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Pattern lock-based authentication has been widely adopted in modern smartphones. However, this scheme relies essentially
on passwords, making it vulnerable to various side-channel attacks such as the smudge attack and the shoulder-surfing
attack. In this paper, we propose a second-factor authentication system named SwipePass, which authenticates a smartphone
user by examining the distinct physiological and behavioral characteristics embedded in the user’s pattern lock process.
By emitting and receiving modulated audio using the built-in modules of the smartphone, SwipePass can sense the entire
unlocking process and extract discriminative features to authenticate the user from the signal variations associated with
hand dynamics. Moreover, to alleviate the burden of data collection in the user enrollment phase, we conduct an in-depth
analysis of users’ behaviors under different conditions and propose two augmentation techniques to significantly improve
identification accuracy even when only a few training samples are available. Finally, we design a robust authentication model
based on CNN-LSTM and One-Class SVM for user identification and spoofer detection. We implement SwipePass on three
off-the-shelf smartphones and conduct extensive evaluations in different real-world scenarios. Experiments involving 36
participants show that SwipePass achieves an average identification accuracy of 96.8% while maintaining a false accept rate
below 0.45% against various attacks.
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1 INTRODUCTION
Over the past decades, smartphones are becoming increasingly popular and have significantly changed the
way people live. Since smartphones store extensive private and personal data such as social contacts and bank
information, a secure and user-friendly user authentication system is highly desirable. Biometric technologies
have been widely adopted to verify a user’s identity in commercial smartphones. Specifically, biometric-based
authentication systems authenticate the users based on their unique physiological biometric characteristics,
such as the face, fingerprint, and iris. However, these mechanisms not only need costly specialized sensors
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Table 1. Comparison of pattern lock based authentication methods (❍–Low, ◗–Medium, ●–High).

Scheme Sensing
Technique Generalizability Pattern

Diversity
Data

Efficiency
User

Experience

Angulo et al. [4] Touch Screen ❍ ❍ ◗ ❍

Liu et al. [14] Touch Screen ❍ ❍ ◗ ❍

TouchID [45] IMU, Touch Screen ❍ ● ◗ ◗

FCBBS [27] IMU, Touch Screen ❍ ● ❍ ◗

TouchPrint [7] Acoustic ● ❍ ◗ ❍

SwipePass Acoustic ● ● ● ●

but also suffer from the hazard of spoofing attacks [1, 2, 11]. In addition, there are still nearly 20% of modern
smartphones without these biometric sensors [32]. Therefore, traditional password-based authentication methods
are still widely used, among which the pattern lock is one of the most popular schemes. A typical pattern lock
scheme requires a user to unlock their smartphone by swiping on a 3 × 3 grid of contactable points. Because
of its simplicity and convenience, it has been widely used in many commercial devices (e.g., Android-based
smartphones which have 71.59% global market share [31]) and mobile applications (e.g., Alipay [3], Wechat [34],
and AppLock [21]).

Despite its popularity, pattern lock has exposed to several vulnerabilities recently, which may lead to serious
security hazard. For example, a recent study [30] shows that although a theoretically huge password space can
be provided (e.g., 389, 112 for a 3 × 3 pattern lock), people tend to select simple unlock patterns ending up in a
much smaller subspace. Moreover, the unlock pattern can be inferred by various side channels, such as smudges
on touchscreen [5], radio signal [44], camera [42] and inaudible acoustic signal [47]. These side-channel attacks
reveal that directly using the unlock pattern is far from being secure to adversarial attacks.

To strengthen the security of pattern lock, many efforts have been made by utilizing the rich on-board sensors
on smartphone such as touch sensor [4, 14], IMU sensor [27, 45], and audio [7]. While these systems adopt
different sensing modalities, they leverage essentially on the same idea that different people show distinct
behaviors when they swipe unlock patterns due to the difference in hand geometry biometrics (e.g., palm size and
finger length) and behavioral characteristics (e.g., speed and pressure) [24]. In some systems [4, 14], sensor data
collected from touch screen are used to extract temporal features such as swiping speed and pressure to identify
the user. Another line of research uses the built-in IMU sensor to capture the minor movement of smartphone
when a user performs the unlocking pattern [27, 45]. Recent works focus on using the acoustic signals which can
be sent and received by the embedded audio modules (i.e., microphone and speaker) to sense user’s unlocking
behaviors [7]. Despite these efforts, several limitations exist in prior studies which we summarize in Table 1.

• Generalizability: A user may unlock his/her smartphone with different postures (e.g., standing and
sitting) in a variety of environments (e.g., home and office), therefore an authentication system should be
able to achieve high performance in different scenarios. Unfortunately, existing systems either have low
accuracy or only work in limited scenarios. For example, data recorded from touch screen can only capture
limited biometric information about on-screen behaviors, resulting in a low authentication accuracy (10.4%
EER in [4]). The system in [14] utilizes more features to improve performance, however both systems
do not consider working in different scenarios, i.e., different environments and postures. IMU-based
methods [27, 45] only work when user is holding a smartphone but fail to work when the phone is placed
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somewhere else, e.g., on a table. Moreover, IMU-based methods are sensitive to user’s movement, hence
the system performance may drop significantly when user is walking or on a vehicle.

• Pattern diversity: Since there is a large password space for a typical 3 × 3 pattern lock, authentication
should be robust to different patterns, including both simple and complicated patterns. However, most of
the existing systems only work well when complicated patterns are used. In this case, more sensor data are
collected and hence more useful information can be extracted for accurate authentication. Correspondingly,
users have to either choose complicated, multi-twist patterns [4] or long patterns [14] to achieve high
security.

• Data efficiency: Existing systems typically require a large amount of the legitimate user’s data to achieve
satisfactory performance, resulting in low data efficiency. For example, FCBBS [27] requires extensive data
collection in a variety of contexts to achieve high accuracy. While obtaining more data can be beneficial
in improving authentication performance, extensive data collection is known to be labor-intensive and
time-consuming.

• User experience: Pattern lock-based second-factor authentication systems should not pose any additional
restrictions on the unlocking process, which may reduce user experience. However, a recent work Touch-
Print [7] assumes the user pauses in several fixed positions (i.e., turning points), which is unrealistic and
user-hostile. This assumption requires users to unlock a device in limited environments with carefully
chosen patterns and more data, leading to poor user experience.

The aforementioned problems raise a critical question: can we securely authenticate users when they perform
pattern lock naturally without imposing much burden of data collection during the enrollment? To answer this
question, we develop a novel user authentication system, SwipePass, which utilizes the built-in microphone
and speaker to emit and receive acoustic signals to capture the user’s unique physiological and behavioral
characteristics inherited from the pattern lock input. SwipePass can be seamlessly integrated into off-the-shelf
smartphones as a second-factor authentication scheme to enhance the security level of traditional pattern lock
without sacrificing user experience. While the idea is straightforward, we need to address several non-trivial
challenges.

• Challenge 1: how to extract robust and discriminative features from dynamic contexts? Although well-
defined acoustic signals are resilient to some environmental variations such as light conditions and audible
ambient noise, they are sensitive to the surrounding objects (e.g., irrelevant body motions and furniture).
Moreover, the attackers can imitate the way a legitimate user unlocks the smartphone by shoulder-surfing
attacks. Therefore, it is challenging to extract features robust to the dynamic contexts but still user-specific.
In SwipePass, we propose several novel methods to exclude the variations of surrounding contexts while
preserving the informative components. Thereafter, we propose two types of features from the audio signal,
namely Magnitude Profile and Phase Contour Profile, which depicts user-specific characteristics.

• Challenge 2: how to achieve accurate user identification and spoofer detection while keeping computation
and energy efficient for smartphones? Smartphone users may frequently unlock their smartphones every
day. Therefore, the computation and energy efficiency are crucial factors in designing our system. In
SwipePass, we propose several efficient methods to segment the hand-induced signal variations and extract
discriminative features, and design an efficient deep-learning authentication model to achieve system
performance.

