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Abstract—Mobile robot-assisted book inventory such as book
identification and book order detection has become increasingly
popular in smart library, replacing the manual book inventory
which is time-consuming and error-prone. The existing systems
are either computer vision (CV)-based or RFID-based, however
several limitations are inevitable. CV-based systems may not be
able to identify books effectively due to low accuracy of detecting
texts on book spine. RFID tags attached to books can be used to
identify a book uniquely. However, in high tag density scenarios
such as library, tag coupling effects of adjacent tags may seriously
affect the accuracy of tag reading. To overcome these limitations,
this paper presents a novel RFID and CV fusion system for Book
Inventory using mobile robot (RC-BI). RFID and CV are first
used individually to obtain book order, then the information will
be fused by the sequence based matching algorithm to remove
ambiguity and improve overall accuracy. Specifically, we address
three technical challenges. We design a deep neural network
(DNN) model with multiple inputs and mixed data to filter out
interference of RFID tags on other tiers, and propose a video
information extracting schema to extract book spine information
accurately, and use strong link to align and match RFID- and CV-
based timestamp vs. book-name sequences to avoid errors during
fusion. Extensive experiments indicate that our system achieves
an average accuracy of 98.4% for tier filtering and an average
accuracy of 98.9% for book order, significantly outperforming
the state-of-the-arts.

Index Terms—Computer Vision, RFID, Book Inventory, Multi-
modal Fusion.

I. INTRODUCTION

A. Motivation and Problem Statement

Mobile robot-assisted book inventory has become increas-
ingly popular in smart library to replace the manual book
inventory which is both time-consuming and error prone
especially when dealing with millions of books [1], [2]. This
paper studies mobile robot-assisted book inventory including
book identification and book order detection, we formally
describe the problem as follows. Given a typically library
setting where books are placed on bookshelves with multiple
tiers, a mobile robot equipped with an RFID reader and a
camera moves between bookshelves and scans books tier by
tier. Two specific tasks need to accomplish for book inventory.
The first task is to identify all the books on a particular tier
of bookshelf given that tags are read from all tiers within
the range of antenna, e.g., determine if a tag belongs to
the tier currently in scanning. Given the total number of
tags n read by antenna and the number of tags m that
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have been correctly determined if they belong to the tier
in scanning or not, we define the accuracy of tier filtering
as ψ=m

n ∈ [0, 1]. The second task is to detect book order
for each tier of bookshelf. To thoroughly evaluate the book
ordering accuracy, we adopt two metrics as follows. The first
metric is Normalized Kendall Tau Distance (NKTD), defined
as κ=K(η, η′)/

(
n
2

)
, where η is the ground-truth sequence, η′

is the sequence measured, and K is the Kendall tau distance
[3] that indicates the total number of disordered pairs. Divided
by

(
n
2

)
, the Kendall Tau distance is normalized into a range

of [0, 1]. The second metric is Normalized Value Deviation
(NVD), defined as ε=D(η, η′)/

(
n
2

)
, where D is obtained by

summing the absolute value of the difference between elements
in the corresponding positions of the two sequences. We also
normalize it by using

(
n
2

)
to divide it, thus the accuracy of

book order ε is also within [0, 1].

B. Limitations of Prior Art

The state-of-the-art systems for book inventory can be clas-
sified into two categories: RFID-based and CV-based. RFID-
based systems such as STPP [2] and RF-Scanner [4] use the
order of the perpendicular point (i.e., the point where antenna
passes by tag) for tag order. These systems perform well in
most cases given an advantage of quick identification of RFID.
However, dense deployment of RFID tags in a library setting
will cause serious tag-coupling effect and tag collisions, dra-
matically degrading the performance of inventory (i.e., missing
tags or wrong order detected). Different from RFID, CV-
based systems [5]–[7] utilize rich texts and graphic patterns on
book spine to differentiate and locate books, thereby detecting
book order. However, detecting texts and patterns with CV is
not perfect, particularly in various lighting environments and
different book orientations. Even many books have no text on
their spine. In summary, neither of these systems can achieve
a satisfactory accuracy for book inventory.

C. Our Approach

In this paper, we propose an RFID and CV fusion system for
Book Inventory using mobile robot named RC-BI, leveraging
on the advantages of both RFID and CV for improving
accuracy and robustness of book order detection. As illustrated
in Fig. 1, RC-BI uses a mobile robot equipped with a camera
and an RFID reader connected with an antenna to scan
bookshelves. During scanning, the RFID reader continuously
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Fig. 1. RC-BI hardware.

collects data from tags attached to books, and the camera
records the video of the facing tier of bookshelf. We design
our system in three modules. In the RFID module, we design
a multiple inputs and mixed data deep neural network (DNN)
to filter out tags from other tiers. Then, we sort tags by
the timestamp of the maximum RSSI, and thus generate an
RFID-based timestamp vs. book-name sequence. In the CV
module, RC-BI first stitches frame images of the video into
a panorama. To extract book texts accurately, we use Optical
Character Recognition (OCR) on frame image and sort the
results on panorama with timestamps. To deal with overlapped
and fragmented OCR results, we propose a cluster algorithm to
cluster the fragmented texts into book-names, thus obtain the
CV-based timestamp vs. book-name sequence. In the RFID-
CV fusion module, we propose the concept of strong link to
align and find one-to-one mapping between sequences from
two modals. Finally, according to the mapping, RC-BI updates
the RFID-based sequence, and obtains the final book order.

