath effect, they cannot completely
eliminate the multipath effect, which reduces the accuracy in
the indoor environment.

5) Robustness to Different Parameters. Higher sampling
rate and larger number of taps can improve the performance
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Fig. 14: Micro benchmark.

of voice separation. We further changed the sampling rate
and the tap number in our system, to evaluate the impact
of the software parameters. Fig 14(e) and 14(f) show the
performance of the system with different sampling rates and
tap numbers. With the increase of sampling rate and number
of taps, the performance becomes better and the computational
consumption increases. Particularly, the number of taps mainly
affect the voice separation, while the sampling rate affect both
the AoA estimation and voice separation.

VI. DISCUSSION

Multipath Interference. The multi-path effect in indoor
environment could create “virtual” sound sources, i.e., multiple
sound sources emit the same voice signals from different di-
rections with different time delay. This could further interfere
with the AoA estimation and subsequent voice separation.
To tackle this issue, we apply spatial filters for voice sep-
aration, which retain the signals from the steering direction
and suppress the signals from other directions. Thus, in BF-
correlation analysis, the voice signals from the original sound
source cannot be influenced by the virtual sound source in
other directions.

Computational Cost of BF-Correlation. The computa-
tional cost of BF-Correlation is high since iterative cross-
correlation and beamforming are performed in the algorithm.
To tackle this issue, we split signals into smaller segments.
BF-Correlation is post-processing of voice signals, the system
can first record all the voice signals and process afterwards.
We can reduce the computational cost of BF-Correlation by
segmenting the signals with suitable length. Meanwhile, lower

sampling rate and matrix calculation optimization may reduce
the computational cost as well.

VII. CONCLUSION

In this paper, we propose a novel 2D microphone array-
based system to perform voice separation in multiple sound
source scenarios. A BeamForming-based cross-Correlation
(BF-Correlation) scheme is presented for accurate AoA es-
timation and adaptive beamforming. We analyze the peak
confusion issues for cross correlation via thorough empirical
study and modeling, and propose to use BF-Correlation to
accurately estimate the AoA of multiple sound sources and
automatically optimize voice separation in our iterative frame-
work. We implemented a prototype system and evaluate the
performance in real environments. Experiments show that the
average AoA error is 1.4◦ and the average ratio of automatic
speech recognition accuracy is 90.2% in the presence of three
sound sources.
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