• Challenge 3: how to design a reliable and secure authentication model in a limited-data regime? Most of the
existing systems require a large amount of training data to achieve high accuracy, essentially reducing their
applicability. To address this problem, we conduct an in-depth analysis of smartphone users’ behaviors and
propose two novel data augmentation methods to imitate the possible variations based on a few samples,
which significantly reduces the tedious enrollment process.
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Table 1 illustrates the properties of SwipePasswhile comparing with the existing schemes.We further summarize
our contributions as follows:

• We propose a novel second-factor authentication system named SwipePass, which leverages the built-in
audio modules on smartphone to strengthen the security level of the traditional pattern lock scheme.
SwipePass enables efficient, secure, and user-friendly authentication for smartphone users.

• We propose a novel approach to extract useful information from noisy environments. Specifically, our
method first extracts the dynamic hand information by estimating the multi-path acoustic propagation
channel, then it extracts discriminative features from acoustic signal strengths and delays to characterize
user-specific biometric patterns.

• We propose a novel method to efficiently locate the informative audio segments caused by hand motion
only. Together with the lightweight classification model, SwipePass is able to achieve high computation and
energy efficiency.

• We conduct a comprehensive study on different factors that may affect the unlocking process. Based on our
findings, we propose two data augmentation techniques to significantly improve the identification accuracy
even with only a few pattern swipes in the enrollment phase, mitigating the burden of data collection.

• We implement SwipePass on three off-the-shelf smartphones and conduct extensive experiments in three
different real-world environments and four different postures. Results show that the proposed system
achieves an average identification accuracy of 96.8% while maintaining a false accept rate of below 0.45%
against the credential-aware attack, the mimicry attack and the replay attack. Moreover, we conducted a
user study by recruiting 40 participants to use SwipePass over one week. The survey results demonstrate
the practicability of SwipePass in real-world applications.

The rest of the paper is organized as follows. Section 2 discusses the related work. Section 3 presents the design
details of SwipePass. Then, Section 4 presents the evaluation results and Section 6 concludes the paper.

2 RELATED WORK

2.1 Adversarial Attacks on Pattern Lock
Pattern lock is popular among smartphone users nowadays, however, it is vulnerable to various attacks. Aviv et
al. [5] recover the unlock pattern using smudges left on the smartphone with images under different camera
settings. Researchers also find that the moving trajectories can be revealed based on variations in wireless signals
[44] and acoustic signals [47]. Moreover, Snoopy [15] is able to recognize the input patterns using IMU sensors
when users unlock their smartwatches. Thus, augmenting the security of pattern lock is necessary.

2.2 Pattern Lock-based Second-factor Authentication Systems
Although some researchers have investigated the security of pattern lock and provided advice to construct more
secure patterns [30, 36], it is still vulnerable to shoulder-surfing attacks. To enhance the security of the pattern
lock, a set of pioneering efforts have been made by exploring different sensing modalities such as the touching
screen [4, 29], IMU sensor [27, 45] and acoustic signals [7]. Early approaches [4, 14] mainly rely on sensory data
collected by the touch screen. Specifically, Angulo et al. [4] leverages the traversing speed across dots in the
pattern as features to authenticate users. However, it assumes that both data from legitimate users and attackers
are available, which is impractical. In [14], Liu et al. proposed to extract more comprehensive biometric patterns
by including touch pressure features in the feature space. These work are examined to be resistant to some
malicious attacks, but they do not take actual complicated usage contexts (e.g., variations in swiping speed,
surrounding environments and unlocking postures) into consideration. The multi-touch authentication scheme
proposed by Song et al. [29] assumes that the user swipes the screen with multiple fingers, which is difficult
to be directly deployed on current smartphones. FCBBS [27] and TouchID [45] leverage the sensor data from
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both IMU sensor and touch screen collected during the unlocking period to authenticate a user. Both systems
work well if users unlock in a hand-holding manner, since variations in IMU data can capture the hand-held
smartphone motion, which in turn reflects the user-specific identity information. However, if the smartphone
is placed stably on a table, the IMU data may not change significantly and hence cannot provide any useful
information. The performance thus decreases. A close work to SwipePass is TouchPrint [7], which also uses
acoustic features to authenticate the users during the unlocking process. However, it assumes the smartphone
user has a temporal pause on turning points which is user-hostile and unrealistic. Compared with TouchPrint,
SwipePass uses acoustic signals to sense the whole dynamic process of unlocking without any assumptions on
the user’s habitual behaviors. Another drawback of the previous systems is that they need much more training
data to achieve the same level of accuracy as SwipePass. Therefore, compared with these earlier works, SwipePass
is more user-friendly, data-efficient, and generalizable.

2.3 Acoustic-based Authentication Systems
To improve the security of smartphones, instead of developing second-factor authentication systems similar to
SwipePass, another line of work uses the acoustic signal to sense other biometric patterns. In these works, similar
to SwipePass, the user-specific biometric characteristics are captured from the propagated multi-path acoustic
signals. Chen et al. proposed EchoFace [8], an acoustic-based liveness detection system that can resist media
attacks in face recognition applications by analyzing the reflected multi-path echos. Similarly, EchoPrint [46]
leverages the signals reflected from human face, together with the assistance of the camera, to identify the
identity of an incoming user. Lip movement is another biometric pattern that can be resorted to distinguish
people, based on which Lu et al. [16] proposed LipPass to authenticate a user using the lip-induced Doppler shift
when speaking words. Another system named VocalLock [17] performs authentication based on the reflected
acoustic signals from the vocal tract during speaking, which is examined to exhibit individual uniqueness. Besides
smartphone-based applications, Schneegass et al. [25] developed a biometric system on wearable devices to
authenticate a user by analyzing audios propagated through the human’s skull. Fan et al. [9] proposed that echos
captured by earphones can reveal the unique in-ear structure of a user, which can be leveraged for authentication.
These works mainly focus on providing novel ways of user authentication, which are parallel to SwipePass. In
contrast, SwipePass is based on a widely adopted unlocking scheme and hence shows higher usability.

2.4 Other Acoustic-based Applications
Besides authentication, acoustic signals have been widely used in many other sensing applications, such as motion
tracking [13, 18, 33], gesture recognition [23, 38], and health monitoring [28, 43]. The relatively slow propagation
speed of acoustic waves in common media (e.g., compared with Radio Frequency) makes it an ideal medium
for accurate sensing while only occupying a narrow bandwidth. This facilitates their convenient deployment
on commercial smart devices [6]. To track a moving target (e.g., the human hand), one major challenge is to
resolve the target reflected echo from the mixed multi-path signals. Nandakumar et al. proposed FingerIO [18],
which uses the cross-correlation of the OFDM modulated signals to locate the target finger. They discover the
sample error is linearly correlated to the phase change and it can be compensated to achieve sub-centimeter
level tracking accuracy. In [33], Sun et al. proposed VSkin, a system that supports fine-grained gesture-sensing
on the back of mobile devices. They track the moving finger by estimating the phase change of the impulse
response. Based on the microphone array, Li et al. proposed FM-Track [13], which leverages multi-dimensional
acoustic information to track multiple targets of interest simultaneously. To recognize a gesture performed,
Ruan et al. [23] investigated the Doppler frequency shifts of different gestures and successfully classify six basic
gestures in a train-free manner. Wang et al. [38] introduced a multi-frequency modulation scheme to mitigate
the frequency selective fading effect in acoustic sensing, which significantly boosts the performance in gesture
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Fig. 1. System architecture of SwipePass.

recognition. In health monitoring area, Song et al. [28] proposed SpiroSonic, a system that measures the humans’
chest wall motion via acoustic sensing. The result is then interpreted into lung function indices, based on the
clinically validated correlation between them. By investigating the phase change cycle, Zhang et al. [43] further
proposed to monitor heartbeat from the minor chest displacement using smart speakers. The above applications
demonstrate the huge benefit that acoustic sensing can bring to our life.