D. Challenges and Solutions

To extract and fuse the information from RFID and CV, we
identify three technical challenges.

The first challenge is how to filter out tags on other tiers of
bookshelf. Since RFID antenna typically has a wide coverage,
tags located on other tiers (i.e., not the current tier in scanning)
will be read, causing serious interference to order detection.
In a normal case, the changing rate of phase profile indicates
the tag-antenna distance, i.e., the distance between tag and
antenna trajectory. However, in a library, books are densely
placed on bookshelves with a typical distance of 2cm away
from each other, which brings heavy couple effect and channel
competition. Therefore, the sample count of most tags can be
extremely low. Using the sparse data, the unwrapping method
often fails and fitting results on these data may result in
large errors. In this paper, we design a multiple inputs and
mixed data DNN model. We combine features from unwrapped
phase and RSSI profile images and numerical sequences. The
quadratic coefficient of phase fitting function and robot-shelf
distance, i.e., the distance between trajectory of robot and
shelf, are also taken into account. This design can effectively

find features of each input and their relationship, potentially
achieving high accuracy.

The second challenge is how to extract highly credible
and orderly information from the video. Although the video
contains much information of book spine, how to extract and
sort them is a critical problem. A common idea is to conduct
OCR on each frame image, but the recognized text blocks are
fragmented. Furthermore, since the speed of robot is unstable
in most cases, it is difficult to determine the sample interval to
extract the image, which causes the recognition results contain
many unordered and repeated information. Another method is
to conduct OCR on panorama, but the panorama usually con-
tains many pixel artifacts, which seriously reduces recognition
accuracy. In our paper, we combine the advantages of these two
ideas. We conduct OCR on the image of each frame, and map
the results into the panorama, hence avoiding the problem of
pixel artifacts while keeping high recognition accuracy. To deal
with the problem of overlap and fragmentization, we propose
an de-overlap and clustering algorithm.

The third challenge is how to align the two sequences
from RFID and CV. To avoid introducing extra errors to
RFID sorting results, before fusing CV sequence into RFID
sequence, we have to align these two sequence. Since RFID
sequence usually has a large time offset, and its items are
out of order, we cannot align two sequences directly using
the average timestamp difference. Additionally, if we use the
timestamp offset between the matched items between two
sequences, how to avoid the effect of mismatching is also a
tricky issue. In our paper, we propose the concept of strong
link. Strong link can effectively avoid mismatching problems,
and multiple rounds of strong link based adjusting ensure
highly accurate alignment.

E. Contributions and Advantages over Prior Work

The contributions of this paper are summarized as follows.

• We propose a novel tier filtering method based on the
specially designed multiple inputs and mixed data DNN
model. The model can effectively filter out the data from
other tiers in a densely deployed scenario with an average
accuracy of 98.4%.

• We propose a novel video information extracting schema,
which combines the OCR on frame image, the mapping
with panorama, and the upper box based cluster algo-
rithm. The schema can extract information from video
orderly and accurately.

• We fully implement RC-BI, and conduct extensive ex-
periments in a library setting to evaluate its performance.
With our fusing method based on strong link, RC-BI
achieves an average order accuracy of 98.9% (measured
with normalized Kendall tau Distance), demonstrating the
effectiveness of fusing CV and RFID.

We organize the remainder of this paper as follows. Sec-
tion II introduce the brief architecture of RC-BI, and Sec-
tion III presents the details of our approach. Section IV
presents our implementation, and Section V shows the exper-
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imental results. The related work is discussed in Section VI,
and Section VII finally concludes the paper.

II. SYSTEM ARCHITECTURE

The RC-BI system is designed for the inventory of RFID
tagged objects in the libraries, warehouses, etc. As illustrated
in the Fig. 1, the hardware architecture of RC-BI contains
an RFID reader connected with an antenna, an RGB camera
(we employ a smart phone to play this role in experiments),
and a mobile robot. When the robot drives the whole system
moving in a straight path, the RFID reader keeps reading tags
and the camera records the video of the shelf simultaneously.
The processing mechanism of RC-BI can be briefly divided
into three modules: RFID module, CV module and RFID-CV
fusion module, as illustrated in the Fig. 2.

RFID module: Since all the tags in the read range of RFID
antenna will be read, the recorded RFID data contain irrelevant
data. We first use a multiple inputs and mixed data DNN to
filter out the tags from other tiers and environmental noisy tags.
Then, RC-BI gets the timestamps when the robot just passes
by the tags using the vertex of RSSI profile. By querying
the database using RFID Electronic Product Code (EPC), the
RFID module eventually acquire the RFID-based timestamp
vs. book-name sequences.

CV module: In the CV module, we extract RGB images
from video frames. For each image, we conduct OCR to
acquire the texts and the according coordinate of text boxes in
that image (local coordinate). Then, we stitch the images into
a panorama and mapping all text boxes into the corresponding
position (global coordinate) of this panorama. Since the text
boxes are fragments with overlap, we conduct de-overlap and
clustering algorithms to get tidy book-name sequence. Finally,
we acquire the CV-based timestamp vs. book-name sequences
by calculating the timestamp of text boxes according to the
timestamp of its original frame image.