3 SYSTEM DESIGN

3.1 Overview
As shown in Fig. 1, SwipePass works in two phases: enrollment phase and authentication phase.

In the enrollment phase, the legitimate users need to perform their pre-defined unlock patterns several times
to train a user-specific model. When users swipe on their smartphones, their behaviors will be reflected by the
inaudible acoustic signals that are sent and received by the built-in audio modules (e.g., speaker and microphone).
After receiving the acoustic signal, we first locate the near-phone acoustic channels and estimate their Channel
Impulse Response (CIR), which reflects the variations in response to external environmental changes. Then, we
extract the informative CIR components related to the moving hand only. Based on the informative CIR, we
propose to extract two types of features, which are named as Magnitude Profile and Phase Contour Profile. After
that, we apply the proposed data augmentation methods on the extracted features to enhance the training dataset
so that fewer enrollment efforts are required to achieve satisfactory performance. Finally, a user identification
model and a spoofer detection model are trained based on the augmented dataset.
In the authentication phase, SwipePass performs the same informative CIR extraction and feature extraction

as above. The extracted features are then fed into the pre-trained model. If the user’s data is authenticated as
legitimate by the model built in the enrollment phase, the user successfully passes the authentication. Otherwise,
the login request will be rejected.

3.2 Transceiver Design
To sense the biometric patterns of the user, we are going to design a transceiver with the microphone and speaker
on the smartphone for emitting and receiving the ultrasonic acoustic signal.

3.2.1 Acoustic Signal Design. We select Zadoff-Chu (ZC) sequence as the transmitted signal because it has
an ideal auto-correlation property, which can effectively separate signals received from multiple propagation
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Fig. 2. The transceiver design.

paths [33, 37]. Specifically, the ZC sequence of length 𝑁𝑍𝐶 is generated by:

𝑍𝐶 [𝑛] = 𝑒−𝑗
𝜋𝑢𝑛 (𝑛+1+2𝑞)

𝑁𝑍𝐶 , (1)

where 0 ≤ 𝑛 < 𝑁𝑍𝐶 , 𝑞 is a constant integer, and 𝑢 ∈ [0, 𝑁𝑍𝐶 ] is an integer coprime to 𝑁𝑍𝐶 . Then, we need to
up-sample the basic ZC sequence so that it can be fit into a targeting signal bandwidth 𝐵. To achieve this, we
perform FFT on the 𝑁𝑍𝐶 -length sequence and zero-pad the frequency spectrum by inserting zeros at the center.
This step can separate the positive and negative frequency components, and interpolate the spectrum to be
𝑁𝑍𝐶𝐼 -length, where 𝑁𝑍𝐶𝐼 = 𝑓𝑠𝑁𝑍𝐶/𝐵. Next, IFFT is performed to convert the frequency signal back to obtain the
ZC baseband signal in time domain 𝑠 (𝑡). In SwipePass, we set 𝑁𝑍𝐶 = 127, 𝑢 = 63, 𝑁𝑍𝐶𝐼 = 1024, 𝐵 = 5.953 kHz,
and 𝑓𝑠 = 48 kHz. We denote one 1024-length ZC sequence 𝑠 (𝑡) as an acoustic frame; therefore, each acoustic
frame lasts for only 21.3 ms, which is short enough to capture user’s hand motions during unlocking.

3.2.2 Transmitter. The design of the transmitter is shown in the left block of Fig. 2. After obtaining the baseband
ZC signal 𝑠 (𝑡), we up-convert it into an inaudible signal in real format. Specifically, the real and imaginary
components of 𝑠 (𝑡) are multiplied by

√
2 cos (2𝜋 𝑓𝑐𝑡) and −

√
2 sin (2𝜋 𝑓𝑐𝑡), respectively. Then, the summation of

the two parts is in real format and can be processed by the speaker. The carrier frequency of the modulated
signal is 𝑓𝑐 = 20 kHz, and the modulated signal occupies the frequency band between 17 kHz and 23 kHz, which
is inaudible to most people [39]. The modulated acoustic frame is played repetitively by the speaker when a user
is unlocking the smartphone.

3.2.3 Receiver. At the receiver, the microphone also works at 48 kHz sampling rate, and the recorded passband
acoustic signal 𝑦 (𝑡) needs to be converted back to the baseband signal. As shown in the lower right block of Fig. 2,
the down-conversion is carried out by multiplying 𝑦 (𝑡) with

√
2 cos (2𝜋 𝑓𝑐𝑡) for the real part and −

√
2 sin (2𝜋 𝑓𝑐𝑡)

for the imaginary part. Then, a low-pass filter is used to eliminate the frequency components higher than half of
the allocated bandwidth 𝐵. Finally, we combine the two parts to obtain the baseband signal 𝑟 (𝑡).

3.3 CIR Estimation
After receiving the acoustic signal, we need to estimate the variations of different propagation channels. The
signal 𝑟 (𝑡) received by the microphone is a superposition of multiple copies of the transmitted signal 𝑠 (𝑡) with
different delays and extents of attenuation, which can be treated as a multi-path propagation model in a Linear
Time-Invariant system [35]:

𝑟 (𝑡) =
𝐿∑︁
𝑖=1

𝐴𝑖𝑒
−𝑗𝜃𝑖𝑠 (𝑡 − 𝜏𝑖 ) = ℎ(𝑡) ∗ 𝑠 (𝑡), (2)
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where 𝐿 is the number of propagation paths,𝐴𝑖 demonstrates the attenuation in magnitude, and 𝜃𝑖 = 2𝜋 𝑓𝑐𝜏𝑖 is the
phase offset induced by the time delay 𝜏𝑖 in the 𝑖-th path. The formula can be further written in the convolution
between the transmitted signal and the CIR ℎ(𝑡). Here, ℎ(𝑡) =

∑𝐿
𝑖=1𝐴𝑖𝑒

−𝑗𝜃𝑖𝛿 (𝑡 − 𝜏𝑖 ) and 𝛿 (𝑡) is Dirac’s delta
function. Since 𝛿 (𝑡) is zero everywhere except at 𝑡 = 0, we can derive the path variation with delay 𝜏𝑖 directly
through ℎ(𝜏𝑖 ) = 𝐴𝑖𝑒

−𝑗𝜃𝑖 .
In practice, we can estimate the discrete CIR, ℎ[𝑛], with an interval of 𝑇𝑠 = 1/𝑓𝑠 , to measure the channel

variations. Given the fixed-length transmitted signal, for each acoustic frame, the sampled ℎ[𝑛] can reveal the
variations of 𝑁𝑍𝐶𝐼 taps (i.e., paths), from 0 to 𝑁𝑍𝐶𝐼 − 1, covering the range up to 𝑁𝑍𝐶𝐼/𝑓𝑠 × 340 = 7.253 m away
from the speaker, which is far enough for sensing the hand-induced near-phone signal variations. Thanks to the
ideal property of the ZC sequence, its auto-correlation is non-zero only at the point with zero delay, which can
well approximate the Dirac’s delta function. Given a sequence of down-converted received signal sampled by an
𝑁𝑍𝐶𝐼 -length window starting at the 𝑛𝑡 -th point, we can calculate the cross-correlation 𝑅 [𝑛𝑡 ] by:

𝑅 [𝑛𝑡 ] =
𝑁𝑍𝐶𝐼−1∑︁
𝑙=0

(
𝐿∑︁
𝑖=1

𝐴𝑖𝑒
−𝑗𝜃𝑖𝑠𝑙 [𝑛𝑖 ]) × 𝑠 [𝑙]

=

𝐿∑︁
𝑖=1

𝐴𝑖𝑒
−𝑗𝜃𝑖 (

𝑁𝑍𝐶𝐼−1∑︁
𝑙=0

𝑠𝑙 [𝑛𝑖 ] × 𝑠 [𝑙])

(3)

where 𝑠𝑙 [𝑛𝑖 ] = 𝑠 [(𝑙 − 𝑛𝑖 ) mod 𝑁𝑍𝐶𝐼 ] is the transmitted signal circularly shifted by 𝑛𝑖 samples. Since the right
part of Eq. 3 is the cross-correlation term between the original ZC sequence and the delayed ones, the result can
be obtained as:

𝑅 [𝑛𝑡 ] =
{
𝑁𝑍𝐶𝐼𝐴𝑖𝑒

−𝑗𝜃𝑖 , 𝑛𝑖 = 0
0, 𝑛𝑖 ≠ 0 (4)

where only the auto-correlated component (i.e., signals arrive at the 𝑛𝑡 -th sample with zero delay) is reserved.
Therefore, we can estimate the CIR ℎ[𝑛] within each acoustic frame by sliding the moving window on the received
signal and calculating the cross-correlation. Note that the 48 kHz sampling rate leads to the distance interval of
1/48000 second × 340 m s−1 = 0.7 cm between adjacent channel taps, which is sufficiently small to capture the
differences in hand biometrics of different users.

3.4 Informative CIR Extraction
The CIR contains not only the information of the moving hand but also other irrelevant information like nearby
objects and the moving body. However, only channel variations caused by the moving hand are required for
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authentication. To solve this problem, SwipePass first locates and estimates the near-phone CIR and then further
extracts the hand-induced CIR (called informative CIR), which are detailed below.

3.4.1 Near-phone CIR Estimation. Fig. 3 shows the CIR magnitude of two consecutive acoustic frames in one
unlock process. The higher peaks (in the red oval of Fig. 3) can be witnessed in the taps related to the reflections
of the near-phone area (e.g., covering the area of hands, arms, and the smartphone itself), since these echoes
travel less distance and the acoustic attenuation is not significant. The latter lower peaks (in the green oval of
Fig. 3) denote signals reflected by the surroundings with a longer propagation distance and lower energy. The
small rest fluctuations represent reflections from more distant objects. Since the unlocking behavior only affects
the propagation channels close to the smartphone, our goal is to estimate the CIR of the near-phone taps.
To achieve this, a straightforward solution is to apply a threshold-based method for the CIR of each acoustic

frame. Though effective, it is inefficient because 1024 points of multiplications and summations are required to
estimate one CIR value (Eq. 3). Since the acoustic frame has a fixed length of 1024, we only need to locate the
near-phone taps in one acoustic frame. Specifically, we randomly apply a window on the early received audio
samples and estimate the CIR within this window. The window length is 1024, which is the same as the length
of an acoustic frame. Under this setting, in most cases, the window will only contain near-phone reflections
of one frame. We set a threshold that is half of the highest peak’s value and search for the front-most sample
reaching the threshold, which is set as the starting point. This case is denoted as case “A” in Fig. 3. However,
there is another possibility: the window may contain near-phone reflections in two frames, which is denoted
as case “B” in Fig. 3. In this case, two starting points will be detected, and we will set the rightmost one as the
starting point. Then, we set the informative range, which contains the near-phone taps, to be the range between
the 25 points before and 65 points after the starting point. Thereafter, the informative ranges in the later acoustic
frames can be obtained by adding 1024 points delay to the first one because the acoustic frames have a fixed
length of 1024. In practice, the computational consumption can be significantly reduced by only estimating the
CIR of the near-phone taps within these ranges.
3.4.2 Hand-induced Component Extraction. The estimated near-phone CIR consists of two parts: the static
components (e.g., the smartphone, the hand holding the smartphone, or the table the smartphone is on), and the
dynamic components (e.g., the unlocking hand, the irrelevant displacement of arms and other body components).
To obtain the informative hand-induced CIR components, we first calculate the difference of CIR to eliminate
the static components and then further narrow the tap range in each acoustic frame so that only the taps
corresponding to the unlocking hand are reserved.
As shown in Fig. 4, the near-phone CIR can be decomposed into vector ℎ𝑠 , which denotes the channel states

affected by the static components, and vector ℎℎ , which represents the time-varying dynamic components
involving the unlocking hand. By analyzing people’s common unlocking behaviors, we observe a transient time
after the user first touches the screen but before swiping to unlock. We term the CIR estimated from this short
period as the initial state (denoted as ℎ′), during which the CIR values remain relatively stable. Given that ℎ𝑠
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can be regarded as unchanged during the whole unlocking process, we can further represent the initial state as
ℎ
′
= ℎ𝑠 +ℎ

′

ℎ
, where ℎ′

ℎ
represents the CIR component of the hand touching the screen during this time. Thereafter,

we can remove the static component and obtain the dynamic components (denoted as ℎ̄) by:

ℎ̄ = ℎ − ℎ′
= (ℎ𝑠 + ℎℎ) − (ℎ𝑠 + ℎ

′

ℎ
) = ℎℎ − ℎ′ℎ . (5)

A previous study has shown that the biometrics of the holding hand (i.e., captured by ℎ′

ℎ
) with the same gesture

is highly consistent for the same person [7]. Thus, measuring ℎ̄ is the same as measuring ℎℎ . The actual starting
point of swiping on the screen can be simply determined by a threshold-based method on the difference between
the magnitude-sum of the adjacent CIR frames. If the normalized difference value exceeds the threshold (0.05 in
this paper), the average of the CIR frames before that timestamp is adopted as ℎ′, and the latter frames constitute
ℎ. Thereafter, we can obtain the dynamic components from the residual between ℎ and ℎ′, which is shown in the
right part of Fig. 4.

To extract the hand-induced dynamic CIR components, we apply a moving summation window to tap sequence
and select the segment with the highest value, as shown in Fig. 5. This is because the acoustic signals reflected by
the close-phone unlocking hand travel shorter distances compared with those reflections from the other dynamic
parts of the human body. Thus, the taps of interest should have higher CIR magnitudes. The window size is set
to be 45 based on our preliminary experiments, which can effectively preserve the hand-induce portions while
eliminating the other noisy taps. The selected segment is the final informative hand-induced component which
will be used to extract discriminative features.

3.5 Feature Extraction
In this section, we present how to extract discriminative features from the hand-induced CIR component.

3.5.1 Magnitude Profile. The magnitude of the CIR represents the strength of the acoustic signal received
from different propagation paths. Intuitively, different hand sizes and moving behaviors can be reflected on
distinguishable magnitude patterns. Thus, we use the magnitude of CIR as the first feature profile, which is
named as Magnitude Profile (MP).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 106. Publication date: September 2022.



SwipePass: Acoustic-based Second-factor User Authentication for Smartphones • 106:11

(a) (b)
MP PCP MP PCP

Fig. 7. The profiles of slow speed (a) and fast speed (b).

3.5.2 Phase Contour Profile. Besides the signal strength reflected by the magnitude, the phase of the CIR contains
information related to the time delay of each acoustic channel. However, due to the asynchronous speaker and
microphone, arbitrary phase offsets exist in the estimated CIR. Therefore, the absolute values of phase cannot
be used directly. In SwipePass, we propose to use the relative changes of phase, which can be well represented
by the gradient. The intuition of our method is that hand biometrics at a fixed time can be represented by the
intra-frame difference, and the movement pattern over time can be characterized by the inter-frame variation. To
enhance the significant changes and eliminate the noise, we define the phase gradient at the 𝑛-th tap and 𝑡-th
frame as:

𝑔𝑡𝑛 = (𝜙
𝑡+1
𝑛 − 𝜙𝑡−1

𝑛

2
)2 + (

𝜙𝑡𝑛+1 − 𝜙𝑡𝑛−1
2

)2, (6)

where the first and second terms account for the inter-frame and intra-frame difference, respectively.
However, phase flip—the phase value shifts circularly when it exceeds the limits ±𝜋—poses a challenge to

feature extraction. Fig. 6 illustrates the impact of phase flip and our solution. The first block plots the raw
inter-frame phase value (sliding horizontally at the same tap in the phase matrices, denoted as 𝜙𝑛𝑖 ) and the raw
intra-frame phase value (sliding vertically at the same frame in the phase matrices, represented as 𝜙𝑡𝑖 ). The
curves in three colors are based on the three phase samples in the second block of Fig. 6. It can be seen that the
overall patterns of these three curves are similar. However, phase flip exists when the phase value approaches
±𝜋 , making significant changes in adjacent phase values. Correspondingly, if we use the above phase gradient as
a feature, the phase flip will cause clearly different patterns in the gradients, as shown in the second block.