RFID-CV fusion module: In this module, we propose
strong link to mine the most feasible correspondence of
book-names between RFID-based and CV-based sequences. To
align two sequences, RC-BI uses the average time difference
between both ends of the strong link to adjust the timestamps.
For each book-name in the RFID-based sequence, RC-BI
matches it with the most similar and closest book-name
in the CV-based sequence. Since the timestamps have been
aligned, RC-BI replaces the each book-name in the RFID-
based sequence with the timestamp of matched book-name in
the CV-based sequence. Finally, the system re-sorts the RFID-
based sequence according to the updated timestamps.

III. DETAILS OF THE RC-BI SYSTEM

In this section, we first introduce some preliminary knowl-
edge of RFID. Then, we introduce details about the operation
of RC-BI following the data flow in the Fig. 2.
A. Preliminary knowledge of RFID

The RFID system consists of reader, antenna and RFID
tags attached on objects. The antenna is connected with the
reader, and the reader is controlled by the PC. The RFID data

we utilize in this paper is EPC, phase and Received Signal
Strength Indicator (RSSI). EPC is the unique identifier of each
RFID tag. The phase can be calculated as follows [8].

θ =

[
2× d
λ
× 2π + µ

]
mod 2π, (1)

where d is the distance between antenna and tag, λ is the
wavelength, and µ is hardware offset. The relationship between
RSSI and distance can be expressed as follows [8], [9].

PR

PT
∝ GTGR

(
λ

4πd

)2

, (2)

where the power attenuation is described as the power ratio
between receiver and transmitter PR

PT
. GT and GR are respec-

tively the antenna gains from the transmitter and receiver.

B. RFID Processing

As illustrated in the Fig. 1, RC-BI makes mobile robot move
straightly along the bookshelf carrying the RFID reader and
camera. During the scanning, RFID reader keeps collecting the
data from the RFID tags, which are attached on the back side
of the books and near the spine of books.

1) Filtering out tags on other tiers: We use the circular
polarization antenna to scan the shelf. Considering most of
tags are blocked by books, we set the transmitting power to
maximum, i.e., 32.5dBm, to ensure the activation energy of
tags. However, many unrelated tags (e.g., tags on the other
tiers and tags in the environment) will be read, which brings
great interference to the ordering. To distinguish the tags on
the current tier, the previous works mainly focus on shape of
phase profile [2] [4]. According to the Eq. (1), we can infer
that the unwrapped phase is linearly related to the distance
between the antenna and the tag, i.e., tag-antenna distance,
as illustrated in Fig. 4(c). Assuming the robot moves along
the shelf in a straight path, theoretically the larger tag-antenna
distance is, the smaller the correspondence radial velocity is.
According to the curvature at the vertex of the phase profile or
the phase changing rate, the tiers of tags can be distinguished.
However, the average distance between tags on the shelf is
around 1cm ∼ 2cm. Such a dense distribution will cause
strong coupling effect, and due to the occlusion of tags, the
noise in phase profile is intense. Plenty of experiments show
that even in the same tier, the curvature of the profile is
different. What’s worse is that, the phase profile from the
further tier sometimes has nearly same curvature as the phase
profile from the facing tier.

To solve this problem, we develop a multiple inputs and
mixed data DNN to filter out tags on other tiers. The net has
7 inputs: the unwrapped phase profile image, RSSI image,
unwrapped phase sequence, RSSI sequence, sample count,
quadratic coefficient of fitted phase curve, and the distance
between the robot and the shelf. The unwrapped phase profile
image and unwrapped phase sequence are two representations
of the same data, as are the RSSI image and RSSI sequence.
But they are not redundant, since we choose these inputs
for two reasons: mining as many distance-related features as
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Fig. 2. System overview.

possible and avoiding the instability of a single parameter. As
mentioned above, the phase profile contains information of the
tag-antenna distance, but some tags on other tiers can get the
similar phase profile. According to Eq. (2), the changing rate
of RSSI profile can also reflect the tag-antenna distance. How-
ever, compared to the phase, RSSI is an unstable parameter,
which is more vulnerable to the multipath effect. Besides, it is
of higher probability for tags with smaller tag-antenna distance
to get a large sample count, since RFID tag needs to gain
power from the antenna. Theoretically, the time vs. unwrapped
phase curve is a branch of the hyperbola. Considering the
complexity of hyperbolic fitting, we simplify the calculation
and fit the curve approximately with the quadratic function.
The quadratic coefficient is positively correlated with phase
changing rate, thus, negatively correlated with tag-antenna
distance. Therefore, the quadratic coefficient is an important
parameter to accelerate the convergence of the model in the
training. Furthermore, with different distances between the
robot and shelf, the distribution of the features acquired from
the other six parameters will be different, so the distance
between the robot and shelf is also a necessary parameter. In
summary, except for distance between the robot and the shelf,
these inputs all reflect the tag-antenna distance to a certain
extent. Since each single parameter has many outliers, it is
rational and necessary to combine these variables together for
calculation. However, it is difficult to determine the functional
relationships, weights between them if these parameters are
combined. Therefore, we use a neural network-based method.
Theoretically, the DNN can not only learn the relationships,
weights, and thresholds automatically, but also discover other
features beyond the tag-antenna distance.

As illustrated in Fig. 3, we adopt a DNN with multiple
inputs and mixed data. Among the inputs, the phase and
RSSI profiles are two image data. Besides the RSSI curve
itself, we also draw a baseline at 0dbm and limit the Y-
axis from −80dBm to 10dBm in the RSSI profile image,
in order to utilize the offset between the baseline and the
curve to make the net more sensitive to learn the value of
RSSI. The image data are first inputted into a ResNet50 [10],

which is a commonly used network to extract features from the
image. After ResNet50, we link a multi-head attention block,
which helps the net captures richer features. Through multi-
head attention block and one fully connected layer, we get a
feature vector with length 16. With the same operation on RSSI
profile image, we also get a feature vector of length 16. The
unwrapped phase and RSSI sequence are exactly two 2× 256
arrays. The first row of the array is the robot moving distance
(acquired using timestamp×speed) sequence. The second row
of the array is the unwrapped phase sequence or RSSI se-
quence. To match the input size, we use linear interpolation to
make both sequences with length 256. To extract the features
as fully as possible and mine more relations between moving
distance and phase/RSSI, we use a network structure based
on FPN [11], [12], which is adept at capturing multi-level
features. We also link a multi-head attention block and fully
connected layer after FPN-based network and get another
two feature vectors with length 16. Then, the sample count,
quadratic coefficient and robot-shelf distance are concatenated
with the above four feature vectors to form a feature vector
with length 67. This feature vector is sent to multiple fully
connected layers to find relations between different features
of inputs. Finally, it outputs a vector with length 2, and the
index of the maximum is the class number.

2) Acquiring RFID-based timestamp vs. book-name se-
quence: When the robot moves along the shelf, the real-
time distance between antenna and the tag decreases first, and
increases after the robot arrive at the perpendicular point, i.e.,
the point at which the robot just passes by the tag. The raw
phase profile looks like Fig. 4(a), which has many segments
due to the periodicity. To acquire the timestamp sequence,
STPP [2] utilizes a Dynamic Time Warping (DTW) based
matching algorithm to find the V-zone in the center of the
profile, as shown in Fig. 4(b). Then it conducts quadratic fitting
on the V-zone, and takes the symmetry axis of the conic as
the timestamp of the tag. Different from STPP, RF-scanner
[4] uses unwrapping method to splice these segments into an
unwrapped phase profile, as Fig. 4(c) shows, and use the whole
unwrapped phase profile for quadratic fitting. For most cases
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where the phase profile is legible with enough sample points,
these phase based methods perform well. However, when the
sample count of the profile is sparse, even in some cases
sample count is no more than five, which brings great error to
the DTW matching and unwrapping. In summary, these phase
based methods is lack of robustness for sparse data.

On the contrary, although the RSSI is more sensitive to
multipath effect than the phase, it does not contain periodicity.
Thus, the trend of RSSI changing with distance is obvious, as
shown in Fig. 4(d). Even when the data is very sparse, RSSI
is still meaningful to measure the distance. But in that case,
the phase data becomes less reliable. Because sparse phase is
difficult to unwrap, separated phase points with periodicity
are ambiguous. Therefore, RSSI is a more robust quantity
than the phase for solving our problem. Furthermore, since
we have the CV module to correct errors in the end, we
don’t request the RFID-based timestamp sequence to be very
precise. Finally, we adopt the timestamp of the peak in the
RSSI profile as the timestamp for the corresponding book.
After querying the book-name for each tag in the database,
we get the RFID-based timestamp vs. book-name sequence,
i.e., α=<<t1, b1>, · · · , <ti, bi>, · · · , <tn, bn>>, where b
represents book-name.

C. CV processing

The camera is installed horizontally close to the antenna,
and its field of view exactly covers the upper and lower edges
of one tier in the bookshelf. During the scanning, the camera
records the video of the facing tier, which contains the image
information of the book spine.

1) Extracting and stitching frame images: Compared with
the video itself, the panorama can reflect the positional re-
lationship of the books more clearly and orderly. To get the
panorama, we first extract frames from the video, then stitch
them into one image. RC-BI extracts frames with a pre-defined
interval, i.e., τ = l·f

v , where l is the excepted moving distance
interval between two adjacent extracted frame, f is the frame
rate of the video and v is the moving speed of the robot. In
our system l is set as 0.05m, the frame rate of the camera is
set as 30fps. To reduce the consumption of frame extracting
and image stitching, we develop a classifier, which is simple
DNN consisting of a ResNet34 and multiple fully connected
layers, to detect whether there are books in the frame image.

If three consecutive frames are judged to be with books, we
infer that the bookshelf has entered the camera’s field of view,
and the system start to store the extracted images. When three
consecutive frames are judged to be without books, we infer
that the bookshelf has left the camera’s field of view, then
RC-BI stops extracting images. After extracting, we acquire
a set of frame images, then we use an open-source program
called OpenPano [13] to stitch the frame images. To improve
the stitching efficiency, we divide the images extracted from
one tier into six groups, and use multiple threads to process
these six groups in parallel. The stitched images from these
groups are eventually stitched again to get the panorama of
the tier.