To solve this problem, we shift the phase by 𝑁𝑟 times with a fixed offset 2𝜋/𝑁𝑟 . In SwipePass, by setting 𝑁𝑟 = 5,
we can obtain 5 different phase gradient images, which are shown in the third block of Fig. 6. Then, to keep all
the informative features, all the 5 phase images with different offsets are aggregated together to generate the final
gradient image as shown in the fourth block of Fig. 6. We can see that although the three raw gradient images
directly generated from the phase values are distinct, the three aggregated gradient images are highly consistent.
The feature extraction process is similar to drawing contours of the phase value matrix, so we name it Phase
Contour Profile (PCP).
After obtaining the MP and PCP, the two feature matrices are resized to be 45 × 100 so that they can be

processed by the model with fixed-size input. Then the values are normalized into the range of [0, 1], and small
values below 0.2 are discarded.

3.6 Data Augmentation
To understand how the unlocking process is affected by different factors, we conduct a comprehensive study. Our
preliminary study shows that SwipePass is immune to audible ambient noise and different volumes of the speaker
since the system is working at a high-frequency band and uses normalized feature values. However, we find that
the following two factors have a significant impact on the extracted features.
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Fig. 8. (a) Raw profiles. After augmentation: (b) initial state variation; (c) slower speed; (d) faster speed.

3.6.1 Speed. To investigate the impact of the unlocking speed, we perform the unlock pattern at slow and fast
speeds, respectively. From the extracted features (i.e., MP and PCP) in Fig. 7, we can see that the example at
slow-speed has more smooth edge patterns in both profiles and clearer separation between contours in the PCP.
This is because the fast unlocking can induce a larger inter-frame difference, the contours will be merged together
and cause the aliasing effect.
With this in mind, we model the variation by modifying the number of acoustic frames in the extracted CIR

since variations in the obtained frame number can effectively imitate the changes of speed when given a fixed
frame rate. Specifically, given the CIR frames of one trial, we randomly pick a value 𝑟𝑠 within [−0.4, 0.4]. If 𝑟𝑠 ≥ 0,
each frame of the CIR will be dropped with probability 𝑟𝑠 . Otherwise, each frame interval will be interpolated
with a new frame in probability −𝑟𝑠 . The random setting allows us to imitate the real situations that users may
unlock at incoherent speeds.

3.6.2 Initial State Variation. Since the hand-induced CIR ℎ̄ is obtained by subtracting the initial state ℎ′, the
estimation of ℎ′ plays a crucial role. As defined in Sec. 3.4.2, the initial state means the state before the user starts
swiping on the screen. There are two factors affecting the initial state CIR for different trials: (1) the holding
hand phase of the same user may be slightly different; (2) the asynchronous microphone and speaker produce
unpredictable phase offset. For the first factor, we find that the magnitude is not consistent with a small difference
in the holding hand phase. To imitate these variations, we augment the raw sample by multiplying the ℎ′ with a
factor 𝐹 . To imitate the impact of the second factor, we randomly rotate the phase of ℎ̄. Technically, to imitate the
possible variations in magnitude and phase, the augmented sample can be obtained by ℎ̄ = (ℎ − 𝐹 · ℎ′)𝑒−𝑗2𝜋𝑟𝑜 ,
where 𝐹 and 𝑟𝑜 are random values within [0.9, 1.1] and (0, 1).

Fig. 8 plots the feature profiles of different augmented samples. Compared with the raw signal (Fig. 8(a)), the
speed-augmented samples (Fig. 8(c) and Fig. 8(d)) show different degrees of smoothness and aliasing, which are
consistent with our observations. The augmented sample with initial state variation (Fig. 8(b)) contains different
levels of variations in overall patterns. The evaluation results in Sec. 4.2 demonstrate that our augmentation
methods can improve identification accuracy significantly with limited samples.

3.7 Authentication Model
After the feature profiles are extracted, they will be fed into an authentication model to identify whether the
current user is a legitimate user or spoofer. Fig. 9 shows the architecture of the authentication model. We present
the details below.
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3.7.1 CNN-LSTM Feature Extractor. First, the two feature profiles are fed into a CNN-LSTM neural network. Since
the essence of feature profiles are images, we use CNN as the first part of the feature extractor because it performs
well in extracting informative features from images. As shown in Fig. 9, three CNN layers are concatenated
to capture features in different receptive fields with different semantic meanings. The first convolutional layer
can only perceive simple low-level visual features, such as corners and edges of the profiles. These features are
related to the partial geometries of the user’s hand. The second convolutional layer extracts feature based on the
output of the first layer, making it capable of capturing mid-layer features related to parts of the profiles, which
are related to the hand gesture types. The third layer further aggregates the output of the former layers and can
extract high-level features with semantic meaning of the whole hand movement patterns. The kernel sizes of the
three layers are 5 × 5, 5 × 5, and 3 × 3, respectively. In addition to the spatial features, the profiles also contain
important temporal features because they are extracted from time-series data. Therefore, an LSTM layer with
five cells is used after the CNN to further extract the temporal features during the unlocking process.

To make sure the CNN-LSTM model can extract important informative features, we train it in an auto-encoder
manner, which learns to map the network input to a compact representation in a latent space from which the
data can be recovered with minimal information loss. Specifically, during training, three deconvolutional layers
are deployed after the LSTM to reconstruct the two input feature profiles. Given the input profile 𝑋 and the
auto-encoder output 𝑋 ′, our task is to minimize the reconstruction loss:

L𝑟𝑒𝑐 (𝑋,𝑋 ′) = 1
𝑁

𝑁∑︁
𝑛=1

(𝑋𝑛 − 𝑋 ′
𝑛) + 𝜆 × Ω, (7)

where 𝑁 is the number of training samples and 𝜆 is the coefficient for the 𝐿2 parameter regularization Ω. We
denote the output of the CNN-LSTM extractor as 𝑂 .

3.7.2 User Identification and Spoofer Detection. Without loss of generality, we assume there are 𝐾 legitimate
users for a smart device. It should be noted that 𝐾 can be larger than one. This is because there may be multiple
legitimate users for the same smart device. For example, the members of the same family may share one tablet. In
this situation, the authentication system not only needs to recognize whether the current user is a legitimate
user or an attacker, but also has the capability to identify the user identity so that a number of personalized
services can be enabled. To provide a generic solution to satisfy this requirement, our system firstly identifies the
user’s identity from multiple registered users, then further performs detection to resist adversarial login from
unexpected spoofers.

In SwipePass, we adopt a two-layer design. The first layer is a multi-class classifier that recognizes the current
user to one of the 𝐾 enrolled users. The second layer is a One-Class Support Vector Machine (OC-SVM) spoofer
detector, which checks whether the current user is indeed the legitimate user or a spoofer. To identify different
users, we append a fully-connected layer with soft-max activation function to the end of the previous network.
The output is the posterior probability of each class 𝑃 (𝑈𝑘 |𝑂), where𝑂 is the output of the CNN-LSTM model,𝑈𝑘

is the class label, and 𝑘 = 1, 2, ..., 𝐾 is the index of 𝐾 legitimate users. The identification result will be the user
with the maximum posterior probability. To train this model, the loss function is modified as:

L(𝑋,𝑋 ′,𝑈 ) = (1 − 𝛼)L𝑟𝑒𝑐 (𝑋,𝑋 ′) + 𝛼L𝐶𝐸 (𝑃 (𝑋 ),𝑈 ) (8)

where L𝐶𝐸 (𝑃 (𝑋 ),𝑈 ) = ∑𝑁
𝑖=1 −𝑃 (𝑋𝑖 )𝑈𝑖

log𝑈𝑖 is the cross-entropy loss for the posterior probability 𝑃 (𝑋 ) and user
label𝑈 , and 𝛼 ∈ (0, 1) is a parameter to balance the two loss terms. Note that for the situation there is only one
legitimate user, the loss function degrades to Eq. 7.

Based on the classification result of the first layer classifier, the authentication result will be made based on the
similarity between the incoming sample and the registered legitimate user’s data. An OC-SVM with RBF kernel
is trained to construct the authentication model for each of the legitimate user. Equipped with kernel functions,
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Fig. 9. The architecture of the authentication model.

the OC-SVM can learn a hyperplane which holds the legitimate samples on one side and maximizes the margin
to the origin in a higher-dimensional space. This hyperplane, which is obtained based on the legitimate user’s
data only, can serve as a decision boundary to separate normal samples and anomalies (e.g., legitimate users and
spoofers). In practice, the well-trained OC-SVM can output a similarity score between the testing data and the
legitimate user’s data, and a threshold can be empirically set for spoofer detection. The threshold is a user-specific
parameter, so it is not fixed in SwipePass. Compared to multiple classification solutions [22], our method is more
realistic because we cannot assume the availability of attackers’ data in practical applications. To this end, in
SwipePass, a person is allowed to log in only after they perform the correct unlock pattern, has been identified
correctly as one of the legitimate users and passes the spoofer detection. Otherwise, the login will be denied.

4 EVALUATION

4.1 Experimental Setup
4.1.1 Implementation. We implement SwipePass1 as a mobile application on three commercial Android smart-
phones, i.e., Samsung S10 (2.84 GHz CPU, 8 GB RAM, Android 11), Nexus 6P (1.95 GHz CPU, 3 GB RAM, Android 8)
and Redmi Note 10 Pro (2.3 GHz CPU, 6 GB RAM, Android 11). The microphone and speaker on each smartphone
vary in size and position, as shown in Fig. 10. It should be noted that some phones have two pairs of microphones
and speakers while others have one pair only. To make our solution general, we only use one pair of microphone
and speaker in our evaluation. The use of two pairs of microphone and speaker may increase authentication
accuracy but will not be discussed in this paper due to space limitations. The deep-learning identification model
and the OC-SVM spoofer detectors are implemented in PyTorch [19] and scikit-learn [20]. These models are first
trained offline on a desktop PC with Intel i7-9700 CPU, 64 GB RAM, and RTX 2080 Ti GPU, then deployed on the
smartphones.

4.1.2 Attack Scenarios. We consider the following three attack scenarios:
• Credential-aware attack: The attacker obtains the credential (i.e., the pattern) from some side channels such
as the smudge on the screen or a quick glance and knows nothing about the unlocking hand gesture or
moving patterns of the legitimate user. Therefore, the attacker can only try to unlock the smartphone in
their preferred ways.

• Mimicry attack: The attacker observes the whole process when the user inputs the pattern through shoulder-
surfing or secretly filmed videos, which means genuine unlocking behavior of the legitimate user is known.
Then, the attacker can try to unlock the smartphone by mimicking the user’s unlocking behavior.

• Replay attack: The attacker knows the credential and secretly places another microphone near the user
to record the emitted audio signals when the user unlocks the phone. Then, the attacker unlocks the
smartphone and plays back the recorded audio to the authentication system at the same time to spoof it.

1A video demo is available at: https://youtu.be/wom0x8u9J2c
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Table 2. Summary of participants. Mean values are presented in parentheses.

Properties Gender Background Hand Size (cm) Age

Male Female Academia Other Width Length 20-25 26-40 41-59

Details 25 11 30 6 8.9-11.6 (9.8) 14.4-18.5 (16.2) 17 11 8

Samsung S10
  6.1 inches

Redmi Note 10
   6.67 inches

 Nexus 6P
6.27 inches

Fig. 10. Experimental devices.

Simple Medium Complicated

Fig. 11. Six patterns used in the experiment.

4.1.3 Data Collection. To evaluate the performance of SwipePass, we invite 36 volunteers 2 with a variety of
age and hand size. The demography of the participants is shown in Table 2. All the participants are experienced
smartphone users and know how to use SwipePass. Before conducting the experiment, the users signed the
consent forms, which clearly state the purpose, procedure, and data usage of the study. For example, they are
aware that the experiments would not cause any harm to their health, and the recorded data would only be used
for research purposes and would not be leaked to any other third parties. Each participant was given a small gift
(e.g., a notebook with a nice cover) for compensation. As shown in Fig. 11, we consider six different patterns for a
3 × 3 grid pattern lock scheme, which are grouped into three categories: simple, medium and complicated. We
choose these patterns for two reasons. First, they are among the commonly used patterns according to a recent
study [47]. Second, they represent different levels of complexity in terms of the number of lines and corners. As
shown in Fig. 11, the simple category represents the low complexity with only two lines and three corners, while
medium and complicated categories contains patterns with relatively higher complexities with more lines and
corners. For simplicity, we use S, M and C to represent the simple, medium, and complicated categories.
The participants are asked to perform these three patterns in their preferable manners. Each participant

performs the same pattern 27 times, of which the first 10 samples are used for training, and the remaining samples
are used for testing. Compared to random splitting, this setting is more realistic because it is consistent with
the authentication practice on smartphones where training data used in registration are collected before the
test data. To understand the robustness of SwipePass in different real-world scenarios, we collect data in three
real-life environments–an office, a public co-working space, and a busy street. These environments represent
common scenarios in indoor and outdoor, quiet place, and noisy place. In addition, users may have different
postures when using their smartphones. Therefore, we consider four common postures in data collection. The

2Ethical approval has been obtained (No. H002554).
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Fig. 12. The video filming setting for mimicry attack.
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Fig. 13. The audio recording setting for replay attack.

first one is a static scenario that a user places his/her smartphone on a table and unlocks it with a finger. In the
other three scenarios, a user holds his/her smartphone with one hand and swipes to unlock it with another hand
while sitting, standing, and walking. We choose these settings because they are representative environments
and postures in the literature [16, 27, 45]. The data is collected every two days with a time span of seven days to
account for the changes in user behaviors.
To evaluate the performance of SwipePass against different attacks (Sec. 3.1), we conduct the following

experiments. Among the participants, 26 of them are randomly selected as legitimate users, and the remaining
participants are treated as attackers. Since the credential-aware attacker only knows the pattern itself, the data
of the 10 attackers are used to spoof the authentication model directly. To evaluate the mimicry attack, during
data collection, we use a device to film the unlocking processes of the 26 legitimate users. To evaluate the
shoulder-surfing attack, as shown in Fig. 12, we place another smartphone 30 cm away beside the victim with
an angle of depression at around 30◦ to ensure that the whole unlocking process is well-recorded by clearly
showing the used gesture and graphic pattern. Then, the 10 attackers are asked to watch the videos of all the
legitimate users and try to mimic their unlocking behaviors. In these experiments, each attacker is given 10 trials
to attack each of the legitimate users. To evaluate the replay attack, the attacker handholds another smartphone
to record the audio emitted from the victim’s smartphone from different directions and distances when the user
is unlocking his/her smartphone. An example is shown in Fig. 13, where the attacker records the audio 50 cm
away at the left side of the victim. The recorded audios are then replayed to the victim’s smartphone to spoof
our system. The evaluation of these attacking experiments lasts for one month to consider the changes of user’s
unlocking behaviors and attacker’s learning ability.