2) Conducting OCR and coordinate mapping: The OCR
model we use is PaddleOCR [14], which is an open-source
framework with excellent recognition performance. However,
when we carry out OCR on the panorama, the recognition
result is not satisfactory. The reason is that the panorama con-
tains a large range of pixel artifacts caused by lens distortion
and jitter. To solve this problem, we conduct OCR on frame
images instead of the panorama. The frame image is sharper
than the panorama, and the same book shows many times
in frame images due to the necessary overlap for stitching.
Therefore, the spine of the same book will be recognized
many times, thus we can select the recognition result with
the highest confidence as final result. OCR program gives set
of recognition entries formatted as <fid, box, text, score>,
where fid represents which frame image the recognition
entry comes from, box represents four vertex coordinates of
rectangular area where the text is located, text and score
represents respectively the recognized text and its confidence.

The result produced by OCR is a set of disordered recog-
nition entries. The box of each entries is according to the
coordinate system of corresponding frame image,i.e., local
coordinate, and we need to map them into the coordinate
system of panorama, i.e., global coordinate. In RC-BI, we
utilize the theory of image stitching to realize the coordi-
nate transform. RC-BI takes Scale-invariant Feature Transform
(SIFT) algorithm to extract keys points from the phase image
and the panorama, then it uses knnMatch algorithm to find the
mapping between them, finally uses Random Sample Consen-
sus (RANSAC) algorithm to calculate the homography matrix.
The homography matrix represents mapping between local
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Algorithm 1: Upper Box Based Entry Cluster (UBEC)
Input: Entry sequence E, image shape (w, h),

Distance threshold D
Output: Cluster-Entry mapping M

1 M←{}; I←0; Sort(E) ;
2 for i in range(0, E.length) do
3 pre entry ← E[i];
4 if pre entry.cluster 6= null then continue;
5 else
6 pre entry.cluster←I; pre entry.upperbox

←GetUpperBox(pre entry.box, w, h);
M [I].add(pre entry); I ←I + 1;

7 for j in range(i+ 1, E.length) do
8 post entry ← E[j];
9 if Distance(post entry, pre entry)>D then

10 continue

11 if Cover(pre entry.box, pre entry.upperbox)
then

12 post entry.cluster←pre entry.cluster;
13 M [pre entry.cluster].add(post entry)

14 return M ;

coordinate and global coordinate, using which we transform
local coordinates in each entry to global coordinates. After
transform, the entry can be simplified as <box, text, score>,
where box is according to global coordinate system, and the
set of entries can be represented as E.

3) Acquiring CV-based timestamp vs. book-name sequence:
The recognized entries are repeated and fragmented, e.g.,
the same texts are stored in multiple overlap entries; or
the text of one book’s title is stored in one entry, but the
corresponding text of its authors is stored in another entry.
To remove the overlap between entries, we group the entries
whose distance of the box center is less than 50pixel, i.e.,
an empirical threshold, and only reserve the one with the
highest confidence. To concatenate the fragments as the whole
book-name, we develop an Upper Box Based Entry Cluster
(UBEC) algorithm to cluster these entries. In our algorithm,
we sort the entries by the area of the box from large to small,
then traverse the sorted sequence. For each entry, if this entry
doesn’t belong to any cluster, we give it a new cluster number,
and use it as the representative of this cluster, then calculate
its upper-box. The upper-box is acquired by extending the
height of the box until it hits the border of the panorama,
thus forming a large box expected to cover the whole book
spine. The detailed processing can be seen in the pseudo-
code in Algorithm 1. Then, we stitch these texts in same
cluster together as the book-name, and take upper-box of the
representative as the location of the book-name, formatted as
<class no, upper box, book name>.

While the book-name has been obtained, how to acquire
the timestamp is still a problem. Fortunately, the fixed frame
rate of video makes the frame number a nature timer. Using
the frame rate and frame index of the video, each coordinate

in the center of corresponding image can be bounded with a
timestamp. Next, utilizing the homography matrix in the pre-
vious subsection, the center points of the frame images can be
mapped to the panorama. Thus, as we only care about the hori-
zontal coordinate, we get a timestamp vs. coordinate sequence,
i.e., β=<<t1, x1>, · · · , <ti, xi>, · · · , <tn, xn>>, where
t represents timestamp, x is the horizontal coordinate. We
take the horizontal coordinate of the upper-box’s center as
the location of each cluster. Based on the sequence β,
taking the locations of clusters as interpolation points, we
can get the CV-based timestamp vs. book-name sequence,
i.e., γ=<<t1, b1>, · · · , <ti, bi>, · · · , <tn, bn>>, where b
represents book-name.

D. RFID-CV fusion

The RFID-CV fusion module utilizes the relative order of
CV-based timestamp vs. book-name sequence to update the
timestamp of RFID-based timestamp vs. book-name sequence.