4.1.4 Metrics and Methodology. In the evaluation, the training data mentioned above are augmented to construct
a much larger dataset by the proposed methods in Sec. 3.6. As an authentication system, we consider the following
three metrics that are widely used in previous studies [7, 26]:

• Identification Accuracy: The probability that the identity of the user is correctly classified by our system.
• False Accept Rate (FAR): The probability that a spoofer is authenticated as a legitimate user.
• False Reject Rate (FRR): The probability that a legitimate user is authenticated as a spoofer.

4.2 Impact of Data Augmentation
In this experiment, we evaluate whether the proposed data augmentation methods can improve the accuracy with
limited training samples. We compare the accuracy of four settings: (1) without augmentation, (2) augmentation
with initial state variation only, (3) augmentation with speed variation only, (4) augmentation with both variations.
The results are shown in Fig.14 (a). We observe that the accuracy of setting (1) is the worst, which indicates
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Fig. 14. Evaluation results: impact of different (a) augmentation methods and (b) augmentation rates.
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Fig. 17. Different postures.

the poor performance of the model trained directly on the limited samples. In terms of the two independent
augmentation methods, the accuracy of setting (2) is slightly higher than that of setting (3). This is because the
same user has relatively stable speed, but unstable initial states in different unlock trials. Not surprisingly, by
using both augmentation methods, we can achieve the best accuracy. The result illustrates that the proposed two
augmentation methods can improve the model performance by generating more training data that are close to
real-world variations.
Next, we investigate the influence of different augmentation rates to the performance of our system. From

the results in Fig.14 (b), we observe that when only four training examples are used, the accuracy with 5×
augmentation rate achieves less than 75% only. However, the accuracy improves to 85% when the augmentation
rate reaches 100×. If six samples per user are used, SwipePass achieves approximately 95% accuracy with 100×
augmentation rate. The accuracy is further improved up to 96% when more samples are used, but we find that
the improvement of accuracy diminishes when more than eight training samples are used. Based on the above
results, we draw the conclusion that the proposed augmentation methods can significantly improve the accuracy
of SwipePass in a data-efficient manner, greatly reducing the tedious and repetitive data collection process.

4.3 User Identification Performance
In this subsection, we evaluate the identification accuracy of SwipePass under different conditions (e.g., different
smartphones, environments, postures, and unlock patterns).
Fig. 15 shows the accuracy using different smartphones. We observe that Samsung and Nexus achieve over

97% accuracy on average, while the accuracy of Redmi is slightly lower. To find out the reason, we compare the
extracted near-phone CIRs of the three smartphones and find the variations of Redmi’s are the least observable.
This means, if we compare the signals bypassing the hand-interaction area with the LOS signal, it is the weakest in
Redmi among the three smartphones. This can be explained by the different relative locations of the microphone
and speaker (Fig. 10), that the opposite-side layout of Redmi results in weaker signals traveling above the screen.
Nevertheless, SwipePass still achieves an accuracy of 95% approximately on Redmi.

Fig. 16 shows the accuracy in different environments. We observe that the accuracy in the noisy street is slightly
lower than that in the indoor office and co-working place due to a relatively higher noise level. Nevertheless,
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Fig. 18. Confusion matrix (%).

SwipePass achieves over 95% identification accuracy in all the environments. The results demonstrate that
SwipePass can effectively extract the CIR caused by the moving hand in different real-world environments and is
immune to most of the audible environment noise.

Fig. 17 shows the accuracy of different postures, from which we can see that the average accuracy of the three
static cases (i.e., on table, sitting, and standing) are all over 95%. As for walking, although the irregular waggling of
hands causes accuracy decline, SwipePass still achieves 92.6% on average, which demonstrates that our proposed
hand-induced CIR extraction can effectively eliminate interference from other dynamic components such as the
torso. In addition, there is no obvious difference among different unlock patterns, which means SwipePass can
strengthen the security of pattern lock scheme regardless of the complexity of unlocking patterns. The overall
performance of SwipePass in identifying legitimate users is shown in Fig. 18 with 96.8% accuracy on average.

4.4 User Authentication Performance
The detailed replay attack scenarios are shown in Fig. 19, where the attacker places another smartphone to
record the audio emitted by the victim’s smartphone from different directions (i.e., front, left, right and back)
and distances (i.e., 0.5 m, 1 m and 2 m). 10 samples are recorded at each position and are replayed back to the
authentication system to spoof it. As shown in Fig. 20, the average FAR of the replay attack is below 0.1%, showing
that the system is secure enough to be resistant to this type of attack. This is because the audio recorded by the
attacker experience completely different multi-path propagation compared with the legitimate one. Fig. 21 and
Fig. 22 show the FAR of SwipePass against the credential-aware attack and mimicry attack, respectively. The
average FARs of these two attacks are pretty close to each other: it is 0.44% for the credential-aware attack and
0.38% for the mimicry attack. If we convert the FAR to success rate, it requires approximately 230–1000 attempts

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 106. Publication date: September 2022.



SwipePass: Acoustic-based Second-factor User Authentication for Smartphones • 106:19

d

Front

Back

Left Right

Fig. 19. Replay attack setting.

Front Left Right Back
0    

0.001

0.002

0.003

0.004

Fa
ls

e 
A

cc
ep

t R
at

e

0.5m
1m
2m

Fig. 20. Replay attack.

Office Co-working Space Outdoor
0

0.002

0.004

0.006

0.008

0.01

Fa
ls

e 
A

cc
ep

t R
at

e

S M C Avg.

Fig. 21. Credential-aware attack.
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Fig. 22. Mimicry attack.
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Fig. 23. False reject rate.
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Fig. 24. Unseen environment.
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Fig. 25. Unseen posture.
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Fig. 26. Unseen time.

to successfully spoof our authentication system. Since modern smartphones usually trigger screen lock after
several wrong attempts, our system is secure enough to resist these common attacks.
For a legitimate user, FRR is an important metric because it is related to user experience. From the results

in Fig. 23, the FRR of SwipePass is 3.8% on average, which means out of 100 attempts, the legitimate user will
be incorrectly rejected by approximately 3.8 times. In fact, there is a trade-off between FAR and FRR by setting
the threshold in the OC-SVM spoofer detector. A higher level of security can be achieved by sacrificing the
user experience. We consider the trade-off as a user-defined parameter to meet the requirement of different
applications. From the above experiments, we observe that SwipePass can provide comprehensive protection to
the smartphone regardless of the patterns used, which alleviates the dependency of the security level on the
pattern complexity. In other words, by loosing the restrictions on the way how users choose patterns, both the
generalization ability and user experience of the system is enhanced.

4.5 Generalization Ability Analysis
4.5.1 Unseen Environment. We conduct leave-one-environment-out validation to evaluate the accuracy of
SwipePass in unseen environments. Specifically, the data collected in one environment is used to test the model

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 6, No. 3, Article 106. Publication date: September 2022.



106:20 • Chen et al.

Samsung Nexus Redmi Average
0

100

200

300

400

500

600

700

R
es

po
ns

e 
Ti

m
e 

(m
s)

Profile Construction
Authentication

Fig. 27. Response time.

Samsung Nexus Redmi Average
0

100

200

300

400

500

600

700

800

En
er

gy
 C

on
su

m
pt

io
n 

(m
J)

Acoustic Sensing
Profile Construction
Authentication

Fig. 28. Energy consumption.

trained in other environments. As shown in Fig. 24, the classification accuracy maintains at the similar level
compared with the result in Fig. 16, where the data of the same environment is used in both training and testing.
This is because SwipePass is inherently resilient to ambient noise.

4.5.2 Unseen Posture. We conduct leave-one-posture-out validation to evaluate the accuracy of SwipePass in
unseen postures. The results are plotted in Fig. 25. Compared with the result in Fig. 17, the accuracy only drops
by 3%–4% in sitting, standing, and walking scenarios but drops by around 10% when the smartphone is placed on
the table. The result can be explained by the fact that biometric patterns of the two-hand involved unlocking
scenarios are different from those of using only one hand, which is caused by the differences in the relative
leaning angles and subconscious movements between the phone and the hand. To solve this issue, we may apply
deep learning such as few-shot learning and domain adaptation, which we leave for our future work.