1) Timestamp alignment: It is a common phenomenon that
timestamps of different modal data are not synchronized. For
our system, the timestamp offset is mainly caused by two
reasons. First, the clock times of RFID reader and camera are
not fully calibrated, and their startup and communication delay
are different. Second, since the camera and RFID antenna are
deployed horizontally with around 15cm distance along the
robot moving direction, there are naturally offset in timestamp.
To solve this problem, we propose the concept called strong
link, which represents the most feasible matching pairs of
the elements from RFID-based and CV-based sequences. We
utilize the FuzzyWuzzy [15], which is a fuzzy string matching
algorithm based on the Levenshtein Distance, to match the
book-names from two sequences and give a matching score
in the interval of [0, 100]. The strong link should meet three
conditions: (a) The timestamp offset between both ends of the
link should within a threshold τ1, which is an empirical value
set as half of the range of the RFID timestamp sequence. (b)
The matching score between the book-names of both ends
should exceed a threshold σ1, which is an empirical value set
as 50. (c) The matching score of the strong link should be
the highest in the searching range τ1, and exceed the second
highest with a threshold ∆σ, which is an empirical value set
as 5. Before the alignment, RFID-based sequence α and CV-
based sequence γ are sorted by timestamp from small to large.
Next, RC-BI traverses items in α to find the strong links with
items in γ, and calculate the average timestamp offset between
ends of strong link. If the average timestamp offset is smaller
than a threshold 0.3s, we consider two sequences have been
aligned. Otherwise, RC-BI repeats the procedure above again
until the average timestamp offset meets the threshold.

2) Updating RFID timestamp sequence: RC-BI matches
each item in RFID-based sequence α with a corresponding
item in CV-based sequence γ. The matching method is just like
the method to find strong link, but with the threshold modified.
We use extreme thresholds to find strong link, because we
only need few strong link with highest confidence, which is
unsuitable for the matching for most items. In the matching
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procedure, we determine the threshold considering the mess
degree of both α and γ. However, how to define the mess
degree without the knowledge of ground-truth. We define the
length of α and γ respectively as u and v, the range of
timestamps in α and γ respectively as S and T . The mess
degree of RFID-based sequence can be defined as a=S

T ,
because the timestamps of γ is concentrated with the limit
of the panorama. The mess degree of CV-based sequence can
be defined as b= v

u , because assuming the DNN model for
filtering out tags on other tiers is pretty accurate (we reveal
this point in section V), the length of α should be very close to
the number of book-names recognized, except for some books
without text. Then we set τ1=abS

2 , σ as 20 and ∆σ as 10. With
the searching range τ1 enlarged and lower bound of matching
score decreased, increasing ∆σ is necessary to avoid the extra
error caused by mismatching books with similar name. After
matching, we get the mapping form α to γ, then we utilize the
matching score as metric to transform one-to-many mapping
into one-to-one mapping. According to the mapping, RC-BI
updates timestamps in α, and get the final ordering sequence.

IV. IMPLEMENTATION

In this section, we introduce the hardware and software
deployment of RC-BI system.
A. Hardware

The hardware includes fours parts: mobile robot, RFID
reader, RGB Camera, and RFID tagged books. The mobile
robot is based on a self-designed automated guided vehicle,
which mainly consists of a motor, lidar, lifting arm, com-
munication module, and a central control unit. The robot
communicates with the server by the WiFi module. Since many
books have a certain tilt and the antenna is always moving, we
select a circular polarization antenna, JT-628 RFID antenna,
to achieve a more stable reading rate. The antenna is installed
on the lifting arm connected with an Impinj Speedway R420
RFID reader. Horizontally aligned with the RFID antenna, we
also install a Oneplus 7 Phone servicing as an RGB camera
to record the video. The lifting arm can adjust the camera
and antenna to different heights to read different tiers of the
bookshelf. Each book is tagged with the Alien AZ-9640 RFID
tag on its back cover and near the middle of its spine.
B. Software

The robot is driven by the Robot Operating System (ROS)
system, and the data collection program is developed based
on the Impinj Octane Java SDK [16]. The image stitching
and OCR program are developed based on OpenPano [13] and
PaddleOCR [14]. The tier filtering DNN program is developed
on the TensorFlow framework, and the classifier to detect the
start and end frame is developed on PyTorch. Both of the two
models are trained on Dell Precision 7920 server. We develop
the RFID CV fusion algorithm in Python, running in a Lenovo
X1 Carbon 2018 laptop with 8G RAM and Intel Core i5 8250U
CPU. During the operation, the RFID system is set with a fixed
frequency of 920.625MHz and 32.5dBm transmitting power,
and the frame rate of camera is set as 30fps.

V. EVALUATION

In this section, we conduct extensive experiments to evaluate
the effectiveness of the models, the accuracy of the RFID-
CV fusion algorithm and compare the performance with the
state-of-the-art. The metrics to measure the accuracy have been
defined in the part of problem statement in section I.

A. Effectiveness of the models

We use two indispensable models in the system to deal with
some detailed but critical issues.

1) Accuracy of the model for tier filtering: The first model
is the multiple inputs and mixed data model used for filtering
out the RFID signal from other tiers. We collect sets of
data with different conditions, including different speeds, tiers,
distances, and slopes of books (the details about condition
setting will be explained in the evaluation of order accuracy).
As explained in Section III-B1, for each tag data, we generate
7 inputs: two image data of unwrapped phase profile and
RSSI profile, two sequences of moving distance vs. unwrapped
phase and moving distance vs. RSSI, sample count, quadratic
coefficient and the robot-shelf distance. The RFID reader
collects all data from the tags in the reading range and an
average of 263 tags can be read during one scanning, of which
around 70% is the RFID signal from other tiers. We build the
training data set using the 24612 data collected from 60 times
scanning with different conditions, insisting of 17035 positive
samples and 7577 negative samples. The model is trained with
a batch size of 64 and 80 epochs, and the loss function is
cross-entropy. We collect the test data set with 77750 items
from 296 times scanning with different conditions, including
24569 positive samples and 54727 negative samples. As shown
in Table I, we test the model under different conditions. The
minimum accuracy is 94.2%, and most of the accuracy exceeds
99.1%, and the average accuracy is 98.4%. which is enough
for RC-BI to filter out the tags from other tiers.

2) Accuracy of the model for video cropping: The second
model is the book classifier used to determine the start and
end time of the video. To train this model, we collect 6452
images, of which 4884 images are the positive samples with
book spines, 1568 images are negative samples without book
spine. The model is trained with batch size of 8 and 20 epochs.
The trained model is tested in a data set with 1870 positive
samples and 1226 negative samples. The accuracy, precision
and recall of the test result are respectively 99.42%, 99.95%
and 99.09%. In actual use, we judge the scanning starts when
three consecutive frame images are all tested positive, and ends
when three consecutive frame images are all tested negative.
Using this mechanism, the start and end scanning points of
more than 300 of the videos we collect are all correctly judged.

B. Performance under different conditions

In this section, we first evaluate the performance of RC-
BI with different speeds, tiers, distances, and slopes, then
we compare RC-BI with the state-of-the-art. Since the high
accuracy of tier filtering model, in order to compare order
accuracy more conveniently, we set a reasonable assumption
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TABLE I
PERFORMANCE OF THE MODEL FOR TIER FILTERING

Speed
(m/s)

Tier Distance
(m)

Slope
(degree)

Number True
Negative

False
Positive

False
Negative

True
Positive

Accuracy Precision Recall

0.15 2 0.3 0 8376 5760 24 6 2586 0.9964 0.9908 0.9977

0.2 2 0.3 0 8507 5797 37 38 2635 0.9912 0.9862 0.9858

0.1 2 0.3 0 8371 5825 35 37 2474 0.9914 0.9861 0.9853

0.1 2 0.3 30 8989 6293 10 14 2672 0.9973 0.9963 0.9948

0.1 2 0.4 0 8696 5995 32 166 2503 0.9772 0.9874 0.9378

0.1 3 0.3 0 8811 5592 119 393 2707 0.9419 0.9579 0.8732

0.1 2 0.2 0 8877 6104 19 9 2745 0.9968 0.9931 0.9967

0.1 1 0.3 0 8178 5683 115 178 2202 0.9642 0.9504 0.9252

0.1 2 0.3 15 8946 6201 25 22 2698 0.9947 0.9908 0.9919

Total 77751 53250 416 863 23222 0.9836 0.9824 0.9642

that all the books on the facing tier are correctly classified.
In all experiments of our evaluation, we deploy three tiers in
a wooden shelf, with the number of the book being 78, 82
and 93, respectively. The default value of speed, tier, robot-
shelf distance, and slope of book are 0.1m/s, 2, 0.3m, and
0degree, respectively.

1) Performance with different speeds: We set the speed
of the robot at three values: 0.1m/s, 0.15m/s, and 0.2m/s.
The other parameters keep the default. At each speed, we
collect 30 groups of data. As shown in Fig. 5(a), the upper
figure shows the distribution of order accuracy of all scanning.
The result with the speed of 0.1m/s is the most stable, all
accuracy exceeds 98% and 97%, respectively in NKTD and
NVD. As shown in the lower figure in Fig. 5(a), with the speed
growing, the average order accuracy both in NKTD and NVD
drops slightly, but still keeps the average accuracy more than
97%. The effect of speed on RC-BI is two-folds. First, since
the reading rate of the RFID reader is limited, as the speed
increases, the time of each tag within the range of antenna
drops, so as the sample count. Second, the faster speed makes
the video more blurry, which reduces the performance of OCR.

2) Performance with different tiers: To scan each tier, we
adjust the lifting arm of the robot to make the antenna and
camera face the middle of that tier. As the accuracy of the
tier filtering model is evaluated in the Section V-A1, we only
evaluate the order accuracy in this section. As we can see from
the upper figure in Fig. 5(b), the order accuracy of the different
tiers in NKTD all exceeds 97%, and the accuracy in NVD is all
above 95%. Through the lower figure in Fig. 5(b), we find the
average order accuracy with different tiers fluctuates slightly,
but the overall average accuracy remains more than 98% and
96% in NKTD and NVD, respectively.

3) Performance with different distances: We set three robot-
shelf distances, i.e., 0.2m, 0.3m, and 0.4m, with other pa-
rameters keep the default. We collect 30 groups of data
with each distance. Considering that the distance between
bookshelves is limited, these distances are representative for
robots on operation. As we can see from the upper figure of
Fig. 5(c), the order accuracy with all distances exceeds 96%.

As shown in the lower figure in Fig. 5(c), the average accuracy
decreases slightly with the robot-shelf distance increasing.
That’s because with the distance increasing, the power each
tag received decreases, and the resolution of the text drops.