4.5.3 Unseen Time Period. The unlocking behavior of the same user may change gradually over time. Therefore,
we investigate the accuracy of SwipePass by training and testing the system using data from different days.
Specifically, we use the data collected on Day 1 to train the model, and then we use the data collected on Day
3/5/7 to test the model. As shown in Fig. 26 (blue dash line), the accuracy decreases gradually over time. To solve
this problem, inspired by incremental learning, we fine-tune the model by using a few new samples collected on
the testing day. Specifically, combining with the newly added samples, we fix the CNN layers and fine-tune the
LSTM and FC parameters with 10 epochs before testing. The results of adding a different number of samples are
plotted in Fig. 26, from which we observe that the accuracy improves significantly even when only three new
samples are added. In practice, SwipePass can add new samples to update the model after the user is successfully
authenticated, which guarantees the robustness of our system even when the user’s unlocking behavior changes.

4.6 Response Time and Energy Consumption
We evaluate the response time and energy consumption of SwipePass on the three smartphones. The response
time is obtained from the Android Studio console and the energy consumption is calculated based on Android’s
built-in API [10]. The averaged results after 100 runs are shown in Fig. 27 and 28. From Fig. 27, we find that the
time consumption mainly falls in the profile construction which includes the segmentation and feature extraction.
This is because the CIR estimation in segmentation is the most computationally intensive process. As for the
devices, Samsung takes the least time to finish one authentication in 479 ms, while the Nexus takes the most time
in about 622 ms. The difference can be explained by their different processing ability. The average response time
is 564 ms, meaning that SwipePass will not cause significant delay.
Fig. 28 shows the energy consumption of each component in SwipePass. The acoustic sensing consumes

the most energy since it takes more time compared with the processing stages. It is not surprising that the
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Fig. 29. Results of user study questionnaire.

authentication with a lightweight model costs the least energy, which is only 16.6 mJ on average. Generally, the
three smartphones consume similar energy at around 644.3 mJ, which implies that one-time unlocking with
SwipePass only requires less than 0.013‰ of the smartphone batteries. The experiments show that SwipePass is
both computation and energy efficient.

4.7 User Study
In addition to the above experiments, we also conduct a user study by inviting 40 participants to fill out a
questionnaire on their experience after using SwipePass for one week. The participants come from different
industries (e.g., students, office staff, and drivers), and their ages span from 22 to 52. We would provide them
with our testing smartphones if they do not have an Android phone or do not want to install extra software on
their smartphones. Their data is collected on the first day, and the trained SwipePass is then deployed on the
smartphone. In the following days, they are required to use SwipePass for authentication at least ten times per
day. After one week’s use, they are invited to complete a questionnaire. Since the goal of the user study is not
only to understand the user experience but also to evaluate the performance of SwipePass in the wild, we design
eight system-specific questions instead of using general standard questionnaires such as the User Experience
Questionnaire [12]. The questions and the results are shown in Fig. 29. For each question, the answer is a score
number taken from 1 to 10, based on the level of agreement, satisfaction, or preference. For the opinions on
the current pattern lock on smartphones (Q1&Q2), most participants agree that the pattern lock is still being
widely-used although it suffers from some potential security issues. One participant gives a neutral answer to
Q1, with the reason that most smartphones nowadays provide various more convenient and safer solutions to
smartphone authentication, such as fingerprinting. However, when it comes to the question (Q3) with respect to
the biometric-based authentication methods, participants give a wide range of responses. Although the main
portion of answers fall in the agree section (median at 8 and mean at 7.7), there are over 25% of the participants
choose neutral or weakly agree options (5-7). As for the reason, some of the participants mentioned there is news
reporting data leakage on smartphones due to incorrect authentication, and others have expertise in smartphone
security-related knowledge and are aware of the possible vulnerabilities in the commonly-used technologies.

When it comes to SwipePass, the participants response positively to the capability of the system. In Q4 and Q6,
a large majority of participants agree that the system can enhance the security of pattern lock efficiently and the
success rate of the authentication is satisfactory. On average, the failure rate in the user study is about 10%. Based
on the feedback from the participants, a large majority of failing cases occurred when the user is in a mobile
environment, such as unlocking in a moving car/bus or when the user is walking. They think that compared
with other mature commercial biometric-based methods, the system’s robustness is still immature, and it should
be further improved. In Q7, all participants are satisfied with the time consumed by SwipePass. As for Q5, over
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half of the participants agree that the system is easy to use without extra learning costs. However, for the rest
of participants with neutral opinions, they mention that the requirement of unlocking the phone following the
same hand gesture could sometimes be troublesome. This problem, that how to alleviate the requirement of
the consistent unlocking gesture while not affecting system performance, is common in the community and is
worthwhile to be further explored in the future. In the last question, most of the participants agree that it is a good
choice to deploy SwipePass in their smartphones. participants with different opinions mainly consider pattern
lock as a supplementary authentication method when using less security-sensitive applications. Therefore, they
think that it is unnecessary to install SwipePass.
Overall, a large portion of the participants have acknowledged the potential security issues in the current

authentication methods. SwipePass provides them with a new perspective of combining secure biometric-based
method with pattern lock and they have shown great interest. Although there is still much room for improvement,
we believe that SwipePass pushes the limits of existing authentication methods and moves a big step forward in
mobile device security.

5 LIMITATIONS AND FUTURE WORK
In this paper, we propose a novel acoustic-based second-factor authentication system based on pattern lock.
Although the above experiments demonstrate the superior performance of SwipePass in different real-world
scenarios, there still exist several limitations, which we will try to tackle in future work:

• Robustness in the long term: The principle of SwipePass is that the locking behaviors of different
users are distinct, such that the system can distinguish among people from the collected sensory data.
In SwipePass, the unlocking gesture, hand movement pattern, and hand geometry together construct a
unique and hard-to-copy profile for each user, making it secure from adversarial attackers. However, recent
studies [40, 41] reveal that people’s behaviors may change slightly over time, posing a significant challenge
for our system. Therefore, how to enable tolerance for slightly different unlocking styles while maintaining
secure authentication is the key to improving the practicality of the system. In the future, we will try
to adopt the knowledge of deep learning, such as domain adaption and lifelong learning, to make the
unlocking style in the enrollment phase transferable to other possible situations.

• Multiple swipes in enrollment. Although SwipePass is data-efficient compared with the previous work
by using the proposed data augmentation techniques, it still needs the user to swipe eight to ten times to
achieve the best performance. In contrast, only one swipe is required for the traditional pattern lock to
set up the password. In future work, we will study how to reduce the number of registrations by using
recently developed deep learning techniques, such as pre-training and few-shot learning.

• Low generalizability across smartphones. In this paper, we implement SwipePass on multiple smart-
phones and show that our system can provide reliable authentication on these devices. However, the current
system is device-specific, which means a well-trained model on one smartphone cannot be generalized to
other smartphones. This is because different devices have different sizes and microphone/speaker locations,
as well as varying hardware standards. Therefore, the acoustic features of the same user may vary when
using different devices. In large-scale deployment, it is impractical to collect a large amount of data for
every mobile device. One possible solution is to normalize the sensory data to a unified scale and extract
more robust features such that the gaps between different devices can be minimized. We can develop a
more general model that can be easily deployed on different devices once the profiles of a person are equal
across different devices.
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6 CONCLUSION
In this paper, we propose a second-factor authentication system to augment the security of pattern lock, which
is named SwipePass. The system uses inaudible acoustic signals to sense users’ unlock behaviors and adopts
several novel methods to extract unique features for different users. Additionally, we propose two augmentation
methods to reduce the extensive data collection efforts to train a deep-learning model. The extensive evaluation
demonstrates that SwipePass is capable of providing reliable authentication while remaining computation and
energy-efficient.
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