4) Performance with different slopes: In this set of experi-
ments, we deploy 40% of the books in the tier with the slope of
0, 15, and 30 degrees. The rate of tilted book and the angles we
selected are reasonable in the actual library. For each setting,
we still collect 30 groups of data. From results shown in the
upper figure in Fig. 5(d), the distribution of accuracy with
the slope of 15 degrees is relatively scattered, but all exceed
92%. From the lower figure in Fig. 5(d), we find no obvious
correlation between the average accuracy and the slope.

C. Comparison with the state-of-the-arts

We compare RC-BI with STPP and RF-Scanner on 296
groups of data covering three tiers with the speed varying from
0.1m/s to 0.2m/s, robot-shelf distance varying from 0.2m to
0.4m, the slope varying from 0 to 30 degree. As shown in
Fig. 6(a), both in NKTD and NVD, the distribution of accuracy
in RC-BI is more concentrated. And nearly 100% of the order
accuracy of RC-BI is more than 90%. Fig. 6(b) shows that,
the average order accuracy of RC-BI is 98.89% in NKTD,
and 98.08% in NVD. While the average order accuracy of
STPP in NKTD and NVD are 86.30% and 90.08%, and the
average order accuracy of RF-Scanner in NKTD and NVD
are 90.06% and 90.15%. That proves that RC-BI achieves
excellent performance over STPP and RF-Scanner.

VI. RELATED WORK

We summarize and classify the related work into three
categories as follows.

A. RFID-based approaches

RFID has been used in many aspects such as human-
computer interaction [17], [18], localization, troubleshooting
[19], etc. For localization, many RFID-based work focuses on
absolute localization. Wang et al. [20] devised PinIt, which
estimates the location of the target according to reference tags
whose multipath profiles are most similar. Tagoram [21] uses
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Fig. 5. The performance of RC-BI under different conditions. (a) Different speeds. (b) Different tiers. (c) Different distances. (d) Different slopes.
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Differential Augmented Hologram (DAH) for high-precision
real-time localization and tracking. OmniTrack [22] utilizes the
phenomenon of tag polarization to simultaneously calculate
location and orientation. MRL [1] and FILM [23] locate
the tag using three points in the phase profile captured by
mobile scanning. For some work like book inventory, relative
localization plays a more important role. STPP [2] calculates
relative localization by detecting the V-zone of RFID-based
phase profile. In [4], through the modeling and fitting of phase
profile, a fine-grained book relative localization is realized. Xu
et al. [24] designed an inventory system towards HF RFID-
based library, which uses fuzzy logic to estimate the location
of books. TagSort [25] uses hybrid features to detect the peak
of phase profile and utilizes a dynamic template selection
algorithm to improve the robustness to tag-antenna distance.
However, the accuracy of the above works is still limited, and
they cannot avoid environmental interference on RFID signals.
B. Computer Vision-based approaches

Computer vision based methods are mainly focused on
retrieving and recognizing objects or texts in the image. [5] and
[6] first detect the book boundaries on the bookshelf image and
extract the spine images, then input them into the OCR engine
to get book texts. Yang et al. [7] located and recognized the
text on the images of bookshelves with convolutional neural
nets (CNN) and recurrent neural nets (RNN) to build a digital
database. Considering the texts in the actual scene are often
in irregular, Cheng et al. [26] proposed arbitrary orientation
network (AON) to recognize arbitrarily oriented texts. Seo
et al. [27] designed an OCR-based inventory algorithm and
proposed deform-and-recover (DAR) learning technique to
make the system robust against damaged images. However,

the computer vision methods are sensitive to light conditions
and incapable to distinguish objects with the same appearance.
C. Multi-modal-based approaches

There are also some multi-modal fusion methods for local-
ization and tracking. TagVision [28] uses optical flow to detect
moving objects and transform target location in the pixel image
to the real world position. Then it matches each motion blob
with an RFID phase sequence to achieve fusion localization.
TagAttention [29] adopts the visual attention mechanism, in
which the RFID signal assists the computer vision module
to keep tracking the target with unknown appearances. Wang
et al. [30] proposed an RF-Focus system, which uses computer
vision to make up problems caused by RF phase periodicity,
and match RFID and CV data to recognize and locate moving
objects within range of interest on belt conveyor. Although
these works present many solutions for multi-modal fusion,
they are not suitable for the scenarios in this paper.

VII. CONCLUSION

In this paper, we proposed an RFID and CV fusion system
for mobile robot assisted book inventory in the smart library.
By designing a DNN network with multiple inputs and mixed
data, we solved the challenge of filtering out tags from
other tiers on bookshelf. To accurately acquire the book-name
sequence from video, we proposed a novel video information
extracting schema including frame capturing, image stitching,
and coordinate transform. We proposed the concept of strong
link to solve the challenge in aligning the sequences of two
modals. RC-BI combines the robustness of RFID and the
precision of CV. We conducted extensive experiments under
different conditions in a library setting and proved that RC-BI
achieves a tier filtering accuracy of 98.4% and an accuracy of
98.9% for book order, significantly outperforming the state-of-
the-art. For our future work, we plan to deploy our system in
other scenarios including smart warehouse and smart factory.
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